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Abstract. Riemannian manifold has attracted an increasing amount of attention for visual clas-
sification tasks, especially for video or image set classification. Covariance matrices are the
natural second-order statistics of image sets. However, nonsingular covariance matrices, known
as symmetric positive defined (SPD) matrices, lie on the non-Euclidean Riemannian manifold
(SPD manifold). Covariance discriminative learning (CDL) is an effective discriminative learn-
ing method that employs the Riemannian manifold in the SPD kernel space. However, in
practice, the discriminative learning of CDL often suffers from the problems of poor generali-
zation and overfitting caused by a finite number of training samples and noise corruption. Hence,
we propose to address these problems by importing eigenspectrum regularization and graph-
embedded frameworks. Discriminative learning with SPD manifold is generalized by the
graph-embedded framework, which combines with eigenspectrum regularization in the SPD ker-
nel space. Three local Laplacian graphs of graph-embedded framework and two eigenspectrum
regularized models are incorporated to the proposed method. Comprehensive mathematical
deduction of the proposed method is depicted with the “kernel tricks.” Experimental results
on set-based face recognition and object categorization tasks reveal the effectiveness of the pro-
posed method. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JEI.29.4.043018]

Keywords: symmetric positive defined manifold; covariance discriminative learning; eigenspec-
trum regularization; graph-embedded framework; image set classification.

Paper 200283 received Apr. 19, 2020; accepted for publication Jul. 22, 2020; published online
Aug. 4, 2020.

1 Introduction

The development of intelligent video surveillance, social networks, and electronic commerce
enables a probe image set to be matched against all gallery image sets that becomes an image
set classification task.1 Image sets can be extract from videos or albums. Each probe image set
and gallery image set contains multiple images that belong to the same class, which allows the
extraction of considerably more discriminative information than is possible in the traditional
single image classification task.2 Image set classification has achieved widespread success in
face recognition3–6 and object categorization.7–11

Recently, many studies have indicated that numerous particular visual features lie on a
Riemannian manifold.12 The subspaces of image sets form the Grassmann manifold, the sym-
metric positive definite (SPD) matrices form the SPD manifold,13 and the two-dimensional
shapes lie on Kendall shape spaces.14 The use of Riemannian manifold to model image set and
build the corresponding classifier for classification is popular in recent years.15 Subspace and
covariance matrix are two typical representations for modeling image sets on the Riemannian
manifold. The subspaces of image sets form the Grassmann manifold,8 and the nonsingular
covariance matrices form the SPD manifold.10 Linear subspace is a popular choice for modeling
image sets due to its excellent accommodation of image variations. Hence, the Grassmann mani-
fold formed by subspaces is widely used for image set classification. However, linear subspace-
based modeling has the limitation that it incorporates only relatively weak information (such as
the subspace angles) about the location and boundary of the samples in the input space.10 The
second-order statistic feature known as the (nonsingular) covariance matrices of image sets that
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form the SPD manifold characterizes the set structure more faithfully.10 Many studies10,12,16 have
shown the effectiveness of SPD manifold for image set classification and that the covariance
descriptor is robust to noise and illumination variations.

Covariance discriminative learning (CDL)10 is one of the most representative methods that
uses covariance descriptor for image set classification. Covariance descriptor provides a natural
representation for an image set, which makes no assumption about the set data distribution.
Hence, covariance descriptor characterizes the set structure more faithfully, and the representa-
tion possesses stronger resistance to outliers.10 The SPDmanifold formed by covariance matrices
is mapped to a high-dimensional reproducing kernel Hilbert spaces (RKHS), where Euclidean
geometry applies. Subsequently, linear discriminant analysis (LDA)17 is applied to perform dis-
criminative learning with the “kernel trick,” which is known as kernel discriminant analysis.18

CDL has achieved considerable results on set-based face recognition and objection categoriza-
tion tasks.

In this work, we focus on the discriminative learning problem of SPD manifold on the
mapped RKHS. Due to the conventional problems of linear discriminative learning, such as the
singularity of within-class scatter matrix and the instability of its inverse caused by the finite
number of training samples,17 CDL may suffer from overfitting and poor generalization since
conventional problems may also occur during discriminative learning in the kernel space.19 To
address the conventional problems of LDA, numerous approaches, such as the Fisherface
LDA,17 direct LDA,20 and null space LDA21 on linear Euclidean space, have been proposed. For
the conventional problems in the kernel space, kernel methods of kernel Fisherface LDA,22 null
space kernel LDA,19 and kernel direct-LDA23 in the nonlinear kernel space exist. However, these
approaches usually discard a subspace (either the principal space or null space) to circumvent the
singularity before discriminant learning, which causes a loss of discriminative information.24

Although dual-subspace LDA25 considers the contributions of both subspaces, the associated
average scaling factor may not be a suitable choice for information in the principal subspace.
To address these problems, the eigenfeature regularization and extraction (ERE)24 and complete
discriminant evaluation and feature extraction (CDEFE)26 approaches were proposed to address
these problems in a linear flat space and nonlinear kernel Euclidean space, respectively. ERE
considers that the entire eigenspace of the within-class scatter matrix SW should be retained for
discriminant analysis and regularized by the eigenspectrum regularization weighting function.
The entire eigenspace is partitioned into three parts according to the median operation, and three
different strategies according to the eigenspectrum of SW are devised for regularization.24

CDEFE tackles these problems in the kernel space by nonlinear mapping; it decomposes the
kernel within-class variation matrix into principal and noise dominated subspaces. A weighting
function that is based on the ratios of the successive eigenvalues of the eigenspectrum was pro-
posed to circumvent the undue scaling of projection vectors.26 Discriminative vectors by apply-
ing predicted eigenvalues27 combined the eigenspectrum regularization models of ERE and
CDEFE. Recently, regularized locality preserving discriminant embedding28 and locality regu-
larization embedding (LRE)29 were proposed; these methods generalized the eigenfeature extrac-
tion of ERE by the graph-embedded framework to better preserve data locality. An adaptive
locality preserving regulation model was devised for eigenspectrum regularization. The exper-
imental results have demonstrated the effectiveness of these eigenspectrum regularization
techniques.29

Inspired by eigenspectrum regularization, in this work, we aim to address the conventional
problems of CDL in discriminative learning by exploiting the eigenspectrum regularization with
the graph-embedded framework in the RKHS, which is mapped from the SPD manifold. We
refer to the proposed method as regularized graph-embedded covariance discriminative learning
(RGCDL). Figure 1 shows the conceptual illustration of the proposed method. The main con-
tributions of this paper are presented as follows.

