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Abstract. A proposed framework using spectral and spatial information is introduced for neural net multisensor
data fusion. This consists of a set of independent-sensor neural nets, one for each sensor (type of data), coupled
to a fusion net. The neural net of each sensor is trained from a representative data set of the particular sensor to
map to a hypothesis space output. The decision outputs from the sensor nets are used to train the fusion net to
an overall decision. During the initial processing, three-dimensional (3-D) point cloud data (PCD) are segmented
using a multidimensional mean-shift algorithm into clustered objects. Concurrently, multiband spectral imagery
data (multispectral or hyperspectral) are spectrally segmented by the stochastic expectation–maximization into
a cluster map containing (spectral-based) pixel classes. For the proposed sensor fusion, spatial detections and
spectral detections complement each other. They are fused into final detections by a cascaded neural network,
which consists of two levels of neural nets. The success of the approach in utilizing sensor synergism for
an enhanced classification is demonstrated for the specific case of classifying hyperspectral imagery and PCD
extracted from LIDAR, obtained from an airborne data collection over the campus of University of Southern
Mississippi, Gulfport, Mississippi. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE
.55.7.073101]

Keywords: spectral–spatial fusion; hyperspectral imagery; point cloud data; LIDAR; neural networks; stochastic expectation–maxi-
mization; mean shift.

Paper 151622P received Nov. 25, 2015; accepted for publication Jun. 20, 2016; published online Jul. 19, 2016.

1 Introduction
Multiband spectral data (multispectral or hyperspectral)
and point cloud data (PCD) are typically processed and
interpreted separately from each other. These data types
are seldom combined for purposes of scene segmentation,
detection, classification, or object recognition. For low-
dimensional spectral data such as multispectral imagery
(MSI), a scene can be segmented, e.g., using the stochastic
expectation–maximization (SEM) algorithm.1 For high-
dimensional data, such as hyperspectral imagery (HSI),
many methods for spectral segmentation, detection, and clas-
sification have been investigated, including2–13 to determine
the class of a two-dimensional (2-D) pixel, based on its
spectral signature. Given the large number of bands and
consequent sparse information existing in HSI, dimension
reduction methods are sometimes applied to the data,
such as by using principal component analysis (PCA).13

Unfortunately, spectral-based segmentation and classifica-
tion methods respond to material types, not object shapes,
and so this approach by itself is often not sufficient to effec-
tively segment and classify a scene into objects.

Much progress has been made in recent years to incorpo-
rate spatial information into the process. More sophisticated
methods of dimension reduction have been proposed, such as
an approach based on tensor modeling14 that seeks to retain

spatial information that is otherwise missing in traditional
PCA, as well as another method that makes use of local
Fisher’s discriminant analysis that reduces dimensionality
but preserves its multimodal structure.15 A number of spec-
tral–spatial segmentation and classification methods have
been proposed, including spectral–spatial methods that use
a support tensor machine (STM),16 spectral–spatial methods
based on Markov random fields (MRFs),17–20 spectral and
spatial classification using support vector machines and
morphological profiles,21 a partitional clustering technique
involving pixel wise SVM and spatial postregularization,22

evidence theory using Dempster’s rule on joint spatial–
spectral features,23 and unsupervised deep learning with
convolutional neural networks applied to HSI.24 Conversely,
research on spatial classification25,26 can be used to deter-
mine the class of a group of points based on its shape,
size, position, and intensity, but it cannot determine the
material (subclass) of each pixel.

The goal of this research is to investigate an approach that
can overcome some of the limitations arising from using only
one data modality and achieve improved classification
results using the spatial and spectral fusion of information
from multisensor data, specifically PCD and multiband
imagery (MSI or HSI).

Our proposed method for spectral–spatial classification is
a framework that differs from the spectral–spatial methods
mentioned above,16–24 because it includes the use of three-
dimensional (3-D) information from PCD, coming from,
say, a LIDAR instrument. Without such information segmen-
tation and classification is fundamentally limited to separate
or identify objects based on spectral information in the case
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of Refs. 1–15 or spectral–spatial (2-D shape) information in
the case of Refs. 16–24. Consequently, without such infor-
mation, it is often difficult to determine its super class or
object class. The proposed framework makes use of a spatial
classification method based on Refs. 25 and 26 that deter-
mines the class of a group of points based on its shape,
size, position, and intensity.

