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Abstract

Significance: Brain fingerprinting refers to identifying participants based on their functional
patterns. Despite its success with functional magnetic resonance imaging (fMRI), brain finger-
printing with functional near-infrared spectroscopy (fNIRS) still lacks adequate validation.

Aim: We investigated how fNIRS-specific acquisition features (limited spatial information and
nonneural contributions) influence resting-state functional connectivity (rsFC) patterns at the
intra-subject level and, therefore, brain fingerprinting.

Approach: We performed multiple simultaneous fNIRS and fMRI measurements in 29 healthy
participants at rest. Data were preprocessed following the best practices, including the removal of
motion artifacts and global physiology. The rsFC maps were extracted with the Pearson corre-
lation coefficient. Brain fingerprinting was tested with pairwise metrics and a simple linear
classifier.

Results: Our results show that average classification accuracy with fNIRS ranges from 75% to
98%, depending on the number of runs and brain regions used for classification. Under the right
conditions, brain fingerprinting with fNIRS is close to the 99.9% accuracy found with fMRI.
Overall, the classification accuracy is more impacted by the number of runs and the spatial
coverage than the choice of the classification algorithm.

Conclusions: This work provides evidence that brain fingerprinting with fNIRS is robust and
reliable for extracting unique individual features at the intra-subject level once relevant spatio-
temporal constraints are correctly employed.
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1 Introduction

Functional neuroimaging has empowered the understanding of brain function continuously and
noninvasively under several conditions since the early 1990s. In particular, blood-oxygen-level-
dependent (BOLD) functional magnetic resonance imaging (fMRI) and functional near-infrared
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spectroscopy (fNIRS) share similar hemodynamic origins and reveal brain function by relying
on the neurovascular coupling to infer neural activity and extract functional connectivity (FC)
maps.1–5 However, the low signal-to-noise ratio (SNR) intrinsic to both modalities ultimately
leads to a lack of intra-subject reproducibility, which is enlarged by several confounding factors,
including motion artifacts and physiology from noncortical tissues.6–11 To overcome this limi-
tation, researchers have often opted to perform group analysis by gathering data from different
subjects based on their shared features. Although this approach increases the overall SNR and
eases group comparisons, collapsing data from participants ignores unique individual features
that may hold great potential for subject discrimination—a relevant feature that is valuable for
several purposes, including clinical applications in which individualized treatments could benefit
patient recovery and outcome.12–14

The individual analysis ultimately depends on data reproducibility, which can be quantita-
tively assessed with test-retest protocols (i.e., experimental designs in which data are acquired
from the same participant several times within days or a few weeks). To this end, several
test-retest protocols have been previously applied to characterize the variability of fMRI and
fNIRS data.10,12,15–22 Because healthy brain function is not expected to change significantly
at the macroscale within a few days, repeated runs/sessions can help to develop optimal
approaches for data acquisition (such as fMRI sequences and fNIRS probe positioning) and
for analysis pipelines to yield more reproducible results at the intra-subject level.9,10,22–26

Thanks to these efforts, recent methodologies have increased the intra-subject reproducibility
to a level that it is possible to accurately identify individuals based on their FC maps, i.e., brain
fingerprinting.

Since the pioneering work by Finn et al., novel approaches have improved brain fingerprint-
ing with FC patterns measured with BOLD-fMRI.12 For example, Amico and Goñi explored
principal component analysis (PCA) for assessing and optimizing individual identification and
showed that unique features at the intra-subject level could be better reconstructed in the con-
nectivity domain.14 More recently, Venkatesh et al. demonstrated that the geodesic distance
between a pair of correlation matrices yields higher individual classification rates than simply
employing the Pearson correlation coefficient to compute the similarity across FC maps from
different sessions.27 The geodesic distance outperforms linear metrics because it does not neglect
that correlation matrices lie in a nonlinear space.27,28

Brain fingerprinting with fNIRS consolidates the feasibility of extracting robust and reliable
individual neural features from fNIRS-based hemodynamics, paving the way for continuous
bedside clinical works focused on single-patient changes in the short term.29,30 A better under-
standing of what drives subject identification could allow us to differentiate between participant-
and session-dependent brain connectivity patterns, which is critical for isolating longitudinal
brain changes from spurious fluctuations of the measured signal. Despite its potential, only
a few works have attempted to perform brain fingerprinting with fNIRS to date,31,32 which
is probably related to the fact that fMRI methods are not directly translated to fNIRS due to
the intrinsic noise properties of the latter. Specifically, fNIRS’ high temporal resolution allows
for the removal of systemic physiological noise, and it samples the brain faster than the hemo-
dynamic changes and leads to high temporal autocorrelation in the hemoglobin time series.33,34