1. We circumvent the instability, overfitting, and poor generalization on CDL10 with kernel
eigenspectrum regularization architecture. The input elements in high-dimensional SPD
manifold are reduced to lower-dimensional SPD manifold by principal component analy-
sis (PCA).

2. We incorporate the graph-embedded framework with three local Laplacian graphs into the
Riemannian kernel eigenspectrum regularization architecture to better preserve data
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locality. We give the systematic derivation of the graph-embedded framework that incor-
porates with the eigenspectrum in Riemannian kernel space.

3. We evaluate the advantages of the proposed method with two eigenspectrum regulariza-
tion models on face recognition and object categorization tasks. The experimental results
show the stability of the extracted features, robustness to noise-corrupted data, and high
classification rate to numerous set-based classification methods.

The rest of this paper is organized as follows. We present the works related to image set
classification according to the image set representations in Sec. 2. The original CDL method
and the architecture of eigenspectrum regularization are introduced in Sec. 3. Then, the RGCDL
approach is presented in Sec. 4. Experimental evaluation and discussions are presented in Sec. 5.
Finally, Sec. 6 concludes this paper.

2 Related Work

In this paper, we aim to use the proposed method to solve the image set classification task.
The major issues of image set classification focus on how to represent image set and measure
the distance or similarity between two sets.5 Various techniques have been proposed to represent
image set, such as the statistical distribution,30,31 affine/convex hull model,4 spare representa-
tion,5 subspace,7,32 and covariance matrix.10,12

The methods30,31 that model each image set by statistical distribution are one of the earliest
approaches employed for image set classification. They measure the similarities between pairs of
distributions of two sets and achieve considerable results. However, if the set data have no strong
statistical correlations for parameter estimation, these methods often fail to work.5 The most
representative affine/convex hull-based methods are the affine/convex hull-based image set dis-
tance (AHISD/CHISD);4 AHISD/CHISD represents images as points in a linear or affine feature
space and computes the distance of convex geometric region spanned by its feature points. Hu
et al.5 incorporated the sparse representation to regularize the affine hull model. Zhu et al.6

employed the collaborative representation technique to utilize the discrimination information
between gallery sets. The affine/convex hull approaches actually aim to find the synthetic nearest
points between image sets.11 However, these hull models usually cannot handle the complex
appearance variations caused by multiple views and extreme illumination.

Fig. 1 Conceptual illustration of the proposed RGCDL. Image sets of subjects A and B can be
described by refined covariance matrices, and the lower-dimensional SPD manifold is formed.
Then, the eigenspectrum regularization models of ERE and CDEFE are incorporated with the
graph-embedded framework for discriminative learning on the mapped RKHS, where Euclidean
geometry applies. The eigenspectrum regularizaiton circumvents the instability, overfitting, or poor
generalization of discriminative learning, and the graph-embedded retains the local properties and
increases the discriminatory power between classes.
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Subspace is a popular and effective approach for modeling image sets. Mutual subspace
method (MSM)32 is one of the earliest classic subspace-based method for image set classifica-
tion. MSM models all image sets by linear subspaces, and the similarity between pairs of sub-
spaces is measured by canonical correlation analysis (CCA).33 Fukui and Yamaguchi34 and
Fukui and Maki35 projected the linear subspaces to a “difference subspace,” which can extract
the disparity between two subspaces. Kim et al.7 incorporated discriminative learning into sub-
space-based set classification according to canonical correlations (DCC). DCC attempts to
obtain a linear transformation that maximizes the canonical correlations of within-class subspa-
ces and minimizes the canonical correlations of between-class subspaces. Arandjelovic36

extended CCA to an extended version (ECCA) by extracting the most similar models of
variability within two sets and exploited the discriminative learning architecture to train a clas-
sifier (DECCA).

Subspaces can also be treated as points that lie on a special type of Riemannian manifold,
which is known as the Grassmann manifold. The method in Ref. 3 represents an image set as
multiple local linear subspaces and treats them as points on the Grassmann manifold; then, the
manifold-to-manifold distance (MMD) is defined between two manifolds of two image sets.
Manifold discriminant analysis37 was proposed to learn an embedding space by maximizing
the manifold margin of the MMD. Grassmann manifold can also be mapped to an RKHS, where
Euclidean geometry applies, Grassmann discriminant analysis (GDA)8 implements LDA on the
mapped RKHS by the Grassmannian kernel. GDA is generated to kernel GDA (KGDA) using
Gaussian kernel principal subspaces.38 Graph-embedding Grassmann discriminant analysis
(GGDA)9 is another counterpart to the GDA method; it exploits the graph-embedded framework
to implement discriminant analysis on the mapped RKHS. Grassmann nearest points (GNP)11

finds the nearest Grassmann points on the mapped vector space using the affine hull. More
recently, regularized Grassmann discriminant analysis (RGDA)2 was proposed to circumvent
the conventional problems of LDA, when the training sets are insufficient. However, as previ-
ously mentioned, the linear subspace-based methods have the limitation of using weak infor-
mation to measure the similarity.10 Modeling visual features as covariance matrices for visual
classification has become popular in recent years10,12,39 since the nonsingular covariance matrix
(as known as SPD matrix) can form a special Riemannian manifold, which is referred to as SPD
manifold.12 Previous studies employed covariance matrices to characterize local regions within
an image, which is named the region covariance.39 Different from the region covariance descrip-
tor, CDL is the crucial method that models the whole image set by the covariance descriptor for
addressing the image set classification with SPD manifold. Huang et al.40 proposed log-
Euclidean metric learning to learn a tangent mapping from the original tangent space of the
SPD manifold to a new discriminative space. Tan and Gao16 proposed a patch-based principal
covariance discriminative learning (PPCDL) method, in which the image set is partitioned into
several local maximum linear patches by a hierarchical divisive clustering method, the local
patches are modeled by covariance matrices, and the final discriminative learning is similar
to CDL. Discriminant analysis on Riemannian manifold of Gaussian distributions (DARG)41

models the image set with a Gaussian mixture model (GMM) and derives a series of kernels
for Gaussians discriminative learning on SPD manifold. Symmetric positive definite manifold
learning12 learns an orthonormal projection from the high-dimensional SPD manifold to a low-
dimensional, more discriminative manifold.

