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Abstract

Purpose: Glioblastoma, the most common and aggressive adult brain tumor, is considered
noncurative at diagnosis, with 14 to 16 months median survival following treatment. There is
increasing evidence that noninvasive integrative analysis of radiomic features can predict overall
and progression-free survival, using advanced multiparametric magnetic resonance imaging (Adv-
mpMRI). If successfully applicable, such noninvasive markers can considerably influence patient
management. However, most patients prior to initiation of therapy typically undergo only basic
structural mpMRI (Bas-mpMRI, i.e., T1, T1-Gd, T2, and T2-fluid-attenuated inversion recovery)
preoperatively, rather than Adv-mpMRI that provides additional vascularization (dynamic suscep-
tibility contrast-MRI) and cell-density (diffusion tensor imaging) related information.

Approach: We assess a retrospective cohort of 101 glioblastoma patients with available Adv-
mpMRI from a previous study, which has shown that an initial feature panel (IFP, i.e., intensity,
volume, location, and growth model parameters) extracted from Adv-mpMRI can yield accurate
overall survival stratification. We focus on demonstrating that equally accurate prediction models
can be constructed using augmented radiomic feature panels (ARFPs, i.e., integrating morphol-
ogy and textural descriptors) extracted solely from widely available Bas-mpMRI, obviating the
need for using Adv-mpMRI. We extracted 1612 radiomic features from distinct tumor subregions
to build multivariate models that stratified patients as long-, intermediate-, or short-survivors.

Results: The classification accuracy of the model utilizing Adv-mpMRI protocols and the IFP
was 72.77% and degraded to 60.89% when using only Bas-mpMRI. However, utilizing the
ARFP on Bas-mpMRI improved the accuracy to 74.26%. Furthermore, Kaplan–Meier analysis
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demonstrated superior classification of subjects into short-, intermediate-, and long-survivor
classes when using ARFP extracted from Bas-mpMRI.

Conclusions: This quantitative evaluation indicates that accurate survival prediction in glioblas-
toma patients is feasible using solely Bas-mpMRI and integrative advanced radiomic features,
which can compensate for the lack of Adv-mpMRI. Our finding holds promise for generalization
across multiple institutions that may not have access to Adv-mpMRI and to better inform clinical
decision-making about aggressive interventions and clinical trials.
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1 Introduction

Glioblastoma is the most aggressive malignant primary adult tumor of the central nervous sys-
tem, with a median survival of 14 to 16 months if standard treatment of surgical resection,
chemotherapy, and radiotherapy is followed, and 4 months otherwise.1 Glioblastomas exhibit
highly heterogeneous histological and molecular profiles that are also reflected in their imaging
phenotypes2–4 and in their radiographic appearance, which includes various subregions, i.e.,
enhancing (ET) and nonenhancing (NET) parts of tumor, as well as the peritumoral brain zone
describing edematous and invaded tissue (ED).5

There is increasing evidence that quantitative analysis of radiographic (i.e., radiomic) fea-
tures extracted from multiparametric magnetic resonance imaging (mpMRI) scans can reveal
more than just the visually observable cues (i.e., subvisual cues), which can be associated with
prediction of clinical outcomes and tumor molecular characteristics.3,4,6–38 However, most state-
of-the-art studies that investigated the predictive value of imaging in comparison with clinical
and molecular parameters utilized imaging data obtained from advanced acquisition protocols
[advanced multiparametric magnetic resonance imaging (Adv-mpMRI), i.e., T1, T1-Gd, T2, T2-
fluid-attenuated inversion recovery (T2-FLAIR), dynamic susceptibility contrast (DSC), and dif-
fusion tensor imaging (DTI)], which are not yet widely incorporated into routine clinical practice
except at tertiary/quaternary referral centers of neurosurgical expertise, which constitute the
minority of imaging centers where patients present for initial evaluation. This is in part due
to limitations of cost, clinical expertise, and/or specialized equipment. Therefore, many of the
promising findings may not be easily generalizable or repeatable across institutions.

To address this limitation, this study focused on evaluating the feasibility and performance of
predicting the survival of glioblastoma patients using exclusively preoperative baseline basic
structural mpMRI (Bas-mpMRI) scans (i.e., T1, T1-Gd, T2, and T2-FLAIR) of the patients,
via quantitative integrative analysis of radiomic features. Toward this aim, extensive sets of
radiomic features from various glioblastoma subregions (ED, ET, and NET), describing
mpMRI signals, were integratively analyzed using multivariate pattern analysis and machine
learning methods. Specifically, we evaluate a retrospective cohort of glioblastoma patients from
a previous study that has shown accurate prognostic stratification utilizing Adv-mpMRI, and we
focus on demonstrating that equally accurate prediction models can be constructed using
advanced radiomic features extracted solely from Bas-mpMRI.