The autocorrelation violates the statistical assumptions for the Pearson correlation and inflates
the correlation coefficients, resulting in spurious FC maps.35 In addition, fNIRS signals are con-
taminated by extracerebral hemodynamics and motion artifacts,20,36–45 and both confounding
factors can profoundly affect the comparison between hemoglobin time series and decrease
sensitivity to actual cortical connectivity patterns.20,22,35

Recent advances in fNIRS processing and analysis have introduced and validated robust
methodologies for each of these challenges, opening new doors to properly translating brain
fingerprinting protocols to fNIRS.9,45,46 However, several experimental and methodological con-
cerns—such as the number and location of the optodes, the amount of data, and the classification
method—remain unresolved and could be addressed by a robust methodology for identifying
subjects.

In the present work, we aimed to analyze the constraints and limitations associated with the
problem of brain fingerprinting. To this end, we acquired resting-state fMRI and fNIRS data
simultaneously over several runs. For the fNIRS data, we applied a previously developed and
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validated preprocessing pipeline, which included motion artifact correction and global systemic
physiology removal.45 We then quantified how subject identification accuracy was affected
by the number of runs, the quantity of information provided by the different neuroimaging
techniques, and the methodology used to compare the FC maps. Based on the hypothesis that
data-driven techniques would benefit more from using different runs from the same individual
than similarity metrics, we compared the performance of a linear classifier with standard matrix
distance approaches. For fNIRS in particular, we also explored how the combination of different
contrasts (i.e., types of hemoglobin) contributes to the problem.

2 Methods

2.1 Subjects and Experimental Protocol

A total of 29 healthy subjects (26 males, 18 to 34 years old) contributed to this study. All
measurements were performed inside the MRI unit. We instructed all participants to close their
eyes, stay relaxed, not move, and not focus their thoughts on any specific task. In each partici-
pant, we collected six runs of MRI and fNIRS simultaneously for six minutes each. Because
MRI requires one structural image (high-resolution, T1-weighted) run, each participant contrib-
uted five and six functional measurements of BOLD-fMRI and fNIRS, respectively. The local
ethical committee at the University of Campinas (where the experiments were performed)
approved the experimental protocol. Participants provided written informed consent before data
acquisition.

2.2 fMRI Signal Acquisition and Preprocessing

The MRI data were collected on a Philips Achieva 3 T scan with a 32-channel head coil.
We acquired one T1-weighted structural image [Repetition Time (TR) = 7 ms, Time to Echo
(TE) = 3.2 s] and five functional resting-state scans (180 volumes, TR = 2 s, TI = 900 ms).
The BOLD data were preprocessed with the SPM12 and the UF2C toolbox.47 We employed
a preprocessing pipeline that included normalization, motion artifact correction (framewise
displacement (FD) and DVARS), band-pass filtering between 0.009 and 0.08 Hz, stopband
attenuation of 50 dB, regressions of white matter, cerebral spinal fluid, and global signal
regression.7,23,26,48–50 The FD and DVARS thresholds were 0.5 mm and 5%, respectively.23

All runs with less than 4 min without motion artifacts were excluded;23,26,51 this procedure
removed a total of 22 runs across all 29 participants. After the removal of runs, eight participants
had less than three good BOLD-fMRI runs and were excluded from further analysis. For fMRI
comparison with fNIRS, we parceled the brain cortex into 94 regions of interest (ROIs) using
the anatomical automatic labeling approach.52 The time series of each ROI was estimated as the
average of all voxels within the ROI.

2.3 fNIRS Signal Acquisition and Preprocessing

All fNIRS measurements were performed with a commercial continuous-wave NIR system
(NIRScout, NIRx Medical Systems). We designed the optical probe with 16 light sources
[light-emitting diodes (LEDs) centered at 760 and 850 nm] and 32 detectors, allowing 64 chan-
nels (i.e., source-detector pairs) with distances ranging from 2.8 to 3.5 cm and a temporal
resolution of 7.8 Hz. Using a 10–20 standard cap,53 the optical probe was placed on the head,
covering most of the cortical regions on the temporal, parietal, frontal, and occipital lobes.
We used a commercial magnetic motion tracking sensor (Fastrack, Polhemus, Colchester,
Vermont) to digitize the location of the optodes on the head and then co-register them on the
Colin27 model with the AtlasViewer Matlab package54 (Fig. 1). In addition to the optodes, five
anatomical landmarks (Nz, Cz, Iz, A1, and A2 in the 10 to 20 system) were also recorded as
AtlasViewer requires them to determine the affine transformation from the atlas space to the
digitized space of the subject.
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For preprocessing the fNIRS data, we used in-house MatLab scripts based on existing
HomER 2 functions.55 First, we pruned channels with a low SNR (SNR < 8; SNR is defined
as the mean divided by the standard deviation) and excluded individual runs that did not have at
least 50% good channels. Four participants did not have at least four good runs after our pruning
criteria and were excluded from further analysis. Finally, we removed consistent bad channels
(>70% across all participants) to keep the same number of channels across all subjects. This
procedure excluded 16 channels, leading to a probe with 48 remaining channels for further
analysis.