3 Preliminaries

In this section, we first review the theory of CDL10 and then present the architecture of eigens-
pectrum regularization according to LRE.29

3.1 Covariance Discriminative Learning

CDL uses a natural methodology to characterize image sets by the covariance descriptor. Let
X ¼ ½x1; x2; : : : ; xn� denote the data matrix of an image set with n image vectors, where xi ∈ RD

in the D-dimensional vector space. The covariance descriptor can be expressed as
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EQ-TARGET;temp:intralink-;e001;116;735B ¼ 1

n − 1

Xn
i¼1

ðxi − xÞðxi − xÞT; (1)

where x denotes the mean of image vectors in X. The covariance matrix of B represents one
image set, which is rather simple to derive and compute. It is worth noting that, due to the high
dimensionality of visual features and insufficient samples within set, the covariance matrix of an
image set is usually singular (when the number of image samples is less than the dimensions of
the vector space). A simple way to circumvent this problem is to introduce a small perturbation to
the covariance matrix.10 This perturbation can be denoted as B� ¼ Bþ ηI, where I is the identity
matrix and η is a scaling parameter. Hence, the nonsingular covariance matrix becomes a D ×D
SPD matrix symþ

D, which is an element on Riemannian manifold. In the following paper, we still
use B to denote the nonsingular covariance matrix for simplicity. After modeling the image sets
as multiple SPD matrices, CDL explores a Riemannian kernel that is induced by the Riemannian
metric, such as the log-Euclidean distance (LED)42 to map the symþ

D to an Euclidean space. The
Riemannian metric of LED defines a true geodesic on the Riemannian manifold, as it is induced
by a positive definite kernel,42 and the manifold structure can be preserved as much as possible.
The metric of LED is defined as

EQ-TARGET;temp:intralink-;e002;116;527dLEDðB1;B2Þ ¼ k logðB1Þ − logðB2ÞkF; (2)

where k · kF is the matrix Frobenius norm and logð·Þ denotes the principal matrix logarithm
operation. The eigendecomposition of an SPD matrix B is given by B ¼ UΣUT, and it can com-
pute the principal matrix logarithm of B as

EQ-TARGET;temp:intralink-;e003;116;459 logðBÞ ¼ U log

�
Σ
�
UT; (3)

where logðΣÞ is easily calculated using the logarithms of the eigenvalues in the diagonal matrix
Σ. CDL implements image set classification in an extrinsic manner by first mapping the
Riemannian manifold to an Euclidean space. The mapping induced by the LED metric can
be defined as ϕ∶M → H, where M denotes the manifold spanned by the SPD matrices and
the vector space H is the inner product space on RKHS, which can be viewed as an Euclidean
space R. Subsequently, the kernel function induced by the LED metric, klog∶ðM ×MÞ → R is
used to define the inner product on RKHS. For two symþ

D matrices of B1 and B2, the LED
Riemannian kernel function can be formulated as

EQ-TARGET;temp:intralink-;e004;116;317klogðB1;B2Þ ¼ tr½logðB1Þ logðB2Þ�: (4)

The kernel function klog is shown to be an SPD kernel10,13 that obeys Mercer’s theorem.43

Therefore, the manifold structure can be preserved by the LED Riemannian kernel.
The explicit kernel feature mapping allows application of any standard vector space learning

algorithms. The discriminative learning of CDL is conducted by the kernel LDA18 with the ker-
nel trick. The mapping of Riemannian manifold to an Euclidean space is defined by the function
ϕð·Þ. Therefore, if L points of the specified Riemannian manifold are spanned by the symþ

D
matrices fB1;B2; : : : ;BLg, the mapped feature points on Euclidean space can be denoted as
ffðB1Þ; fðB2Þ; : : : ; fðBLÞg. With the inner product hϕðBiÞ;ϕðBjÞi ¼ klogðBi;BjÞ, CDL seeks
to solve the following optimization:10

EQ-TARGET;temp:intralink-;e005;116;173αopt ¼ arg max
αTKWKα

αTKKα
; (5)

where α ¼ ½α1; α2; : : : ; αL�T , K is the kernel Gram matrix with elements Kij ¼ klogðBi;BjÞ, and
W is the connection matrix with element

EQ-TARGET;temp:intralink-;e006;116;105Wij ¼
�

1
Nc

; if Bi ∈ Cc and Bj ∈ Cc

0; otherwise
; (6)
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whereNc is the number of sets in the c’th class, we denote the c’th class asCc in this paper. Here,
Bi ∈ Cc indicates that the label of Bi belongs to class Cc. The optimal projection matrix is given
by the largest C − 1 (C is the number of training classes) eigenvectors of solving the eigenpro-
blem KWKα ¼ λKKα, which is denoted as A ¼ ½α1; α2; : : : ; αC−1�. Finally, for a given testing
symþ

D matrix Bte ∈ M in the input manifold space. The projected feature zte in the new
discriminant Euclidean subspace can be obtained by

EQ-TARGET;temp:intralink-;e007;116;663zte ¼ ATKte; Kte ¼ ½klogðB1;BteÞ; · · · ; klogðBL;BteÞ�T: (7)

3.2 Eigenspectrum Regularization Technique

Eigenspectrum regularization24,26,29 was originally proposed to address the conventional prob-
lems (problems caused singularity of SW and the numerical instability of its inverse) of LDA on
the linear Euclidean space. In this section, we introduce LRE29 as an instance since it is the
prototype of the proposed method in this paper.

Consider n samples of training data X ¼ ½x1; x2; : : : ; xn� with fxi ∈ RDji ¼ 1;2; : : : ; ng. In
LRE, intrinsic data structure is modeled to regularize the directions of data locality XLlocXT.29

The eigenspectrum and directions can be obtained by decomposing

EQ-TARGET;temp:intralink-;e008;116;507λ ¼ VTXLlocXTV; (8)

where Lloc is the local Laplacian matrix, which manifests the manifold through local geometry
preservation,29 and λ is a diagonal matrix whose diagonal elements are the eigenvalues
½λ1; λ2; : : : ; λD� in descending order. The plot of the eigenvalues λk against the index k is referred
to as the eigenspectrum. V ¼ ½v1; : : : ; vD� contains the eigenvectors (directions) of the locality
preserving matrixXLlocXT corresponding to λ. The locality preserving matrixXLlocXT has been
shown to be exactly equal to the within-class scatter matrix with equal weights on the edges of
adjacent data pairs of Lloc.