2 Methods

2.1 Dataset

A retrospective cohort of 101 patients diagnosed with primary (de novo) glioblastoma at the
Hospital of the University of Pennsylvania (HUP) between 2006 and 2013 was used in this
analysis.29 The molecular characterization of these tumors was not available, since they were
diagnosed prior to the most recent World Health Organization (WHO) classification scheme of
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2016, hence they can now be categorized as diffuse astrocytoma not-otherwise-specified, accord-
ing to the WHO 2016 and the C-IMPACT classification.39,40 These patients were scanned pre-
operatively using a standardized Adv-mpMRI acquisition protocol of six different modalities,
comprising native (T1) and contrast-enhanced (T1-Gd), T1-weighted, T2-weighted (T2), T2-
FLAIR, DTI, and DSC MRI volumes. Mean and median patient age was 62.5 and 61.4 years,
respectively (range: 22 to 88.6 years). The protocol was approved by the Institutional Review
Board at HUP, and informed consent was obtained from all subjects. No randomization method
was used for allocating samples to experimental groups.

Patients were treated with standard maximal safe resection followed by adjuvant chemora-
diation using temozolomide and six weeks of daily fractionated radiation, five days per week.
The details of this cohort have been described previously,29 with a median overall survival (OS)
of 13 months, consistent with historical series. The described cohort was divided in patients that
survived <12 months (short-survivors, n ¼ 45) against others, and to patients that survived more
than 14 months (long-survivors, n ¼ 45) against others. We chose these thresholds based on
equal quantiles from the median OS (∼13 months) to avoid potential bias toward one of the
survival groups (short-survivor versus long-survivor) and while considering that discrimination
of groups should be clinically meaningful. The median OS of the described cohorts is not sig-
nificantly different from the median survival of glioblastoma patients in several randomized
phase III trials, noting that our cohort consists of unselected patients rather than those eligible
for such trials.41,42

2.2 Statistical Consideration for Survival Analysis

OS was defined as the duration of time between the establishment of diagnosis and the date of
death. Mean and median OS was 14.17 and 12.63 months, respectively (range: 0.1 to 68.27,
standard deviation: 11.4), and no patient was censored, as all patients have reached the endpoint
of death. Kaplan–Meier (KM) curves were generated for the depiction of OS based on the result
of each predictive model, as well as for the true classification. The Cox proportional hazards
model was used to estimate the hazard ratio of death between groups.43 Based on our sample
size, we are powered to detect predictive performance for a classifier of short-survivors (or,
equivalently, long-survivors) with area under the curve (AUC) values of 0.65 or larger with
80% power assuming a 5% type I error rate.