For the good-quality channels that survived the quality criteria described above, we converted
the measured light intensity to optical density and corrected motion artifacts with a hybrid algo-
rithm that combines spline interpolation with wavelet decomposition, in this order, for properly
removing baseline changes and spikes.9 With the corrected optical density, we estimated hemo-
globin concentration changes using the modified Beer-Lambert law with differential pathlength
factor (DPF) equal to 6 for both wavelengths.56,57 The hemoglobin time courses were band-pass
filtered between 0.009 and 0.08 Hz to remove high-physiological noise and low-frequency
drifts.20,22,48,49 Because our goal was to investigate the constraints of subject identification based
on neural hemodynamics, we applied a PCA filter to account for the effects of global systemic
physiology in fNIRS measurements by removing the first principal component for oxy-hemo-
globin (HbO) and deoxy-hemoglobin (HbR).45,46,50

2.4 Resting-State Functional Connectivity Maps

The last preprocessing step removed the temporal autocorrelation from the fNIRS and fMRI time
series with an autoregressive model (pre-whitening) of order P to reduce inflated correlations
across the brain.34,35,58,59 The order of the model was estimated automatically with Bayesian
information criteria and independently for each time series of every fNIRS channel or
BOLD ROI. We verified that the prewhitening step did not remove the anticorrelation between
HbO and HbR (Fig. S1 in the Supplementary Material). For fNIRS, we estimated the total
hemoglobin concentration (HbT) changes as the sum of HbO and HbR. Finally, the Pearson
correlation coefficients across ROIs (fMRI) and channels (fNIRS) were computed to provide
FC matrices for each subject run and brain signal separately (BOLD, HbO, HbR, or HbT).

2.5 Subject Identification

The FC matrices (i.e., correlation matrices) were used to identify participants by comparing a
subset of the data (known as the testing dataset) with the remaining independently collected runs
(referred to as the training dataset). Here, the testing dataset contained one FC matrix per par-
ticipant (leave-one-out approach), and the training dataset had a variable number of FC matrices

Fig. 1 Optical probe used for fNIRS. The probe contains 16 sources (red dots) and 32 detectors
(blue dots) distributed symmetrically between the 2 hemispheres, covering most of the head and
including frontal, temporal, parietal, and occipital lobes. The solid yellow lines represent the
64 source-detector combinations (i.e., channels).
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with at least one run per participant. We opted to vary the number of samples per subject in
the training dataset to investigate how this variation would affect brain fingerprinting’s classi-
fication. We evaluated the subject identification performance with either pairwise metrics
(see details in Secs. 2.5.1 and 2.5.2) or a linear classifier (see Sec. 2.5.3). For each investigated
scenario, the testing and training runs were chosen randomly and independently 300 times.
In all cases, the percentage accuracy was defined as

EQ-TARGET;temp:intralink-;sec2.5;116;663Accuracyð%Þ ¼ 100 ×
Number of corrected labels

Number of attempts
:

We used the two-sided Wilcoxon rank-sum test to compare accuracy results obtained under
different (independent) scenarios because the distributions in scenarios that yield high accuracy
would not be normally distributed. The sample size in all cases was 300 data points. Throughout
the results, we provide the Wilcoxon rank sum score for each statistical test and the z-score for
computing the approximate p-value of the test. The effect size (estimated with Cohen’s D
method) and the p-value adjusted for multiple comparisons (derived from the Bonferroni
correction) are also included.

2.5.1 Pearson correlation

In this procedure, subject identification was performed with the Pearson correlation coefficient.
This approach, widely used in the literature, assumes that FC matrices from the same participant
should have higher correlations among each other than across participants. To this end,
we rearranged the upper diagonal elements of each FC matrix (because the FC matrices are
symmetric) into a vector and then computed the Pearson correlation coefficients among all
possible pairs of testing and training vectors. The participant with the FC matrix that yields
the highest correlation with the FC matrix of the testing dataset was assigned as the identified
subject.12,27,31

2.5.2 Geodesic distance

The geodesic distance extends linear metrics, such as the Euclidian distance and the Pearson
correlation, by considering that the correlation matrices lie in a nonlinear space.27,28 The
geodesic distance between two arbitrary FC matrices (C1 and C2) was calculated using an
affine-invariant Riemannian metric given as

EQ-TARGET;temp:intralink-;e001;116;317GeodesicðC1; C2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trace½log2ðC−0.5

1 C2C−0.5
1 Þ�

q
; (1)

where the log represents the logarithmic matrix operator. To compute the geodesic distance,
we added the identity matrix, I, to the FC matrices (i.e., Ci → Ci þ I) to guarantee that all
eigenvalues are greater or equal to zero and to avoid convergence problems when inverting
the correlation matrices.27 With this metric, one assumes that FC matrices from the same
participant should have smaller distances to each other than across participants.

