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Abstract. Levee slides may result in catastrophic damage to the region of failure. Remote sens-
ing data, such as synthetic aperture radar (SAR) images, can be useful in levee monitoring.
Because of the long length of a levee, the image size may become too large to use computa-
tionally expensive methods for quick levee monitoring, so time-efficient approaches are pre-
ferred. The popular support vector machine classifier does not work well on the original
three polarized SAR magnitude bands without spatial feature extraction. Gray-level co-occur-
rence matrix is one of the most common methods for extracting textural information from gray-
scale images, but it may not be practically useful for a big data in terms of calculation time. In
this study, very efficient feature extraction methods with spatial low-pass filtering are proposed,
including a weighted average filter and a majority filter in conjunction with a nonlinear band
normalization process. Experimental results demonstrated that these filters can provide compa-
rable results with much lower computational cost. © 2015 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JRS.9.097294]
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1 Introduction

There are ∼200;000 km length of Earth levees in the United States, and even more throughout the
world with various designs. According to a Governing.com survey, only 10% of 744 levees from
National Levee Database were rated as acceptable, while the rest were marginally acceptable or
unacceptable.1 Formidable failure of levees in New Orleans during hurricane Katrina along the
Mississippi River resulted in great loss economically with human casualties in that area. This vivid
catastrophe highlighted the importance of levee monitoring. Extensive research has been done to
monitor levee status with various different approaches. The main approaches used are field-based
in situ soil property measurements and remote sensing measurements [e.g., synthetic aperture
radar (SAR) images, optical images]. Recently, research on screening levees has been conducted
at Mississippi State University.2–5 Airborne and spaceborne SAR images are used to monitor the
abnormality of study areas along the Mississippi River. Another similar application is landslide
monitoring, where SAR images may be combined with optical images and digital terrain mod-
els.6,7 In this research, an airborne SAR having three magnitude bands with polarizations HH, VV,
and HV was used for levee monitoring, and supervised classification of slide and nonslide levee
areas was performed using the standard support vector machine (SVM) classifier.8–11 Although
SVM is a powerful classifier, it failed to accurately classify the slide areas without any spatial
feature extraction. This may be because the original low-dimensional data does not include enough
discriminant features. Thus, unlike a dimensionality reduction process for high-dimensional
data,12–14 a dimensionality expansion process is included by adding additional artificial
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bands6,15 which are simply nonlinearly normalized bands in this research. In addition, a feature
extraction method for spatial information has been considered before classification. Gray-level co-
occurrence matrix (GLCM) is one of the popular methods to describe spatial features, and it per-
forms well in many applications.16–18 It has been applied to levee slide classification.5,19 However,
it requires significant computational power, since a relatively large local area has to be considered
in order to find accurate texture features. Furthermore, several position operators have to be
applied and statistical features must be calculated from the GLCM before classification. Thus,
it may not be suitable for fast analysis of a big image.

In this study, very simple and effective feature extraction methods for SAR images are pro-
posed. Specifically, the weighted average filter and the majority filter20 may offer slightly lower
classification accuracy but with much less computational cost. Such spatial low-pass filtering
techniques with a sliding window are suitable for parallel computing, since the output of a single
pixel is unrelated to other areas of the image.21 Thus, such spatial feature extraction methods are
preferred for fast processing of large-scale remote sensing images. When the GLCM is used,
adding the features from such spatial filters may further improve the performance. For compli-
cated slide features, the use of additional normalized bands improves the performance of GLCM
and spatial filtering.

The contributions of this study are threefold:

1. Spatial low-pass filters are proposed for spatial feature extraction in levee slide classi-
fication from SAR images. The center pixel is replaced by the filter output of a small
neighborhood, which includes spatial information; meanwhile, the spatial low-pass fil-
ters can reduce noise for classification performance enhancement. It can also be easily
implemented in parallel for fast data processing and analysis.

2. For GLCM, adding the low-pass filtering outputs may further improve classification
accuracy.

3. We propose to use normalized bands which can generate additional spatial and texture
features to improve the classification accuracy.

This paper is organized as follows. Section 2 introduces the data used in the experiments.
Section 3 presents the methods proposed in this paper. Section 4 shows experimental results. The
conclusions are drawn in Sec. 5.

2 Data

As shown in Fig. 1, the study area in this paper is an ~3-km-long portion of the levee system on
the eastside of the Mississippi River, north of Vicksburg, Mississippi. About a 40-m-wide mask
(buffer) on the river side from the levee road was applied to segment the area for classification, as
illustrated in Fig. 2.