2.3 Equipment and Acquisition Protocol Details

All the MRI volumes used in this study were acquired in the axial plane using a 3-Tesla Siemens
Magnetom Trio ATim clinical MRI system (Erlangen, Germany), according to the standardized
advanced acquisition protocol followed at HUP. The acquired T1 volumes had dimensions
of 192 × 256 × 192 pixels, with spatial resolution of 0.976 × 0.976 × 1 mm3, slice spacing
of 1 mm, and inversion time (TI), repetition time (TR), and echo time (TE) equal to 950, 1760
and 3.1 ms, respectively. The dimensions of the axial 3-D T1-Gd volumes were 192 × 256 ×
192 pixels, with spatial resolution of 0.976 × 0.976 × 1 mm3, slice spacing of 1 mm, and TI, TR,
and TE equal to 950, 1760, and 3.1 ms, respectively. The contrast material used in the scans
included in this study was either gadodiamide (Omniscan, GE Healthcare, Mickleton, NJ) or
gadobenate dimeglumine (MultiHance, Bracco SpA, Milan) and was administered intravenously
(IV). The total dose of contrast material was divided into two IV injections to help minimize
errors due to potential contrast leakage out of intravascular space. The initial loading dose
described the 25% of the total injected contrast material and the second bolus injection the
remaining 75%, with a delay of 5 min. The exact contrast material dosage was dependent
on patient weight and given on a relative proportion of 0.3 mL∕kg. The T2 volumes were
acquired prior to any contrast administration, and their dimensions were 208 × 256 × 64 pixels,
with spatial resolution of 0.938 × 0.938 × 3 mm3, slice spacing of 3 mm, and TR and TE equal
to 4680 and 85 ms, respectively. The T2-FLAIR volumes were acquired between the initial
IV injection and the DSC acquisition. The dimensions of the T2-FLAIR images were 192 ×
256 × 60 pixels, with spatial resolution of 0.938 × 0.938 × 3 mm3, slice spacing of 3 mm, and
TI, TR, and TE equal to 2500, 9420, and 141 ms, respectively. The DSC acquisition was
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performed during the second IV injection of the contrast material. The dimensions of the DSC-
MRI images were 128 × 128 × 20 pixels, with spatial resolution of 1.72 × 1.72 × 3 mm3, slice
spacing of 3 mm, and TR and TE equal to 2000 and 45 ms, respectively. DTI scans [axial two-
dimensional (2-D)] were acquired using a single-shot spin echo planar imaging sequence (vari-
ant: segmented k-space\spoiled, options: partial Fourier-phase\fat saturation), with 95 phase
encoding steps. Following acquisition at b ¼ 0 s∕mm2 (repeated 3 times), diffusion weighted
images were acquired (b ¼ 1000 s∕mm2) with diffusion gradients applied in 30 directions.
The dimensions of the DTI volumes were 128 × 128 × 40 pixels (matrix size ¼ 128 × 128,
field of view ¼ 220 × 220 mm2), with spatial resolution of 1.72 × 1.72 × 3 mm3, slice spacing
of 3 mm, flip angle of 90 deg, imaging frequency of 123, and TR and TE equal to 5000 and
86 ms, respectively.

In this study, we refer to basic-MRI acquisition protocol as the one that comprises T1, T1-Gd,
T2, and T2-FLAIR, and to advanced protocol as the one that in addition to the basic protocol
includes DSC and DTI volumes.

2.4 Image Preprocessing

All acquired mpMRI volumes were initially converted to NIfTI,44 reoriented to the left–
posterior–superior coordinate system, and resampled to spatial resolution of 1 × 1 × 1 mm3

by coregistration to the SRI atlas45 using an affine registration, through the Oxford Center for
Functional MRI of the Brain (FMRIB) Linear Image Registration Tool (FLIRT)46,47 of the
FMRIB Software Library (FSL).48–50 All volumes were then skull stripped using an automated
method based on a multiatlas registration and label fusion using a template library of 216 MRI
scans and their brain masks.51 This library was used for target specific template selection and
subsequent registrations using a framework of multiatlas segmentation utilizing ensembles,52

followed by a region-growing step guided by T2, to obtain the final brain mask including the
intracranial cerebrospinal fluid (CSF). All mpMRI volumes were then smoothed using a low-
level image processing method, namely Smallest Univalue Segment Assimilating Nucleus, in
order to reduce high-frequency intensity variations in regions of uniform intensity profile, while
preserving the underlying tissue structure.53 The intensity histograms of all modalities of all
patients were matched to the corresponding modality of a single reference patient, who was
randomly selected and has an average size tumor when compared to the remaining cohort pop-
ulation. This histogram matching approach was repeated in this study for four different randomly
selected patients with an average size tumor (compared to the cohort population) and reproduc-
ible results were noted, showing that the final results were not dependent on the selection of a
specific reference patient. Furthermore, this histogram matching approach has been notably used
routinely in other similar studies.29,54

A set of commonly used DTI measures, namely the tensor’s fractional anisotropy DTI(FA),
radial diffusivity DTI(RAD), axial diffusivity DTI(AX), and apparent diffusion coefficient
DTI(ADC), were extracted from the DTI volumes.55 Furthermore, the DSC-MRI volumes were
used to extract maps of the relative cerebral blood volume, peak height, and percentage signal
recovery (PSR).56–58 Hereafter, we treat these DTI measurements and DSC maps as individual
imaging volumes.