2.5.3 Linear classifier

We also examined the performance of a data-driven method for the problem of subject identi-
fication. Here, we chose a simple linear classifier without a mapping function (i.e., ŷðw; xÞ ¼ wx,
where w and x are the matrix of weights and the attribute vector with incorporated bias, respec-
tively) due to its simplicity.13 In this approach, we vectorized the FC matrices as described above
and optimized the linear classifier with the training dataset via minimization of the sum of the
squares of the residuals with a penalization on the size of the coefficients (ridge regression).
The output of the linear classifier was an N-dimensional vector (ŷ), in which N is the number
of participants in the cohort. The j’th element of the output vector, ŷj, represents the probability
of a given unknown vector from the testing dataset to be identified as subject j. Therefore, the
output element with the highest value defined the subject label.
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3 Results

3.1 Number of Runs Available for Training Affects Classification Accuracy

First, we investigated how the classification accuracy increases with the number of available runs
for training (Fig. 2). For the linear classifier, the average performance increased from 75% to
80% accuracy (when only one run was used for training) to 97% to 99.9% (when we used one
run for testing and the remaining runs for training), depending on the contrast used. (Note that,
due to the pruning criteria, the number of runs per participant varied from three to five for BOLD
and four to six for fNIRS; see Secs. 2.2 and 2.3.) This behavior was also true for the Pearson and
geodesic cases, but only when all of the available runs were used for training. In fact, we did not
observe relevant differences in accuracy when one or two runs were used for training with these
two approaches (Pearson and geodesic), independently of the contrast. As expected, these results
illustrate that a minimum amount of temporal information is required to achieve high accuracy;
the threshold depends on the contrast provided by the neuroimaging technique and the algorithm
used to compare the FC matrices. Overall, at least two 6-min runs per subject in the training
dataset appear to be essential for any brain fingerprinting method for fNIRS and BOLD
signals.

Concerning the different classification algorithms, the Pearson correlation approach yielded
the worst accuracy in all investigated scenarios. Average accuracies barely reached 90%, even
when all runs were used for classification. When only one run was available for training, we
found that the geodesic distance significantly outperformed the linear classifier by an average

Fig. 2 Accuracy of subject identification for Pearson, geodesic, and linear classifier approaches
as a function of the number of available runs available for training when (a) BOLD, (b) HbO,
(c) HbR, and (d) HbT signals are used separately. The condition “All” refers to the case in which
one run was used for testing and the remaining runs were used for training. Due to the pruning
criteria, the number of runs per participant varied from three to five for BOLD and four to six for
fNIRS. Each distribution depicts all observed results in detail (300 values in total). In each violin
plot, the white circle represents the median, and shaded regions indicate the first and third quar-
tiles (as a typical boxplot). The horizontal lines indicate the accuracy values obtained across all
trials, and their lengths are proportional to the frequency of each obtained accuracy within the
distribution.
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(standard deviation) of 11 (6)% for the BOLD, HbO, and HbT contrasts [corrected p-value <
0.001 in all cases; BOLD: z-score = 18.35, rank sum score = 128,651, and effect size = 2.05
(1.86 to 2.25); HbO: z-score = 5.53, rank sum score ¼ 105, and effect size = 0.5 (0.34 to 0.66);
and HbT: z-score = 15.4, rank sum score = 122,433, and effect size = 1.5 (1.3 to 1.7)]. The only
exception was HbR, in which the geodesic distance and the linear classifier presented similar
results with a slight advantage to the latter, although not statistically significant [uncorrected
p-value = 0.61, z-score = −0.5, rank sum score = 89,084, and effect size = −0.07 (−0.23
to 0.08)].