Fig. 1 (a) Map of the lower Mississippi River, (b) polarimetric uninhabited aerial vehicle synthetic
aperture radar image in false color (magnitude of the HH channel), and (c) study area on levee
highlighted in red.4

Han et al.: Classification of levee slides from airborne synthetic aperture radar images. . .

Journal of Applied Remote Sensing 097294-2 Vol. 9, 2015



The imagery for the study was taken by the NASA JPL’s uninhabited aerial vehicle synthetic
aperture radar (UAVSAR) on June 16, 2009. UAVSAR acquires repeat-track SAR data to get
differential interferometric measurements.22 Reconfigurable polarimetric L-band SAR sensors
are mounted. The bandwidth of the radar is 80 MHz and it has 1.8 m resolution with full polar-
imetry. Its noise level is relatively low. Thus, it has the capability to differentiate targets with
weak radar backscattering cross-section. L-band SAR can penetrate a few meters in very dry soil,
but its penetration is typically a few centimeters. Therefore, the imagery from UAVSAR is an
excellent source for monitoring levee change.2,23

Figure 2 shows levee slide locations in two areas of interest (AOIs) used in the experiments:
AOI1 is a 66 × 48 × 3 image and AOI2 is an 80 × 83 × 3 image. AOI1 has more complicated
texture features than AOI2. All the pixels are labeled. Different percentages of labeled samples
are used as training samples and the rest for testing in the experiments.

3 Method

The strength of radar backscatter is heavily affected by surface roughness of the terrain and a
slide is identified as rough patch.23 Features responsive to surface roughness include the mag-
nitudes of the HH, VV, and HV polarimetric backscattering coefficients. Sometimes, classifi-
cation can be done successfully on the original images without spatial feature extraction. But in
the case of using SAR images for levee slide classification, it is almost impossible to achieve
accurate classification without proper spatial feature extraction.

There are many approaches to extract spatial features. GLCM is commonly used to extract
texture features. GLCM is a versatile method with many choices for operators and features. On
the contrary, it has many parameters to tune for a specific application, such as window size, level
of gray scale, direction and distance from a center pixel, etc. A common approach for GLCM is
to choose as many features as possible, followed by a feature dimensionality reduction method.
In this study, since processing efficiency is a concern, very simple feature extraction techniques,
i.e., the weighted average filter and the majority filter,20 are adopted to capture spatial property as
an alternative to GLCM. It is well known that GLCM is prone to be affected by noise. For noisy
SAR images, spatial low-pass filters can reduce noise. Moreover, the spatial low-pass filters
require much lower computational cost, and they can be easily implemented in parallel.

3.1 GLCM and Band Normalization

AGLCM relates a pixel to other pixels with specific distance and direction defined by a position
operator. The position operator is application-specific. Sometimes, several different operators

Fig. 2 (a) Slide location on an optical image, (b) two areas of interest (AOIs), and (c) ground truth
with slide areas in light blue.
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have to be used together. After a GLCM is generated, several quantitative features, such as homo-
geneity, uniformity, contrast, and entropy have to be computed before the related texture infor-
mation can actually be used for classification. Therefore, it may be complicated for the GLCM
technique to be applied for large-scale images in remote sensing, and it is difficult to be imple-
mented in parallel. There are dozens of quantitative textural features that can be derived from
GLCM, but only four major features, as shown in Table 1, are used in this paper since most
of the others are either insensitive to levee slides or are highly correlated to these four.

The magnitude of the SAR image varies within a certain range based on levee condition. This
could be problematic with setting a proper level of gray scale for GLCM generation. Therefore, a
fractional measure for relative backscatter strength among HH, VV, and HV bands is derived as

HHf ¼ jHHj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jHHj2 þ jVVj2 þ jHVj2

p VVf ¼ jVVj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jHHj2 þ jVVj2 þ jHVj2

p

HVf ¼ jHVj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jHHj2 þ jVVj2 þ jHVj2

p : (1)

Then the values in the three bands after normalization are fractional within [0 1]. To be appli-
cable to GLCM generation, all the values are converted to integers (after multiplying by 100).
Note that such a normalization process does not actually change the polarization feature in a 3 ×
1 pixel vector, but it does change the neighboring spatial feature of the pixel in each band
because the normalization term in Eq. (1) is varied per pixel. In the experiments, it will be dem-
onstrated that using normalization bands can improve the performance of GLCM-based feature
extraction.

3.2 Spatial Filtering

Spatial filtering is widely used in digital image processing. A small square window is often
employed to slide over an entire image; the filter output at each location is assigned to the center
pixel of the window. For multidimensional image processing, the filter output includes both
spatial and spectral information. A low-pass spatial filter, such as a local averaging filter,
can reduce noise but smooth out image details such as edges.