2.5 Segmentation of Tumor Subregions

The four modalities of the basic-MRI acquisition protocol (i.e., T1, T1-Gd, T2, and T2-FLAIR)
from the preoperative scans of each patient were used to obtain the segmentation labels of the
various tumor subregions (Fig. 1). The method used to produce the segmentation labels is
called GLISTRboost59,60 and it defines a hybrid generative-discriminative brain tumor segmen-
tation method. The generative part incorporates a glioma growth model61–63 and is based on an
expectation–maximization framework to segment the brain volumes into tumor (i.e., ET, NET,
and ED), as well as healthy tissue labels (i.e., white and gray matter, cerebrospinal fluid, ves-
sels, and cerebellum). During this step, the patient data are coregistered to a standardized atlas
coordinate system allowing for estimation of the tumor proportion in various anatomical
regions and hence offering location and spatial distribution information. The discriminative
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part is based on a gradient boosting64,65 multiclass classification scheme, which was trained on
data provided during the brain tumor segmentation (BraTS) challenge5,66,67 to refine tumor
labels based on information from multiple patients. Finally, a Bayesian strategy68 is employed
to further refine and finalize the tumor segmentation labels based on patient-specific intensity
statistics from the four basic modalities available. The derived segmentation labels were con-
sidered final after their evaluation and manual revision, when needed, by an expert board-
certified neuroradiologist (M. B.).

2.6 Radiomic Features

2.6.1 Feature extraction

An extensive panel of 1612 radiomic features was extracted from all the available imaging
volumes, based on the segmentation labels of each tumor subregion and while following the
image biomarker standardization initiative (IBSI) definitions.69,70 These features comprised
(i) intensity, (ii) volume,71 (iii) morphology,72–74 (iv) histogram-based,29 and (v) textural75

parameters, including features based on wavelets,76 gray-level co-occurrence matrix
(GLCM),77 gray-level run-length matrix (GLRLM),78–81 gray-level size zone matrix
(GLSZM),78–80 and neighborhood gray-tone difference matrix (NGTDM),82 as well as (vi) spa-
tial information,83 and (vii) glioma diffusion properties extracted from glioma growth
models.61–63 For the exact feature extraction, we have quantized the image based on the region
comprising the union of ET, NET, and ED. The volumetric features were calculated in three
dimensions. The textural parameters of GLCM, GLRLM, GLSZM, and NGTDM were
extracted based on 16 bins, 27 directions around the center voxel, and a radius of 1 voxel,
which defines a neighborhood of 3 × 3 × 3. We note that features (iv), (vi), and (vii) have
already shown association with predicting survival when used with Adv-mpMRI acquisition
protocol.29 From this point onward, we refer to the features reported in Ref. 29, comprising (i),
(ii), (iv), (vi), and (vii), as initial feature panel (IFP) and the complete set described above as
augmented radiomic feature panel. We note that the biological significance of these individual
radiomic features remains unknown.

Fig. 1 Segmentation labels of brain and glioblastoma subregions in multimodal MRI using
GLISTRboost.59,60
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2.6.2 Feature selection

We hypothesize that the necessary information to conduct this classification task is encapsulated
by a subset of all the 1612 features that are used in this study. Therefore, we consider the
selection of the most important features as critical, in order to minimize the classification error
and eliminate redundancy by removing features with little contribution in the classification.
Specifically, a forward-selection framework is used to rank and select a subset of features, based
on the classification performance of a support vector machine (SVM). Various subsets of features
are assessed by evaluating the contribution of all individual features in the performance of the
classifier’s accuracy. This feature selection is applied in the complete set of input features using a
fivefold cross-validation configuration with convergence criteria of 100 iterations and a tolerance
of 10−4 in the classifier’s performance.

2.7 Predictive Modeling

The problem of modeling the prediction of survival is approached as a binary classification
problem, between long-survivor and short-survivor, using a formulation of two multivariate
SVM classifiers (SVC) with a linear kernel, similar to Ref. 29. Moreover, after evaluating the
similarity of the results obtained using a linear kernel and a radial basis function kernel, we
chose the linear kernel for computational simplicity and for generalization purposes. One SVC
model is constructed to distinguish between patients that survived <12 months against others
(referred to as “short-SVC”) and another for discriminating patients that survived more than 14
months against others (referred to as “long-SVC”). The decisions of these classifiers are then
combined: (a) patients classified by both classifiers as short-survivors are assigned a label of
short-survivors, (b) patients classified by both SVC models as long-survivors are assigned a
label of long-survivors, (c) patients classified as long-survivors by the short-SVC and as
short-survivors by the long-SVC are given the label of the intermediate survivor, and (d) patients
for which the two classifiers disagree (i.e., the short-SVC classified them as short-survivors and
the long-SVC as long-survivors) are given a label based on which distance from the two SVM
hyperplanes is dominant.