This situation changed as soon as more information was added to the training set: the linear
classifier presented the best performance when more than one run was available for training. The
geodesic distance did not change after the addition of a second run, and the average (standard
deviation) accuracies of the linear classifier achieved accuracies as high as 95.6 (4.4)%, 90.8
(5.0)%, 90.8 (5.6)%, and 92.3 (5.1)% for the BOLD, HbO, HbR, and HbT signals. On average,
this performance was 10% higher than the geodesic distance when the same scenario was con-
sidered [corrected p-value < 0.001; BOLD: z-score = 3.07, rank sum score ¼ 9.6 × 104, and
effect size = 0.29 (0.13 to 0.45); HbO: z-score = 16.5, rank sum score ¼ 1.2 × 105, and effect
size = 1.73 (1.55 to 1.92); HbR: z-score = 18.28, rank sum score ¼ 1.28 × 105, and effect size =
1.2 (1.8 to 2.2); ad HbT: z-score = 9.37, rank sum score ¼ 1.1 × 105, and effect size = 0.83 (0.66
to 1.00)]. Together, these results show that the geodesic distance greatly benefits from the non-
linearity when little information is available. However, the heterogeneity captured by adding
more independent samples compensates for the nonlinear space if they are all used as different
inputs in machine learning algorithms.

Concerning the type of contrast, BOLD provided the highest accuracies compared with any
fNIRS signal, and the difference was more remarkable when little information was available (i.e.,
one run for training). In this scenario, BOLD average accuracy was 1.20, 1.27, and 1.08 times
greater than HbO, HbR, and HbT, respectively. In fact, BOLD was the only contrast to achieve
90% accuracy when only one run was available for training. Considering the best approach per
training condition and brain signal, we observed that the BOLD classifications were still the
highest. However, the discrepancy in accuracy between BOLD and fNIRS decreased as the
number of runs used for training increased. In the condition with the most runs available for
training, the average accuracy of BOLD/fNIRS was 1.09 (HbO), 1.12 (HbR), and 1.05 (HbT).

3.2 Amount of Spatial Information Influences Performance on Subject
Identification

The minimum amount of temporal information for achieving high accuracy may vary with the
spatial information available for analysis. In fact, the greater spatial heterogeneity captured by
the higher number of ROIs in BOLD (94 regions, creating a 94 × 94 FC matrix) appears to be
the main reason for its higher accuracy when compared with fNIRS (48 channels, creating
a 48 × 48 FC matrix).

To investigate whether the larger spatial information drove the higher BOLD accuracy, we
evaluated the classification performances as a function of the number of available ROIs. For each
modality, we selected random sub-networks with 10, 20, 30, 40, and 48 ROIs and performed the
classifications with one run for training and one for testing. The chosen ROIs were randomly
selected and repeated ten times (except for the case of using all ROIs), avoiding discrepant accu-
racy values due to a given joint of ROIs. For each subgroup of ROIs, the set of runs for training
and testing was randomly selected and repeated 300 times, as done in the other comparisons.
We focused on the geodesic distance because it provided the highest performance when only
one run was available for training.

Figure 3 shows how the average accuracy increases with the number of ROIs used as inputs
in the classification, confirming that a broader coverage of independent ROIs contributes to
extracting unique and reliable connectivity patterns for subject identification. (Figure S2 in the
Supplementary Material depicts the whole distribution.) Interestingly, the BOLD-based accuracy
did not differ from the HbT accuracy when the two techniques matched the same number of
ROIs. This result suggests that the higher performance from BOLD in Fig. 2 likely comes from
the higher number of ROIs sampled.
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Unlike fMRI, the brain regions measured with fNIRS depend on the instrument setup—
specifically, the number of sources and detectors and the density of channels created for a given
region. (Note that the number of ROIs may not be directly associated with the number of
channels. For example, high-density fNIRS probes with all channels placed locally sample
a small ROI, and the information provided by this probe will have a high covariance across
channels.) Therefore, the spatial information is highly variable across different fNIRS
studies. We attempted to estimate the relationship between the classification accuracy and the
number of independent regions measured. Specifically, we approximated the average accuracy
to an empirical model that resembles the behavior observed for all contrasts in Fig. 3,
i.e., Accuracyð%Þ ¼ α × ð1 − e−γðNumber of ROIsÞÞ. Table 1 shows the estimated parameters and
the chi-square (χ2) goodness-of-fit test (under the null hypothesis that the data follows the speci-
fied model). One interesting prediction from the model is that, although HbO and HbT are typ-
ically reported in resting-state fNIRS studies, the information contained in these contrasts is
limited, with a predicted saturation (estimated by α in our model) of 88% and 98%, respectively.
In other words, our model suggests that these contrasts would not provide a target of 100%
accuracy with just one single run for training, even in the limit of hundreds of fNIRS channels.