28

LRE decomposes the entire eigenspace V into two subspaces: (1) the disparity subspace
Vdisparity ¼ ½v1; v2; : : : ; vq�, which corresponds to lower locality preservation, and (2) the prin-
cipal subspace Vprincipal ¼ ½vqþ1; vqþ2; : : : ; vD� for higher locality preservation. LRE indicates
that the first few eigenvectors of the eigenspace correspond to large eigenvalues that provide
lower locality preserving capability, whereas the eigenvectors that correspond to smaller eigen-
values provide higher locality preserving capability. Hence, larger weights are imposed on the
subspace with higher locality preservation, whereas smaller weights are assigned to the subspace
with lower locality preservation. A method is devised by determining “fences” to separate the
disparity subspace and principal subspace, and then regularize these two subspace according to
an adaptive eigenspectrum regularization model. The fences is defined by a split point on eigens-
pectrum λdisparity ¼ γðQ3þ 1.5 × IQRÞ, where Q3 is the third quartile (cutting off the highest
75% or lowest 25% of the sum of λ), and γ is a parameter for adaptively scaling the separating
value. The definition of IRQ is IRQ ¼ Q3 −Q1, where Q1 is the first quartile.

This adaptive eigenspectrum regularization model finds the q’th split eigenvalue that satisfies
λq ¼ maxf∀ λijλi ≤ λdisparityg. The piecewise regularization function of LRE is defined as

EQ-TARGET;temp:intralink-;e009;116;207wLRE
k ¼

�
λ−1∕2k ; 1 ≤ k ≤ q
λ−1∕2q ; q < k ≤ D

: (9)

The regularization function is imposed on the corresponding eigenvectors to form a
full-dimensional transformation matrix

EQ-TARGET;temp:intralink-;e010;116;135Ṽ ¼ ½wLRE
k vk�Dk¼1: (10)

Then, LRE can obtain a more localized feature by transforming the original training
data
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EQ-TARGET;temp:intralink-;e011;116;735X̃ ¼ ṼTX: (11)

We indicate that there is no dimensional reduction has occurred in this transforming. The
information of the original training data is preserved as much as possible.

In the subsequent step of LRE, feature extraction and dimensional reduction from the regu-
larized and more compact data are performed. To further preserve the within-locality and
between-locality power, a similarity weight matrix GLRE is utilized. The element of GLRE is
defined as

EQ-TARGET;temp:intralink-;e012;116;639GLRE
ij ¼

�
1
nc
− 1

n ; if xi ∈ Cc and xj ∈ Cc

− 1
n ; otherwise

; (12)

where nc is the number of samples in the c’th class. The within-locality graph edges are weighted
with positive-valued coefficients that quantify the intraclass similarity, whereas the between-
locality graph edges are weighted with negative-valued coefficients that characterize discrimi-
native features among different class samples.29 The final objective function of LRE is defined
as

EQ-TARGET;temp:intralink-;e013;116;532U� ¼ arg max
UTU¼1

UTX̃GLREX̃TU: (13)

This problem can be easily solved by converting it to a generalized eigenvalue problem
X̃GLREX̃Tui ¼ φiui. By retaining d eigenvectors U ¼ ½u1; u2; : : : ; ud� (d ≤ D), which corre-
spond to the largest d eigenvalues, the projection matrix ZLRE ¼ ṼU is used for the final
lower-dimensional eigenfeature extraction.

4 Proposed Method

In this section, the proposed RGCDL is presented. To incorporate the eigenspectrum regulari-
zation and graph-embedded framework with SPD manifold in the kernel space, the algorithm of
RGCDL is quite different from the original CDL algorithm. Generally, the algorithm of our
RGCDL mainly comprises of two steps. The first step is eigenspectrum regularization, and the
second step is feature extraction and dimensional reduction.

4.1 Representation of SPD Manifold

At first, according to Harandi et al.12 and Tan and Gao,16 the computational cost of the
Riemannian kernel with a high-dimensional SPD matrix is quite high. Several strategies are
available to lower the dimensionality of the SPD matrix and reduce the computational cost
of constructing the Riemannian kernel matrix.12 Here, we combine all the training data in differ-
ent training sets to collaboratively produce the dimensional reduction projection matrix by PCA.

Consider L training image sets χ ¼ fXigLi¼1, each set contains Li images Xi ¼
½x1; x2; : : : ; xLi

�. We combine all images of all sets to build a sample data collection

EQ-TARGET;temp:intralink-;e014;116;214χ ¼ fxjgNj¼1
; N ¼

XL
i¼1

Li: (14)

The dimensional reduction projection matrix can be obtained by decomposing the following
sample covariance matrix:

EQ-TARGET;temp:intralink-;e015;116;140Π ¼ 1

N

XN
j¼1

ðxj − xÞðxj − xÞT; (15)

where x is the sample mean. We select d1ðd1 ≤ DÞ orthonormal eigenvectors that correspond
to the d1 largest eigenvalues of Π to form the dimensional reduction projection matrix Γ.
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All images in each set are transformed to a low-dimensional feature space, and the j’th sample in
the low-dimensional feature space is calculated as

EQ-TARGET;temp:intralink-;e016;116;711yj ¼ Γxj: (16)

This simple PCA that is applied to all training sets not only alleviates the problem of the high
computational complexity of constructing the SPD kernel matrix but also better preserves the
main variations in the set data to build the covariance matrices, which form the SPD manifold.
This operation of refining the high-dimensional SPD matrices can also be viewed as a trans-
formation from the high-dimensional manifold to a low-dimensional manifold.16

4.2 Eigenspectrum Regularization with SPD Manifold

The i’th dimensional reduced set can be represented asYi ¼ ½yi1; yi2; : : : ; yiLi
�.Yi can be modeled

by the covariance descriptor [Eq. (1)] and represented as Bi ∈ Rd1×d1 . To ensure that Bi is non-
singular to form the SPD manifold, a small perturbation is added to the covariance matrix
Bi þ ηI. Hence, the perturbed Bi is an SPD matrix symþ

d1
.

For L image sets of C classes, they can be denoted as a collection of symþ
d1

matrices B ¼
fB1;B2; : : : ;BLg that form an SPD manifold. By defining the Riemannian mapping
ϕ∶M → H, we can obtain the samples ΦðBÞ ¼ ½ϕðB1Þ;ϕðB2Þ; : : : ;ϕðBLÞ� on the RKHS
H, which is homeomorphic to Euclidean space.