The discrimination of subjects into three groups (short-, intermediate-, and long-survivors)
is clinically useful for several reasons. Three-class classification schemes are abundant in oncol-
ogy. The terminology of “low,” “intermediate,” and “high” is commonly used in risk assess-
ments, staging systems, and pathological grading systems, for their ease of translation into
clinical decision-making. Recommending therapies for patients requires a clinician’s assessment
of patient performance status and life expectancy, which can be notoriously imprecise; a three-
class category of “better than expected,” “as expected,” and “worse than expected” is practical
for routine clinical use, i.e., when trying to customize therapeutic decisions for the patient sitting
in front of the physician.

2.8 Cross Validation

The generalization performance of our predictive modeling was quantitatively validated using a
nested fivefold cross validation scheme to provide unbiased performance estimates. In this five-
fold configuration, short- and long-survivors have been proportionally and randomly divided
into five nonoverlapping smaller equally sized datasets such that they are statistically represen-
tative of the whole, and during each fold, four of these subsets were considered to be the dis-
covery/retrospective cohort and 1 as the replication/prospective cohort, which is unseen for this
specific fold. During each fold, the replication/prospective cohort is a different subset. This
cross-validation (CV) scheme is similar to analyzing the given data as having independent retro-
spective and prospective cohorts, but in a more statistically robust manner by randomly permut-
ing across the provided data. Furthermore, nested within each of these folds the feature selection
was conducted as previously described, and immediately after the feature selection the SVC
parameter (c) was optimized on another fivefold CV scheme.
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2.9 Code Availability

The tool used for coregistration of the brain scans (i.e., FLIRT) is publicly available from the
FSL, in: fsl.fmrib.ox.ac.uk. The approach used for skull stripping52 and the segmentation method
for preoperative mpMRI brain glioma scans, GLISTRboost,59,60 has been made available for
public use through the Online Image Processing Portal (IPP)84 of the Center for Biomedical
Image Computing and Analytics (CBICA). CBICA’s IPP allows users to perform their data
analysis using integrated algorithms, without any software installation, while also freely using
CBICA’s high-performance computing resources. It should be noted that we used the publicly
available Python package scikit-learn85 for the implementation of the gradient boosting algo-
rithm used in GLISTRboost. The Cancer Imaging Phenomics Toolkit (CaPTk),54,86,87 developed
by the CBICA, was used for the (i) seed-point initialization required for GLISTRboost,
(ii) denoising approach (SUSAN), as well as (iii) extraction of the radiomic features (i)–(iv)
and (vi) described in Sec. 2.6.1. The code source, as well as the executable installer of
CaPTk, is available in Ref. 88. The texture features, described in Sec. 2.6.1 as (v), were extracted
using the MATLAB® “radiomics” package,71 written by one of the two equally contributing first
authors of the IBSI. The tumor growth parameters [features (vii)] were extracted through the
glioma growth model61–63 incorporated in the generative part of GLISTRboost. Finally, results
were originally obtained by G. S. using in-house code written by G. S., S. B., and G. E., with
consultation of H. A. These results were subsequently replicated by S. B. and A. S. at two
independent sets of experiments.

3 Results

3.1 Accuracy Results

The obtained cross-validated accuracies for classifying glioblastoma patients in short-, inter-
mediate- and long-survivors, when using (a) the Adv-mpMRI and IFP (“IFP advanced” model),
(b) the Bas-mpMRI and IFP (“IFP-basic” model), and (c) the Bas-mpMRI and augmented fea-
ture panel (AFP) (“AFP-basic”model) were equal to 60,89%, 72.77%, and 74.26%, respectively
(Table 1).

We calculated individual performance metrics (sensitivity and specificity) for the individual
classifiers (short-SVC and long-SVC) within each model, allowing for a receiver operating
characteristic analysis, the interpretation of which should be conducted in pairwise manner
(short-SVC and long-SVC) for the three-class classification evaluated in this study (Fig. 2).
The classification results from these two classifiers were then combined to build a three-class
classifier (short-, intermediate-, and long-survivors), as described in Sec. 2.7. We first evaluated
the performance of this three-class classification using the IFP advanced model, similar to our
previous work.29 This model returned an accuracy of 72.77%, which was improved relative to the
performance of the individual short-SVC and long-SVC (Tables 1 and 2). We next evaluated the
performance of this three-class classification using the IFP-basic model, which resulted in a
notable decrement in performance, returning an accuracy of 60.89%. Finally, we utilized the
AFP-basic model, which resulted in a classification accuracy of 74.26%.

Table 1 Accuracy for predicting survival in glioblastoma patients based on various configurations
of MRI acquisition protocols and features. IFP and AFP stand for initial and augmented feature
panels, respectively.