By taking the derivative of the above expression for accuracy with respect to the number
of ROIs, we can also estimate the improvement rate in the classification accuracy (AR) as a
function of the spatial information. As the accuracy increases with the number of ROIs, the
improvement rate will decrease exponentially by a factor γ in our model. Table 1 shows two
relevant AR thresholds: 0.50% (AR0.5%) and 0.25% (AR0.25%). The number of ROIs in which

Table 1 Estimates for the data shown in Fig. 3 with the model predicting the accuracy as a func-
tion of the number of ROIs. Chi-square estimate (χ2) shows the goodness-of-fit under the null
hypothesis that the data follows the specified model. In our problem, the critical χ2 to reach a
significance level of 0.01 must be less than or equal to 0.115 (3 degrees of freedom). The scores
AR0.5%∕AR0.25% represent the threshold at which adding an extra ROI would increase the
accuracy by <0.5%∕0.25%, respectively.

Neuroimaging contrast α γ χ2 AR0.5% AR0.25%

HbO 88 0.05 9 × 10−4 44 58

HbR 100 0.027 3 × 10−2 63 89

HbT 98 0.046 8 × 10−3 48 63

BOLD 100 0.043 3 × 10−2 50 67

Fig. 3 Average geodesic classification accuracy as a function of the number of ROIs when only
one run was used for training and another for testing. The error bars represent the standard
deviation. The performance on subject identification increases with the number of ROIs used
in the classification for all contrasts (BOLD, HbO, HbR, and HbT); in particular, HbT accuracy
performed similarly to BOLD when the number of ROIs across the two techniques was equal.
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the improvement in the accuracy rate is lower than 0.50% (AR0.5%) can be interpreted as the
minimum number of channels for achieving good classification (because there would be a huge
margin for significant improvement in accuracy with fewer channels), whereas AR0.25% can be
seen as a “saturating” point for accuracy, i.e., at this point, increasing the number of channels
does not considerably increase the accuracy performance. With our data, the number of neces-
sary ROIs to achieve AR0.5% and AR0.25% was the highest for HbR when compared with HbO
and HbT. This result suggests that the HbR-based resting-state FC (rsFC) needs a broader probe
coverage to extract unique individual features to identify participants with the same precision as
HbO, HbT, and BOLD. In addition, the model estimates for HbT are comparable to BOLD,
reinforcing that this fNIRS parameter could be more suitable to replicating BOLD-based
resting-state FC results, as empirically suggested by previous studies.20,22,45,60,61

3.3 HbR Provides Additional Complementary Information to HbT FC Maps

Finally, we explored how combining different fNIRS chromophores would benefit subject
identification (Fig. 4). For the Pearson correlation and linear classifier approaches, we combined
different hemoglobin information by concatenating their vectorized correlation matrices.
For the geodesic distance, we concatenated the FC matrices through the main diagonal to
obtain block-diagonal matrices and preserve the spatial properties of the original FC matrices.28

For this investigation, we used only one run for training and one run for testing because our
goal was to compare the combination of contrasts with the effects of having more runs for
training.

Overall, combining fNIRS contrasts improves subject identification, suggesting that the dif-
ferent hemoglobin contrasts carry complementary information for extracting connectivity pat-
terns at the individual level. However, it does not compensate for more data points (i.e., having
more runs for training is still better than just combining fNIRS data). Figure 4 shows the average
accuracy for all possible hemoglobin combinations (see Fig. S3 in the Supplementary Material
for the confusion matrices). Concerning all different possibilities, the combination of HbR and
HbT provided the highest performance, with an average (standard deviation) accuracy of
90.2 (5.2)%—which is comparable to the 92.3 (5.1)% average accuracy that we obtained for
HbT-only with two runs for training. Interestingly, adding HbO to the HbR+HbT combination
did not increase accuracy. Concerning the different classification strategies, the geodesic distance
again outperformed the other approaches in all cases.

Fig. 4 Classification accuracy during subject identification when combining fNIRS contrasts. The
accuracy was calculated using the Pearson, geodesic, and linear classifier approaches. We used
only one run for training and another for testing in this case. Combining HbR and HbT presented
the highest performance across all possible combinations. Each distribution depicts all observed
results in detail (300 values in total). In each violin plot, the white circle represents the median, and
shaded regions indicate the first and third quartiles (as a typical boxplot). The horizontal lines show
the observed accuracy values, and their lengths are proportional to the frequency of each finding
inside the distribution. The dotted lines are provided to facilitate comparison across the different
combinations only.
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4 Discussion

This work focuses on identifying subjects based on their neural patterns as measured by rsFC,
so called brain fingerprinting. Although brain fingerprinting has not gained practical application,
it illustrates the value of improving data acquisition and analysis methods to enhance intra-
subject reproducibility with neuroimaging techniques. We believe that the search for individual
features should be further explored in functional neuroimaging despite the scientific challenges
because accurate functional cortical information holds the potential to guide treatment or
rehabilitation decisions, favoring patient recovery and outcome in the short term.30 As subject
identification is likely to be more dependent on acquisition conditions than analysis pipelines,
we employed a validated analysis pipeline that was previously demonstrated to reproduce
resting-state networks commonly reported in the literature45 and examined how spatiotemporal
properties affect reproducibility and, thus, brain fingerprinting.