To further preserve the local structure, we incorporate the graph-embedded framework into
our proposed method. The local Laplacian matrix Lloc is utilized to preserve the locality infor-
mation, whereas the global Laplacian matrix is adjacent regardless of the class membership of all
vertices.29 In this step, we aim to obtain the eigenspectrum and directions of the local structure in
the SPD Riemannian kernel space. They can be implemented by decomposing the locality
preserving matrix ΦðBÞLlocΦðBÞT on the mapped space; we denote ΦðBÞ as Φ for simplicity.
Then, we have

EQ-TARGET;temp:intralink-;e017;116;394λ ¼ VTΦLlocΦTV; (17)

where V constructs the kernel eigenspace ofΦLlocΦT , and the eigenvalues in λ define the kernel
eigenspectrum. The local Laplacian matrix Lloc can be specified into different local Laplacian
graphs. In this work, we employ the binary local Laplacian Lbin, intraclass local Laplacian Lclass,
and adjustable local Laplacian Ladjloc for instances. Lbin is a simple-minded Laplacian matrix in
which intraclass vertices are adjacent with equal weight of each edge. Lclass is the Laplacian
graph that satisfies

EQ-TARGET;temp:intralink-;e018;116;289Lclass ¼
8<
:

1 −Wij; i ¼ j;
−Wij; i ≠ j; if Bi ∈ Cc and Bj ∈ Cc

0; otherwise

; (18)

where Wij is the connection weight of the i’th and j’th sets, and it has the same definition as
Eq. (6) in CDL.10 The locality preserving matrix ΦLclassΦT can be proved to be equal to the
kernel within-class scatter matrix SΦW with equal weights on the edges of adjacent data pairs of
Lclass.

29

Unlike the edge weights in Lbin and Lclass, which are fixed in values, the edge weights in Ladj

are variables that are based on different similarity definitions, such as the heat kernel in locality
preserving projections44 and neighborhood reconstruction coefficients in neighborhood preserv-
ing embedding.45 Ladj is a Laplacian matrix that is computed by

EQ-TARGET;temp:intralink-;e019;116;132Ladj ¼ D −W; (19)

where D is a diagonal matrix calculated by Dii ¼
P

jWij. In this paper, we compute the edge
weights ofW in Eq. (19) based on the heat kernel, which is calculated by Gaussian distribution.
The edge weight Wij of Ladj can be computed as
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EQ-TARGET;temp:intralink-;e020;116;735Wij ¼
�
exp

�
− kϕðBiÞ−ϕðBjÞk2

σ

�
; if Bi ∈ Cc and Bj ∈ Cc

0; otherwise

; (20)

where σ is the kernel width parameter. The Euclidean distance of the mapped feature ϕðBiÞ and
ϕðBjÞ can be easily transformed to Kii − 2Kij þ Kjj, where Kij can be calculated by the
Riemannian kernel, such as Eq. (4).

As known by linear algebra, the projection direction of V in Eq. (17) can be represented as
a linear combination of the eigenspace on the mapped space

EQ-TARGET;temp:intralink-;e021;116;629V ¼ Φα: (21)

By substituting Eq. (21) into Eq. (17), we obtain λ ¼ αTΦTΦLlocΦTΦα. We use the
Riemannian kernel function [e.g., Eq. (4)] to build the kernel Gram matrix K ¼ ΦTΦ,
Eq. (17) can be rewritten as

EQ-TARGET;temp:intralink-;e022;116;559λ ¼ αTKLlocKα: (22)

Equation (22) can be solved by the eigendecomposition of KLlocK subject to αTα ¼ 1.
In the theory of eigenspectrum regularization, we need to regularize the whole feature space

V [see Eq. (21)] on the mapped space. Assume that, the regularization can be generalized to
the weighting function, which is defined as

EQ-TARGET;temp:intralink-;e023;116;478w ¼ ½wk�Lk¼1; (23)

where L is the number of all training sets. The full-dimensional feature space V contains L
vectors ½v1; v2; : : : ; vL� since the dimensions of matrix KLlocK is L × L). Hence, the regularized
eigenspace can be computed as

EQ-TARGET;temp:intralink-;e024;116;411Ṽ ¼ ½wkvk�Lk¼1: (24)

According to Eq. (21), we have vk ¼ Φαk. By defining

EQ-TARGET;temp:intralink-;e025;116;365ρ ¼ ½wkαk�Lk¼1 (25)

the regularized eigenspace of Eq. (24) can be rewritten as

EQ-TARGET;temp:intralink-;e026;116;319Ṽ ¼ Φρ: (26)

The regularized eigenspace is known as a transformation matrix24 that can transform the
original feature data to an intermediate feature vector space. It is worth noting that the trans-
formation matrix Ṽ is a full-dimensional matrix with size L × L. Hence, the mapped data ΦðBÞ
from SPD manifold can be transformed to the new feature vector space Φ̃ðBÞ with no dimen-
sional reduction, which can preserve information as much as possible. We denote Φ̃ðBÞ as Φ̃ for
simplicity. The transformation is depicted as

EQ-TARGET;temp:intralink-;e027;116;210Φ̃ ¼ ṼTΦ: (27)

Although Φ is implicitly defined, the transformed feature Φ̃ can be explicitly expressed by
the kernel trick. According to Eqs. (26) and (27), we can denote the transformed Φ̃ by
Φ̃ ¼ ρTΦTΦ. As K ¼ ΦTΦ, Eq. (27) can be rewritten as

EQ-TARGET;temp:intralink-;e028;116;137Φ̃ ¼ ρTK: (28)

In this aspect, according to the previous mathematical deduction, by defining the important
regularized eigenspace ρ [see Eq. (25)], the regularization of eigenspace V is turned into the
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regularization of the eigenspace α. In other words, the effectiveness of eigenspectrum regulari-
zation model on the eigenspace α is equivalent to the eigenspace V.