Predictive model MRI acquisition protocol Features Accuracy (%)

IFP-advanced Advanced (basic + DTI + DSC) IFP 72.77

IFP-basic Basic (T1, T1Gd, T2, and T2-FLAIR) IFP 60.89

AFP-basic Basic (T1, T1Gd, T2, and T2-FLAIR) AFP 74.26
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3.2 Feature Selection

We analyzed the features selected by the nested fivefold cross validation to determine if the
various predictive models actually select features from the varying configurations, as well as
to identify which features are selected. Indeed, it is noted that the IFP advanced model selected
69.57% of its features from the basic-MRI protocol and 30.43% from the advancedMRI protocol

Fig. 2 ROC analysis for the short-/long-SVCs of each of the predictive models.

Table 2 Cross-validated performance evaluation metrics for the short-SVC and long-SVC for the
three assessed predictive models. IFP and AFP stand for initial and augmented feature panels,
respectively.

Predictive model

Short-SVC Long-SVC

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

IFP-advanced 66.34 55.56 75 60.39 51.11 67.86

IFP-basic 63.37 48.89 75 56.44 35.56 73.21

AFP-basic 62.38 51.11 71.43 62.38 48.89 73.21
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(Fig. 3). Furthermore, the AFP-basic model revealed that 73% of its selected features were
obtained from the AFP and the remaining 27% from the IFP (Fig. 3). The list of selected features
as well as their type for the IFP advanced and the AFP-basic model are given in Tables 3 and 4
(Appendix), respectively.

3.3 Kaplan–Meier Analysis

Cox proportional hazard modeling for OS was performed for the classification between short-,
intermediate-, and long-survivors based on their real survival classes, as well as on the predictive
models. Using the IFP advanced, the median� standard deviation OS of the short- and long-
survivor groups was 9.1� 7.7 months and 14.9� 11.3 months, respectively, and the hazard
ratio for death, for short versus long, was 2.02 (95% CI:1.67 to 2.44). Using IFP-basic, the
median� standard deviation OS of the short- and long-survivor groups was 9.2� 8.8 months

and 14.2� 11.8 months, respectively; hazard ratio for death was 1.74 (95% CI:1.45 to 2.10).
Using the AFP-basic, the median� standard deviation OS of the short- and long-survivor
groups was 5.1� 3.9 months and 16.6� 14.8 months, respectively; hazard ratio for death was
2.84 (95% CI:2.42 to 3.34) (Fig. 4).

4 Discussion

Although the widespread adoption of MRI for the diagnosis and management of brain tumors
such as glioblastoma has generated large datasets for imaging scientists, the most sophisticated
research platforms have been established in affiliation with cancer centers utilizing Adv-mpMRI
acquisition protocols, such as DTI and DSC volumes. In prior work, we developed a survival
prediction model using radiomic features (described here as IFP) derived from an Adv-mpMRI
acquisition protocol.29 In this work, we demonstrated that a predictive classification model using
an AFP, including morphology and texture (radiomic) features, derived only from Bas-mpMRI
acquisition protocols, can achieve similar results to models using the IFP derived from Adv-
mpMRI acquisition protocols.

We embarked upon this work after noting that many patients referred to our tertiary care
institution come with only Bas-mpMRI acquired at those outside hospitals. These patients were
not eligible for analysis using the previous prediction model as they lacked DTI and DSC im-
aging. Furthermore, as we explore multi-institutional validation of these predictive models, we
noted that other institutions do not routinely acquire Adv-mpMRI prior to neurosurgical inter-
vention. The goal of generalizing our results to patients from other institutions motivated this
work, as we consider prognostic tools as useful only if they can be generalized to all patients.
Moreover, as Adv-mpMRI protocols remain limited in their availability, the reach of tools

Fig. 3 Proportion of the selected features for each of the predictive models.
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utilizing those modalities is itself limited. We would, therefore, consider the use of Bas-mpMRI
acquisition protocols in the presented predictive models of this study, rendering them as poten-
tially more generalizable/applicable to the majority of glioblastoma patients who undergo such
imaging.

We have replicated the results of Ref. 29 in this study using the IFP advanced model, but with
different survival thresholds. Unsurprisingly, when we attempted to predict patient survival using
only Bas-mpMRI modalities and our IFP (via the IFP-basic model), there was a significant dec-
rement in the performance (Table 1). Importantly, when we expanded the feature set extracted
from these basic imaging modalities to incorporate features that may not be visually observable,
including statistical texture and morphology features, to build the AFP-basic model, we observed

Fig. 4 KM curves on the provided patient data for their classification on short- (<12 months), inter-
mediate- (between 12 and 14 months), and long-survivors (>14 months), based on (a) the real
labels, (b) the IFP-advanced model, (c) the IFP-basic model, and (d) the AFP-basic model.
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a significant improvement, yielding the best performance in stratifying patients into long-, inter-
mediate-, and short-survivors (Table 1).