A weighted average filter, which actually is the Gaussian low-pass filter, is often employed.
Its weight in a local window is defined by

w ¼ e
−d
σ ; (2)

where d is the spatial distance between the center pixel and a neighboring pixel in the window
and σ is a user-defined parameter. In this research, a simple average filter with equal weights is
adopted to save computational cost in weight multiplication.

Another option is to apply a majority filter. The image needs to be quantized to integer levels
similar to GLCM. Proper window size and quantization level should be decided for a specific
application. In the case of each 3 × 3 window, for example, the majority filter assigns the pre-
dominant value to the center pixel. If no predominant value is found, or when all the nine input

Table 1 The major features of gray-level co-occurrence matrix (GLCM) used in this research.

Features Equation

Homogeneity
PN−1

i ;j¼0 Pi;j∕½1þ ði − jÞ2�

Uniformity
PN−1

i ;j¼0 P
2
i ;j

Contrast
PN−1

i ;j¼0 Pi;j ði − jÞ2

Entropy
PN−1

i ;j¼0 Pi;j ð− ln Pi;j Þ

Note: P represents a GLCM, i and j are the coordinates of P, and N is the number of image gray levels.
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pixels have different values, then the median value in the window is used for the center pixel.
Compared to the weighted average filter, the majority filter can better maintain image details.

4 Experiment

A few combinations of feature sets are investigated for comparison purposes, which are
described below (with the number of features).

Table 2 Parameter settings for both GLCM and spatial filtering based feature extraction.

Weighted
average filter Majority filter GLCM

σ
Window
size Level

Window
size Level

Window
size Distance Direction

AOI1 5 5 9 7 9 7 1 0 deg, 45 deg, 90 deg,
135 deg

AOI2 5 3 9 7 9 7 1 0 deg, 45 deg, 90 deg,
135 deg

Note: AOI, area of interest.

Fig. 3 Support vector machine classification results of two subimage scenes: (a) AOI1 and
(b) AOI2.
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1. OR: original three bands (3)
2. ON: original three bands + normalized bands (3þ 3 ¼ 6)
3. OA: original three bands + weighted average filter (3þ 3 ¼ 6)
4. OM: original three bands + majority filter (3þ 3 ¼ 6)
5. OAM: original three bands + weighted average filter + majority filter (3þ 3þ 3 ¼ 9)
6. ONM: original three bands + normalized bands + majority filter (3þ 3þ 6 ¼ 12)
7. ONAM: original three bands + normalized bands + weighted average filter + majority

filter (3þ 3þ 6þ 6 ¼ 18)
8. OG: original three bands + GLCM (3þ 3 × 4 ¼ 15)
9. ONG: original three bands + normalized bands + GLCM (3þ 3þ 6 × 4 ¼ 30)

10. OGM: original three bands + GLCM + majority filter (3þ 3 × 4þ 3 ¼ 18)
11. ONGM: original three bands + normalized bands + GLCM + majority filter

(3þ 3þ 6 × 4þ 3 ¼ 33)

These combinations (including the original bands, nonlinearly generated bands, and
extracted spatial features) present discriminant quantities in different domains (polarizations,
their correlations, and spatial information) for better classification performance.24 For each com-
bination, the SVM with a radial basis function kernel and cross-validation-tuned parameters was
applied; 10 to 50% randomly selected pixels were used as training samples and the remaining for
testing. A total of 20 runs were made and the average performance was reported. Table 2 sum-
marizes the parameter settings for spatial feature extraction.

Figure 3 shows the classification results for AOI1 and AOI2 with different percentages of
labeled samples. Table 3 further summarizes the performance when using 30% of the labeled
samples. The classification performance was evaluated in terms of overall accuracy. As shown in
Table 3, SVM could not well classify slide pixels directly from the original three bands (denoted
as OR). Applying an average filter or a majority filter to the original bands (i.e., OA and OM),
respectively, slightly improves the performance, while applying both of these low-pass filters
(i.e., OAM) improves the performance further. After adding the normalized bands (i.e., ONM,
ONAM), the classification accuracy is increased (compared to the counterparts OM and OAM,
respectively). Once GLCM is deployed to generate texture features, the results are enhanced for
AOI1, which has more complicated texture features than AOI2; it seems that applying GLCM to
the original bands (i.e., OG) works well for the simple texture in AOI2. However, when the
majority filter and weighted average filter are applied to the original bands and normalized
bands (i.e., ONAM), the results are comparable to the results from GLCM (i.e., OG). For
AOI1, ONAM has overall accuracy of 0.9312, while OG yields 0.9305; the overall accuracy

Table 3 Classification performance when using 30% for training (and 70% for testing).