The selection of a suitable eigenspectrum regularization model is a critical aspect of the pro-
posed method. The proper eigenspectrum regularization model ensures that the regularized data
can be very close to the real population variances.46 The eigenspectrum regularization of LRE is
an adaptive model that estimates the optimal parameter γ using training data. However, this
process is usually time-consuming, and the performance decays quickly when the training data
are insufficient. In this paper, we employ the data-independent eigenspectrum regularization
models of ERE and CDEFE to regularize the eigenspace α, which are more general and robust.
The first model is the eigenspectrum regularization model of ERE.24 The heuristic theory of ERE
for designing the eigenspectrum regularization model is the median operation. The weighting
function applied to the eigenspace α is defined as

EQ-TARGET;temp:intralink-;e029;116;592wERE
k ¼

8>>><
>>>:

λ−1∕2k k < m1�
a

kþb

�
−1∕2

m1 ≤ k ≤ r�
a

rþ1þb

�
−1∕2

r < k ≤ L

; (29)

where m1 is the m1’th eigenvalue of λ in descending order, which satisfies

EQ-TARGET;temp:intralink-;e030;116;502λm1
¼ maxf∀ λkjλk < ½λmed þ μðλmed − λrÞ�g; (30)

where λmed is the median value computed by medianf∀ λkjk ≤ rg. μ is a constant with a rec-
ommendation value of 1.24 r is the rank of KLlocK. The parameters of a and b are calculated as

EQ-TARGET;temp:intralink-;e031;116;447

a ¼ λ1λm1
ðm1 − 1Þ

λ1 − λm1

;

b ¼ m1λm1
− λ1

λ1 − λm1

: (31)

The second regularization model is taken from CDEFE.26 The eigenspectrum regularization
model of CDEFE regularizes the eigenspace in a Gaussian kernel space, which may have a
special effect on the proposed RGCDL in the Riemannian kernel space.

The second regularization model aims to find the minimum eigenratio from the eigenspec-
trum of KLlocK, which is formed by the eigenvalues [see Eq. (17)] in descending order. Let δk
denote the ratio of two adjacent eigenvalues λk and λkþ1 in the eigenspectrum, we have

EQ-TARGET;temp:intralink-;e032;116;298δk ¼ λk∕λkþ1: (32)

The minimum eigenratio can be formulated as

EQ-TARGET;temp:intralink-;e033;116;254δs ¼ minf∀ δk; 1 ≤ k < rg; (33)

where s is the index of the minimum eigenratio, and r is the rank of the locality matrix KLlocK.
The eigenspectrum λ is split by the point of the m2’th eigenvalue, and λs is defined as
λs ¼ maxf∀ λk; k ≥ m2g. Thus, the final regularized weighting function can be defined as

EQ-TARGET;temp:intralink-;e034;116;187wCDEFE
k ¼

�
λ−1∕2k ; 1 ≤ k ≤ m2

λ−1∕2m2
; m2 < k ≤ L:

(34)

4.3 Feature Extraction and Dimensional Reduction

The new feature vectors Φ̃ are compact and full dimensional, the eigenfeature of Φ̃ should be
decorrelated and dimension reduced for classification. According to Jiang et al.,24 PCA is
exploited to extract the final discriminative eigenfeatures since it is less sensitive to different
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training databases. However, the class affinity is not considered in Ref. 24, which may cause
the missing discriminative information. In this work, we employ a graph-embedded framework
to extract the final discriminative features, which incorporates a similarity weight matrix to
form the final scatter matrix. Although LRE had extended the graph-embedded framework
to eigenfeature extraction, our method is designed to address the problems in a Riemannian
kernel space.

According to Eq. (13), the eigenfeature extraction and dimensional reduction of RGCDL
can be achieved by solving the following eigendecomposition problem on the mapped
space:

EQ-TARGET;temp:intralink-;e035;116;628U� ¼ arg max
UTU¼1

UTΦ̃GΦ̃TU; (35)

where G is the similarity weight matrix, and the affinity between set Xi and set Xj is defined as

EQ-TARGET;temp:intralink-;e036;116;574Gij ¼
�

1
Nc

− 1
L ; if Xi ∈ Cc and Xj ∈ Cc

− 1
L ; otherwise

; (36)

where Nc is the number of sets in the c’th class. This similarity weight matrix allows the intra-
class samples to be more compact and allows the interclass samples to be more separated.
Clearly, the problem of Eq. (35) can be solved by decomposing matrix Φ̃GΦ̃T . The projection
matrix U consists of the eigenvectors that correspond to eigenvalues in descending order. We
retain the first d2 eigenvectorsU ¼ ½u1; u2; : : : ; ud2 �, where d2 ≤ L, for the final dimension of the
extracted feature. Hence, the final regularized projection matrix of RGCDL can be defined
as

EQ-TARGET;temp:intralink-;e037;116;441Z ¼ ṼU: (37)

Obviously, Z does not have an explicit expression since Ṽ ¼ Φρ, and Φ is the vector space
mapped by the Riemannian mapping, which is implicitly defined.

However, an explicit expression can be provided by the kernel trick when calculated with the
test samples. For a given test nonsingular covariance matrix Bte, which is an element of the SPD
manifold, we use ϕte to denote the test feature vector that is mapped by the Riemannian mapping.
Subsequently, we can extract the discriminative feature F by the transformation

EQ-TARGET;temp:intralink-;e038;116;335F ¼ ZTϕte ¼ UTṼTϕte (38)

Substitute Ṽ by Eq. (26), and calculate a kernel Gram matrix Kte by the Riemannian kernel
function [e.g., Eq. (4)], the final extracted eigenfeature can be rewritten as

EQ-TARGET;temp:intralink-;e039;116;278F ¼ ðρUÞTKte; Kte ¼ ½klogðB1;BteÞ; · · · ; klogðBL;BteÞ�T: (39)

Here, F is constructed by feature vectors on the mapped space. Hence, various distance metrics
and classification methods that designed in Euclidean space, such as the nearest neighbor (NN)
classifier, can be applied for classification.

4.4 Complete RGCDL Algorithm

The steps of RGCDL algorithm are given in Algorithm 1.

5 Experimental Results

Experiments were conducted on set-based face recognition and object categorization tasks. First,
we compare the proposed RGCDL to the original CDL method when using different numbers of
extracted features. Second, we show the advantages of RGCDL over the recent RGDA method.
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Last, we evaluate the recognition performance of our RGCDL, and compare it to numerous
image set-based classification methods.

5.1 Dataset and Parameter Settings

We employed the Extended Yale face database B (ExtYaleB)47 for face recognition task and the
RGB-D object database48 for object categorization task. The ExtYaleB database is the extension
of the Yale face database B; it contains 16,128 images of 28 human subjects with 64 illumination
conditions and 9 poses for each subject. According to the 9 poses of each subject, we built 9
image sets (∼60 images per set), which correspond to 9 poses for each subject. We utilized a
cascaded face detector49 to collect faces from each image frame. The captured faces were then
converted to grayscale and resized to 20 × 20 pixels. Some example images are shown in Fig. 2.
We selected 2 to 5 image sets of 9 poses for discriminative training (103 sets) and employed the
remaining sets for testing (149 sets). The experiments were repeated 10 times by randomly
choosing the reference sets for training and the test sets for probe.