It is quite straightforward—and even intuitive—that data acquisition conditions will influ-
ence the ability to identify subjects. For each subject, it is ideal to collect several runs from many
different ROIs for as long as possible with a variety of techniques to obtain as much information
as possible. However, this approach is neither feasible nor scalable in practice. The fNIRS
systems have a limited number of channels to probe different ROIs that depend on the number
of sources and detectors and how dense the coverage of a single region should be. In addition,
collecting long datasets from multiple runs or sessions is time-consuming, demands a high
operational cost, and is restricted to specific populations. Hence, real datasets have tradeoffs,
and the present work investigates relevant acquisition constraints and limitations associated with
the different choices that must be made for solving the problem of brain fingerprinting using
resting-state functional measurements.

Overall, our results show that FC maps obtained at rest carry sufficient information to identify
participants with near-perfect accuracy. This finding indicates that either fNIRS or fMRI can
isolate the uniqueness of individual brains despite the presence of robust inter-subject rest-
ing-state networks.45,62,63 Our ability to identify distinctive and reliable brain features across
such a homogenous group of mainly young males (26 out of 29), which presents a significant
challenge for the subject classification methodologies, needs to be highlighted. In samples with
an even sex balance, sex-related differences could facilitate subject identification because FC is
known to differ according to sex.64

Previous fMRI studies have introduced different approaches for performing subject identi-
fication, primarily based on pairwise distance metrics, such as the Pearson correlation and geo-
desic distance.27 In this vein, our results reinforce the better performance of the geodesic distance
over the Pearson correlation. We additionally explored how standard machine learning algo-
rithms contribute to brain fingerprinting. Here, we chose to use a linear classifier without a map-
ping function. Our results show that this algorithm was sufficient for capturing the individual
variability when enough data were available, suggesting that the choice of data-driven algorithms
is not the main factor that drives this problem; consequently, using more computationally inten-
sive algorithms does not add any significant contributions to brain fingerprinting under these
conditions. In fact, we tested the performance of a standard multilayer perceptron (MLP)
artificial neural network in our data under different conditions (results not shown). Specifically,
we tested several MLP architectures by varying the number of hidden layers (1, 2, and 3) and the
number of neurons per hidden layer. In all investigated scenarios, the MLP did not yield higher
accuracies than the linear classifier. From the computational perspective, the better performance
of the linear classifier is likely related to the relatively low amount of data available per subject
(in this study, five runs for training in the best case).

However, very few experimental protocols acquire more temporal data than ours; therefore,
the main advantages of conventional machine learning approaches will be limited in functional
neuroimaging data given the current experimental protocols (although they would truly benefit
from larger databases, such as the human connectome project available for fMRI,65 for such
datasets are still not available for fNIRS). The use of few-shot learning algorithms, in which
a machine learning model learns from only one or a few samples, would probably be more
beneficial to fNIRS than conventional deep-learning neural networks.66 In addition, another
promising alternative would be to add a kernel to the linear classifier or employ a nearest
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neighbors’ algorithm (NNA). A proper kernelization strategy could improve the performance of
the linear classifier to excel the geodesic distance, and the NNA should perform at least better
than the Pearson correlation. Meanwhile, acquiring more data from broader ROIs would bring
more value to the goal of reducing intra-subject variability for single-subject analysis.

A relevant methodological difference between pairwise metrics and machine learning
approaches is how they use the temporal information available. When more than one run is
available, the correlation matrices are typically averaged across runs in the Pearson and geodesic
distance calculation.12,27 For the linear classifier, each FC matrix is used as an independent sam-
ple for each participant.13 Using every run as a sample will be more robust than averages because
it will not average out dynamic features that are not present in every run but still characterize
each participant.67–69 For this reason, the linear approach outperformed the other methods for the
fNIRS signals when more than one run was available for training (Fig. 2). The difference
between the linear classifier and the geodesic distance is not as evident for fMRI as for the
fNIRS because the correct computation of the pairwise distance in the nonlinear correlation
space across a broad spatial dataset compensates for the lost temporal information. Thus, it
is possible that the geodesic distance could have a similar performance to the linear classifier
when used on broad fNIRS probes that cover independent regions, as suggested by the results
presented in Fig. 3. In the case in which more spatial information is available, the geodesic
distance would probably be preferred over machine learning techniques due to its simplicity
and low computational cost.