AOI1 AOI2

OR 0.8413 0.9746

ON 0.8413 0.9746

OA 0.8423 0.9749

OM 0.8681 0.9754

OAM 0.9215 0.9749

ONM 0.9175 0.9806

ONAM 0.9312 0.9820

OG 0.9305 0.9832

ONG 0.9491 0.9798

OGM 0.9235 0.9814

ONGM 0.9501 0.9849
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is 0.9820 for ONAM and 0.9832 for OG in the case of AOI2. Obviously, the difference is mar-
ginal. Figure 4 shows classification maps of OAM, ONAM, and ONGM of the two study areas.
Compared to the ground truth maps, those from ONAM look quite similar to those from ONGM,
although the classification accuracy values of ONAM in Table 3 are slightly lower than those
of ONGM.

When normalized bands are added, classification accuracy can be improved in general. For
instance, ONM is better than OM, and ONAM is better than OAM. The improvement from using
normalized bands together with GLCM is also obvious (ONG is better than or similar to OG, and
ONGM is better than or similar to OGM). Since the normalization process changes the neigh-
boring spatial feature of a pixel in each band, a spatial filter or a GLCM on these bands provides
additional spatial or texture features, thereby yielding performance enhancement.

Table 4 shows execution time (and feature dimensionality) for the representative combina-
tions in Table 3. The experiment was done on a computer with Intel Xeon CPU (3.20 GHz) and
6G memory. While the results from ONAM and OG are comparable, the execution time has a
very big gap for these two small images. ONAM method takes only 3.81 s to classify the AOI1

OAMGround truth

ONAM ONGM
(a)

Ground truth OAM

ONAM ONGM
(b) 

Fig. 4 Classification map of two subimage scenes (slide area in light blue, nonslide in yellow):
(a) AOI1 and (b) AOI2.
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image and 18.86 s for OG. If GLCM is applied to the one with a larger feature dimensionality as
in ONGM, computing time increases exponentially to 58.16 s. To classify the AOI2 image, it
costs ONAM 7.08 s, OG 37.75 s, and ONGM 121.39 s. The same tendency could be found for
those using GLCM features: if GLCM has to be applied to a large-scale image, it will take a
much longer time; however, the weighted average filter and the majority filter can extract spatial
features with much less computing time. Therefore, the ONAM method can be a very promising
and efficient approach to handle fairly large images, such as spaceborne images, with less com-
putational complexity.

5 Discussion and Conclusion

Efficient spatial feature extraction approaches are investigated for levee slide classification using
SAR images. GLCM feature extraction performs well as expected but has limitations of high
computation cost and storage needs, and the entire process is difficult to implement in parallel.
For small datasets, this may not be crucial; but as data size increases, efficient feature extraction
is needed. Spaceborne and airborne image applications usually involve large images. In this
paper, an average filter and a majority filter were shown to have much lower computational
cost and can be easily implemented in parallel to further reduce computing time. Even though
their classification performance does not exceed GLCM (in some feature combinations), they
can be used for fast screening before more complicated methods are applied on a small selected
area. The spatial features and feature combinations investigated in this research may be useful for
early abnormality screening with a technical of anomaly detection.25–27

In high-dimensional data analysis (e.g., hyperspectral image classification), generating spa-
tial features will dramatically increase the feature dimensionality and aggravate the problem of
the “curse-of-dimensionality.” For a polarized SAR image, this is not a problem; actually, lack of
sufficient discriminant features in a low-dimensional SAR image is the difficulty. The nonlinear
band generation process intends to dig out the information embedded in the original data that can
be used to maximize class separability, which in this research is about band normalization,
although many nonlinear combinations can be tested.15 Such a normalization step is used to
generate a new three-dimensional unit vector, so the polarization vector shape (instead of mag-
nitude) can be emphasized; meanwhile, each pixel is divided by a different value, creating three
different polarization bands with new spatial information for discrimination.

For future work, we will study parallel implementation of the proposed methods and anomaly
detection for screening of potential levee slides.
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Table 4 Execution time in seconds.

Study area AOI1 (66 × 48 × 3) AOI2 (80 × 83 × 3)

Method Execution time Feature dimension Execution time Feature dimension

OAM 1.69 9 2.72 9

ONM 2.39 12 4.46 12

ONAM 3.81 18 7.08 18

OG 18.86 15 37.75 15

ONGM 58.16 33 121.39 33
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