The RGB-D object database is a large-scale dataset of 300 common household objects that
are organized into 51 categories (classes). Each category has 3 to 14 objects that belong to the
same category. For each object, 3 video sequences are recorded with a camera that is mounted at
different heights so that the object is viewed from different angles with the horizon. The video
sequences were captured by placing each object on a turntable for a whole rotation using a
Kinect style three-dimensional camera. More than 100 images were extracted for each object’s
video sequences; they involve RGB color channels and a depth channel. We removed the depth
images in this study to ensure fair comparisons. We built image sets according to each object,
forming a total of 300 image sets (102 sets for training and 198 sets for testing). Grayscale and
resized images of 20 × 20 pixels were adopted for RGB-D dataset. Some example objects are
shown in Fig. 3. To obtain more general results, we also conducted 10 cross-validation experi-
ments by randomly choosing different combinations of training sets and test sets. The NN clas-
sifier was applied for all evaluations to ensure fair comparisons.

Algorithm 1 RGCDL algorithm.

At the training stage:

1. Collaboratively reduce L training sets fX1;X2; : : : ;XLg by Eq. (16) to fY1;Y2; : : : ;YLg, and model them as
symþ

d1
by the covariance descriptor [Eq. (1)], denoted as fB1;B2; : : : ;BLg.

2. Use Riemannian mapping ϕ∶M → H to map the symþ
d1

matrices fB1;B2; : : : ;BLg to the RKHS, and
designate them fϕ1;ϕ2; : : : ;ϕLg.

3. Obtain the optimal coefficient α and the eigenspectrum λ by solving the eigendecomposition problem of
Eq. (22); switch the local Laplacian matrix Lloc by Lbin, Lclass, and Ladj, respectively.

4. Regularize the eigenspace V using the weighting functions of Eqs. (29) and (34), respectively, and
construct the full-dimensional transformation matrix Ṽ using Eq. (24).

5. Transform the mapped feature Φ to an intermediate full-dimensional feature space using Eqs. (25)
and (28).

6. Solve the eigendecomposition problem of Eq. (35), and compute the final projection matrix Z by Eq. (37).

At the testing stage:

1. Given a test image set Xte , project it to a lower-dimensional feature space and extract the covariance
feature Bte .

2. Map Bte to the RKHS by the Riemannian mapping, and designate as ϕte .

3. Project ϕte to the final projection matrix Z to extract the discriminative features by Eq. (39).

4. Measure the extracted features between the training and test sets, and classify the label by the classifier
(e.g., NN).
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5.2 Stability of Extracted Features

In this section, we evaluated the stability of the extracted features from RGCDL. We show that
by applying eigenspectrum regularization, the features extracted by RGCDL are more stable than
those extracted by the original CDL method.

As described in Sec. 4, the proposed RGCDL aims to extract features from the whole regu-
larized eigenfeature space. As the number of final extracted features increases [controlled by
varying d2 dimensions of U in Eq. (37)], a higher performance can be achieved by our
RGCDL, whereas the original CDL algorithm cannot retain this characteristic. To confirm this
assumption and provide evidence, we employed real data of face and object datasets to conduct
these experiments.

The collaborative dimensional reduction of each image set is set to 100 dimensions, that is,
the dimension-reduced covariance matrix of each image set is 100 × 100. Attributed to the
covariance descriptor, the computational cost of constructing the Riemannian kernel matrices
is not associated with the number of images within a set. The Riemannian kernel induced
by the LED in Eq. (4) was employed for the RGCDL and CDL methods. We vary the final
feature dimensions of RGCDL and CDL to perform a comprehensive comparison. The
comparison results are shown in Figs. 4 and 5. Each figure consists of the recognition rates
against the number of final extracted features. The recognition rates are the average results of

Fig. 3 Some example objects from the RGB-D dataset.

Fig. 2 Captured face examples from the ExtYaleB dataset.
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10 cross-validation experiments. Two eigenspectrum regularization models of ERE and CDEFE
were evaluated for the proposed RGCDL.

As shown in Figs. 4 and 5, with the increasing dimensions of the final extracted features, the
proposed RGCDL methods with two regularization models generally produce low error rates,
whereas the original CDL degrades rapidly from the dimension C − 1. The dimension of C − 1

represents the optimal performance number of features in LDA.17 The degradation of CDL is
caused by the incorrectly scaled null kernel space of the within-class scatter matrix,24 which
causes overfitting and poor generalization. These results reveal that, with the eigenspectrum
regularization models, the conventional problems (e.g., the singularity of within-class scatter
matrix) caused by limited training samples in CDL can be alleviated. Since the new feature
space is properly scaled, the estimated eigenvalues obey the true variances of the population;24

hence, better generalization can be achieved. The final extracted features are learned from the
regularized full-dimensional transformation matrix Ṽ [Eq. (26)], which can preserve discrimi-
native information as much as possible. As a result, using an increasing number of features, the
recognition rates of RGCDL preserve the stable performance.

5.3 Performance Evaluation against RGDA

RGDA is the preliminary work of this paper, however, RGDAwas proposed to solve the over-
fitting and poor generalization problems of Grassmann discriminative learning, whereas our
RGCDL solves these problems against CDL on SPD manifold. Moreover, we further employed
different local Laplacian graphs to analyze the locality preserving ability and improve the per-
formance; the locality preserving is evaluated in Sec. 5.4. We discovered that the performance of
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the SPD manifold with the eigenspectrum regularization techniques is better than that of the
Grassmann manifold. We conducted two experiments to evaluate the advantages of the proposed
method. First, we compared the classification ability of RGDA and RGCDL when different
dimensions of the extracted features were applied. As shown in Figs. 6 and 7, for both eigens-
pectrum regularization models in two datasets, the error rates of RGCDL with different number
of features always lower than those of the RGDA. Moreover, the error rate curves of RGCDL are
smoother and steadier for a different number of features, and RGCDL can achieve a lower error
rate even with a low number of features, particularly for the ExtYaleB dataset. The RGDA
method usually cannot achieve high performance using lower dimensions of features. This find-
ing demonstrates that the SPD manifold formed by the covariance matrices has better discrimi-
native information preservation ability than the Grassmann manifold formed by subspaces.

Subsequently, we conducted noisy set data to evaluate the robustness of the proposed
method. Image sets may contain noisy data in real-world applications, for example, outliers
of other categories or subjects within sets exist, which may degrade the performance of clas-
sifiers. Here, we show that the SPD manifold-based RGCDL method is more robust than the
Grassmann manifold-based RGDA method. We conducted experiments by systematically cor-
rupting the training (gallery) sets or test (probe) sets. The corruption is implemented by adding
images from other classes. The data with no noise are denoted as “clean,” the data with noise in
the gallery sets are denoted as “N_G,” and the data with noise in the probe sets are denoted as
“N_P.” Experiments were evaluated using both face recognition and object categorization.