The number of covered ROIs (not necessarily the number of fNIRS channels or fMRI voxels)
is a crucial factor in extracting specific and meaningful information to identify individuals.
The behavior seen in Fig. 3 indicates that measuring more brain regions can uncover unique
connectivity patterns and favor subject identification. Because fMRI experiments naturally probe
the entire brain cortex, this finding is more relevant to the fNIRS field; it implies that, although
challenging, whole-head fNIRS measurements are recommended for individual monitoring and
are preferred over dense local fNIRS measurements if sufficient sources and detectors are not
available.

In terms of identifying subjects, it would be interesting to isolate which brain areas, if any, are
most relevant in the future. Although we did not isolate which subnetworks could play a more
important role to subject differentiation, it has been argued that frontoparietal networks are cru-
cial to individual uniqueness.12 Frontoparietal networks are more linked to higher-order cogni-
tive processing than primary sensory functions; thereby, it is not unreasonable to expect that
these networks may encode the uniqueness of each brain. Interestingly, frontoparietal networks
have also demonstrated great value in the clinic at the individual level for quantifying residual
cognitive function in patients with disorders of consciousness.70,71 In the future, combining the
knowledge of the relevant brain regions with real-time neuronavigation for accurate fNIRS
placement of sparse optical probes could overcome constraints due to a limited number of opto-
des and avoid unnecessary broad optical designs that are often time-consuming to set up.10,24

Among all fNIRS contrasts, HbT provided the highest classification accuracies, which is
consistent with previous studies that found HbT to be the most reliable feature for rsFC.20,22,45,60

By combining HbO and HbR, HbT captures information from both. However, one might hypoth-
esize that combining different fNIRS contrasts would still yield complementary information due to
differences in HbO, HbR, and HbT dynamics during brain activity.5,38,72–74 In fact, adding HbR to
HbT resulted in improved classification, but adding HbO to the combination of HbR and HbT
made no difference in average accuracy (Fig. 4). As HbO fluctuations are higher than HbR fluc-
tuations, they drive HbT fluctuations, which may explain why HbO does not increase accuracy in
the presence of HbT. In contrast, HbR contributes little to HbT, so combining the two will give
HbR more weight in the classification problem, which can help identify subjects.

We found, however, that the combination of fNIRS contrasts only showed modest improve-
ments in classification accuracy overall and did not compensate for the acquisition of multiple
runs from the same subject. In addition, the combined data did not reach accuracies close to
the ones obtained with the BOLD signal, indicating that the spatial information is also more
relevant than the complementary dynamics of HbO, HbR, and HbT. The low improvement from
the combination of fNIRS contrasts is probably related to the high cross-correlation among
HbO, HbR, and HbT; note that, for neural hemodynamics, HbO and HbR measured in the same
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channel are expected to be anticorrelated. Of relevant note on this topic, in this work, we com-
bined the FC matrices from each hemoglobin by concatenating their correlation values. An alter-
native approach would be to treat each fNIRS signal as independent input and then compute
the Pearson correlation coefficient across them. Therefore, we would have access to the cross-
correlations between HbO, HbR, and HbT instead of only their concatenated correlation values.
This approach, combined with the geodesic distance, could potentially increase the observed
rates.

For the sole purpose of subject identification, it is worth noting that the fNIRS sensitivity to
extracerebral hemodynamics and systemic physiology could also be used as an additional feature
(although it would not constitute brain fingerprinting). In fact, for this particular study, in which
data were obtained within a few minutes of each other during the same session, the additional
information provided by global hemodynamics (which we removed with PCA) could facilitate
the identification of subjects from fNIRS data and increase the classification accuracies reported
above. However, systemic hemodynamics inherent in fNIRS data can be difficult to generalize to
a more global context. Using only systemic information might not be beneficial to subject iden-
tification because global systemic hemodynamics are governed by feedback and feedforward
mechanisms of the nervous system as a response to the body’s needs. For a given subject, the
systemic pattern would likely be more variable than the neural pattern if data were acquired at
different sessions.

5 Conclusion

In summary, we investigated the problem of subject identification with resting-state brain FC
through simultaneous measurements with fMRI and fNIRS data from 29 healthy and young
subjects. To our knowledge, no previous work has performed a comprehensive study of the
feasibility of using fNIRS for identifying participants during the resting state with fMRI vali-
dation. Considering the results obtained with our dataset, we suggest acquiring at least four runs
per subject (three for training) to achieve close to 100% accuracy. For the fNIRS measurements,
it is important to have a wide coverage with ∼50 channels (ROIs). In addition, the combination of
HbR and HbT provides higher classification performance than each hemoglobin separately.
We highlight that correctly classifying subjects in such a homogenous group as ours shows the
tremendous potential of fMRI and fNIRS for intra-subject analysis, particularly with rsFC.
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