Examination of the receiver operating characteristic (ROC) curves (Fig. 2) and the indepen-
dent performance evaluation metrics (Table 2) demonstrated that the AFP-basic model was the
only one with balanced classification between the classification of short-survivors (short-SVC;
<12 months OS) and long-survivors (long-SVC; >14 months OS). This balance is skewed with
the IFP-basic or IFP-advanced models, suggesting that the AFP-basic model may be better
equipped to handle the classification of short- and long-survivors.

One strength of this work is that we utilize a fivefold cross-validation scheme. We chose this
over a 10-fold or leave-one-out scheme, in order to avoid the risk of reporting over-optimistic
fitting of the data. Along the same rationale of improved generalizability, we chose a fivefold
cross-validation scheme for feature selection, instead of sampling with resubstitution, even
though the latter approach yielded even better performance in each classifier. Specifically, the
analogous results shown in Table 1 as 74.26%, 72.77%, and 60.89%, for AFP-basic, IFP-
advanced, and IFP-basic, respectively, improved to 89.11%, 78.71%, and 75.74%, when we
used sampling with resubstitution for the feature selection. It should be noted that the accuracy
of prediction by chance (i.e., coin flip) for three-class classification is 33%.

Limitations of this work include the lack of independent prospective evaluation of our
method. However, this comprises a future direction. We hope that by demonstrating the feasibil-
ity of building successful classifiers from Bas-mpMRI alone, we may elicit collaboration with
imaging scientists from other institutions to prospectively validate these findings in multi-institu-
tional datasets. Such validation should facilitate the assessment of (i) the potential effect that
acquisition parameter variations can have in downstream radiomic feature analyses, as well
as (ii) the harmonized preprocessing prior to any algorithmic application (Sec. 2.4) in mitigating
such variations in the protocol settings. Another limitation of this work is the relatively modest
classification accuracy. We acknowledge that a classification tool with even higher accuracy
could have more immediate clinical utility. At the same time, clinical decision-making for
patients with glioblastoma is an inherently uncertain process.

We hypothesize that a model providing a strong survival estimate to patients and clinicians,
beyond that achievable with current conventional methods, may provide increased confidence
for patients and clinicians making difficult decisions in the context of the uncertainty involved in
treating this difficult disease. Furthermore, it may be useful in stratifying/selecting patients for
clinical trials, potentially allowing for fewer patients to be needed in order to demonstrate effect
of an innovative therapeutic intervention.

5 Conclusion

This study has shown evidence of the feasibility of survival prediction in glioblastoma patients
using solely Bas-mpMRI, which are more widely available in community settings, and integra-
tive advanced radiomic features, indicating that such features can compensate for the lack of
Adv-mpMRI. Further studies including multi-institutional data are required to prove the further
generalizability of our findings and evaluate the application of our predictive model to imaging
acquisition protocols of current clinical practice in various institutions. This method holds prom-
ise to assist clinical decision-making for patients with de novo glioblastoma to better select
patients for potentially toxic therapies and clinical trials.

6 Appendices

Tables 3 and 4 comprise the list of selected features and their type for the ‘IFPAdvanced’ and the
‘AFP Basic’ models, respectively.
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Table 3 The exact features selected from the IFP-advanced model.

Type of feature Description

Volumetric The volume of the complete brain, excluding skull structures

Volumetric The volume of the NET relative to the volume of the ED

Spatial The closest distance of the ED from the ventricles

Intensity The raw average intensity of the ET in the postcontrast T1 (T1-Gd) volume

Intensity The standard deviation of the raw intensities of the ET in the FLAIR volume

Intensity The raw average intensity of the ET in the DTI(AX) map volume

Intensity The raw average intensity of the ET in the DTI(ADC) map volume

Histogram-based 10-binned histogram of the raw intensity values of the ET in the T1-Gd volume (bin 1)

Histogram-based 10-binned histogram of the raw intensity values of the ED in the T1-Gd volume (bin 4)

Histogram-based 10-binned histogram of the raw intensity values of the NET in the T1-Gd volume (bin 2)

Histogram-based 10-binned histogram of the raw intensity values of the ED in the T1 volume (bin 2)