The average classification rates of several cross-validations with different noise-corrupted
datasets are shown in Figs. 8 and 9. The classification rates of our RGCDL always outperform
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RGDA in clean and different corrupted data. Especially in the gallery corrupted data N_G,
RGCDL-ERE and RGCDL-CDEFE exhibit great advantages than RGDA-ERE and RGDA-
CDEFE. Once again, these results demonstrate that the SPD manifold formed by the second-
order statistic covariance matrices can be able to account for the noisy set data better than the
Grassmann manifold formed by subspaces; it reveals the robustness of RGCDL when dealing
with noisy set data.

5.4 Performance Comparison to Other Set-Based Classification Methods

We further evaluated the proposed RGCDL compared with other set-based classification
methods. Multiple image set-based classification methods were evaluated for comprehensive
comparison. The compared methods include the subspace-based methods DCC7 and ECCA;36

the Grassmann manifold methods of GDA,8 KGDA,38 GGDA,9 MMD,3 GNP,11 and RGDA;2

the SPD Riemannian manifold methods of CDL,10 PPCDL,16 and DARG.41

The parameter settings of different methods are depicted as follows. The final feature dimen-
sion of GDA, KGDA, GGDA, and RGDAwas established as the recommendation of Ref. 2, and
only the projection kernel8 was employed for Grassmannian mapping. The parameters (such as
the nonlinearity score and number of NNs of data points) of MMD were tuned to be optimal with
the code provided by the authors in our datasets. For CDL and PPCDL, the final feature dimen-
sion was set as the recommended value C − 1. The dimension of the input covariance matrices of
DARG and PPCDL was set to 100 × 100, which is the same as the proposed RGCDL for fair-
ness. The Riemannian kernel induced by LED was applied for CDL, PPCDL, and our RGCDL.
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We chose kernel-based DARG and the good performance of MD + LED41 distance matrix for
evaluation. We fixed the dimension to 150 for DCC by preapplying PCA to the data.7 The num-
ber of canonical correlations of DCC and ECCA was set to 20, which is the same as the
Grassmannian dimension of the GDA, KGDA, GGDA, and RGDA methods. For RGDA and
our RGCDL, the eigenspectrum regularization models of ERE and CDEFE were applied for
comparison. Three local Laplacian matrices of Lbin, Lclass, and Ladj were evaluated in the pro-
posed RGCDL.

Experiments were evaluated on the ExtYaleB and RGB-D datasets. The experimental results
are formed by the average classification rates and standard deviations over 10-fold cross-
validations. As shown in Table 1, the proposed RGCDL with regularization models of ERE
and CDEFE achieves the best classification results among all methods. The SPD manifold with
covariance matrices of CDL, PPCDL, DARG, and our RGCDL approaches usually achieves
better performance than other methods in ExtYaleB, which has shown the better accommodative
ability of the second-order statistic of covariance matrix on handling the illumination-varying
face recognition. The inferior performances of PPCDL and DARG on RGB-D dataset may cause
by the conventional problems of discriminative learning and the improperly estimated GMM.
Benefitting from the eigenspectrum regularization with the graph-embedded framework, the pro-
posed RGCDL with different models outperforms all other methods. For the evaluation of differ-
ent local Laplacian graphs, the Lclass achieves the best results with the ERE regularization model.
However, the performance of adjustable Laplacian matrix Ladj is also outstanding in ERE model,
and it achieves the best results with the CDEFE model. The adjustable Laplacian matrix Ladj

performs stable in different regularization models, it has revealed the good locality preserving

Table 1 Average classification rates and standard deviations (%) on ExtYaleB
and RGB-D datasets.

Method ExtYaleB RGB-D

MMD 58.9� 4.1 54.4� 2.8

KGDA 86.7� 2.7 66.5� 2.6

GGDA 73.4� 4.1 61.9� 2.6

GDA 89.7� 2.1 66.3� 3.6

ECCA 68.2� 2.5 56.3� 2.7

DCC 79.9� 2.6 67.3� 2.6

CDL 97.4� 1.2 69.7� 3.4

GNP 80.1� 1.6 62.1� 1.1

PPCDL 97.2� 1.3 51.8� 2.7

DARG 91.8� 2.4 55.3� 4.1

RGDA-ERE 91.7� 2.4 65.2� 3.0

RGDA-CDEFE 91.0� 1.1 64.9� 3.2

RGCDL-ERE-Lbin 98.5� 1.3 71.9� 3.3

RGCDL-ERE-Lclass 98.5� 1.3 72.1� 3.3

RGCDL-ERE-Ladj 98.5� 1.3 72.0� 2.2

RGCDL-CDEFE-Lbin 98.1� 1.1 71.4� 3.3

RGCDL-CDEFE-Lclass 98.3� 1.1 71.1� 2.2

RGCDL-CDEFE-Ladj 98.5� 1.1 71.5� 2.2

Note: The bold values denote the proposed methods and the highest classification rates.
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ability. Obviously, Ladj is not the best local Laplacian matrix for locality preserving, better
affinity matrix can be designed according to suitable theories.

6 Conclusion

In this paper, we proposed a regularized graph-embedded CDL method, which is referred to as
RGCDL. The eigenspectrum regularization and graph-embedded framework are collaboratively
employed to attenuate the overfitting and poor generalization problems of the original CDL
method. Comprehensive mathematical deduction in SPD manifold kernel space is given to
exhibit the combination of these techniques. The experimental results of evaluating a different
number of extracted features show that the proposed method can maintain stable and lower error
rates throughout all dimensions of the extracted features. This result manifests the stability of the
eigenspectrum regularization to linear discriminative learning in the SPD manifold kernel space.
The graph-embedded framework benefits by preserving compact within-class affinity relations
and achieves higher performance. Compared with the more recent RGDA method, our RGCDL
achieves higher and steadier performance when different number of features are employed.
Moreover, our RGCDL exhibits more robust ability than RGDAwhen the gallery or probe sets
are corrupted by noise. According to the plentiful comparisons with other set-based classification
methods, our RGCDL has shown considerable results. The local Laplacian matrix reflects the
local structure of intraclass, how to devise the similarity of intraclass vertex pairs to better pre-
serve locality information is one of our future works.
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