Histogram-based 10-binned histogram of the raw intensity values of the ED in the T2 volume (bin 5)

Histogram-based 10-binned histogram of the raw intensity values of the NET in the FLAIR volume (bin 3)

Histogram-based 10-binned histogram of the raw intensity values of the NET in the FLAIR volume (bin 5)

Histogram-based 10-binned histogram of the raw intensity values of the NET in the FLAIR volume (bin 7)

Histogram-based 10-binned histogram of the raw intensity values of the ED in the DTI(FA) volume (bin 1)

Histogram-based 10-binned histogram of the raw intensity values of the NET in the DTI(RAD) volume
(bin 2)

Histogram-based 10-binned histogram of the raw intensity values of the NET in the DTI(RAD) volume
(bin 3)

Histogram-based 10-binned histogram of the raw intensity values of the ED in the DSC(PSR) volume
(bin 7)

Histogram-based 10-binned histogram of the raw intensity values of the NET in the DSC(PSR) volume
(bin 3)

Spatial Percentage of TC volume in the region of the cerebellum

Tumor growth
model parameter

The estimated diffusion coefficient of white matter, considering all apparent tumors

Tumor growth
model parameter

The 3-D coordinates (in coronal plane) of the apparent tumor’s center of gravity

Table 4 The exact features selected from the AFP-basic model.

Type of feature Description

Volumetric The volume of the complete brain, excluding skull structures

Volumetric The volume of the ED relative to the volume of the whole tumor

Spatial The closest distance of the TC from the ventricles

Intensity The raw average intensity of the ET in the postcontrast T1 (T1-Gd) volume
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Table 4 (Continued).

Type of feature Description

Intensity The standard deviation of the raw intensities of the ET in the T1 volume

Histogram-based Binned histogram of the raw intensity values of the ED in the T1 volume (bin 2)

Histogram-based Binned histogram of the raw intensity values of the ED in the FLAIR volume (bin 2)

Histogram-based Binned histogram of the raw intensity values of the NET in the FLAIR volume (bin 1)

Spatial Percentage of TC volume in the occipital lobe

Spatial Percentage of TC volume in the region of brain stem

Volumetric Eccentricity metric for NET: sqrt½1 − a � b∕c 2�, where c is the longest semiprincipal axes
of an ellipsoid fitted on the NET, and a and b are the second and third longest
semiprincipal axes of the ellipsoid

Textural (GLCM) The energy within the ET in the T1-Gd volume, considering 26-connected neighboring
voxels in the 3-D volume

Textural (GLCM) The entropy within the ET in the T1-Gd volume, considering 26-connected neighboring
voxels in the 3-D volume

Textural (GLCM) The variance within the ET in the T1-Gd volume, considering 26-connected neighboring
voxels in the 3-D volume

Textural (GLCM) The autocorrelation within the ET in the T1-Gd volume, considering 26-connected
neighboring voxels in the 3-D volume

Textural (GLCM) The energy within the ET in the T1 volume, considering 26-connected neighboring
voxels in the 3-D volume

Textural (GLCM) The contrast within the ET in the T1 volume, considering 26-connected neighboring
voxels in the 3-D volume

Textural (GLCM) The contrast within the ED in the T1-Gd volume, considering 26-connected neighboring
voxels in the 3-D volume

Textural (GLCM) The SumAverage within the ED in the T1-Gd volume, considering 26-connected
neighboring voxels in the 3-D volume

Textural (GLCM) The contrast within the ED in the T2 volume, considering 26-connected neighboring
voxels in the 3-D volume

Textural (GLCM) The contrast within the NET in the T1-Gd volume, considering 26-connected neighboring
voxels in the 3-D volume

Textural (GLCM) The energy within the NET in the T1 volume, considering 26-connected neighboring
voxels in the 3-D volume

Textural (GLCM) The variance within the NET in the T1 volume, considering 26-connected neighboring
voxels in the 3-D volume

Textural (GLCM) The correlation within the NET in the T2 volume, considering 26-connected neighboring
voxels in the 3-D volume

Textural (GLCM) The variance within the NET in the T2 volume, considering 26-connected neighboring
voxels in the 3-D volume

Textural (GLRLM) The “gray-level variance” within the ET in the T1-Gd volume, considering the 13 main
directions in the 3-D volume

Textural (GLRLM) The “run-length variance” within the ET in the T2 volume, considering the 13 main
directions in the 3-D volume

Textural (GLRLM) The “run-length variance” within the ED in the T1 volume, considering the 13 main
directions in the 3-D volume
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