Our approach is to segment and classify objects based on
both material composition and 3-D shape information. Spatial
and spectral classification results that have been derived
independently from PCD and spectral multiband imagery are
conflated and conflicts between the decisions made by the
independent processes are resolved. A neural-based approach
is proposed to conflate classification information from PCD
and MSI/HSI multiband data. The front-end algorithms in
the framework are unsupervised; thus algorithm training by
an analyst is not required until the final stage of the process.
An underlying assumption is made that the PCD andMSI/HSI
data sets are registered to a common ground reference frame.
Our hypothesis is that the proposed framework is capable of
generating a classification map that delineates objects based
on similarities in 3-D geometry and material composition,
while simultaneously reducing false alarms by resolving the
geometric and spectral ambiguities that often occur when
using a single source of imagery.

Our experiment considers the specialized case of PCD
extracted from LIDAR and spectral data from HSI. The
approach is demonstrated using data from an unclassified air-
borne collection of LIDAR and HSI data in November 2010
over a college campus in Gulfport, Mississippi. During this
campaign, LIDAR and HSI sensors were mounted on the
same airplane. Consequently, the registration process was
relatively simple.

We mention a few comments about terminology: for pur-
poses of this paper, a number of terms are defined in this
section. An “object” is a set of pixels in an image that belong
together and represent a single physical entity. This object
could be composed of one material or be an aggregate of
multiple materials. An “unsupervised process” requires no
human intervention for training an algorithm, whereas a
“supervised process” requires intervention. The supervised
process is trained by a human analyst such that the labels
associated with the regions are typically associated with
classes of materials or objects that are of interest to an
analyst. “Segmentation” is an unsupervised process that
partitions an image into multiple segments according to
statistical properties of the data. During the segmentation
process, sets of pixels are typically assigned a numeric
label, but these labels need not represent a particular type
of object or material, and have yet to be assigned to a
class. We use the term “clustering” interchangeably with
this process, whenever we are attempting to find the structure
in data and organize these data into groups whose members
are similar in some way, where each group is called a “clus-
ter.”We define the term “classification” as a supervised proc-
ess to segment an image into regions that are assigned labels
associated with an object or material class. This process
could be implemented algorithmically by one of many deci-
sion-theoretical approaches, or manually by an analyst who
assigns classes to the labels provided by a segmentation
process. Throughout this paper, “distributed system” refers
to events within the system that are happening concurrently

and independently, possibly replicating or having different
functionalities, possibly asynchronous, diversely intercon-
nected; “adaptive system” referred to an ability to adjust
the system by means of incremental training to support as
well as to reject previously learning.

2 Description of Algorithms
The proposed framework is implemented through three proc-
esses: spatial segmentation of 3-D PCD, spectral segmenta-
tion of multiband (MSI or HSI) data, and spectral/spatial
fusion of the segmentation results. In the first process,
PCD is segmented based on the multidimensional mean-
shift segmentation algorithm, where the results are clustered
based on the geometry of points in the point cloud. In the
second process, any of a number of unsupervised spectral-
only1,7–12 or spectral–spatial methods16–24 could be applied
to HSI data to segment the data into a classification map
of material compositions based on spectral information.
We select the SEM as our choice algorithm to spectrally seg-
ment the data, because it is theoretically rigorous and more
sophisticated than older segmentation methods, such as
k-means13 or ISODATA,13 and because it can also especially
be applied to MSI. The choice of SEM is also a conservative
gesture, because we would expect results on HSI to improve
with some of the recently introduced spectral–spatial
methods.16–24 Note that the first two processes are indepen-
dent and can be implemented in parallel.

The SEM algorithm works best in a low-dimensional
space;1–4 therefore, a dimension reduction method is impor-
tant whenever HSI is the source imagery. We selected PCA13

as our method to project the most significant information in
the high-dimensional HSI space into a lower dimensional
space. This process results in a smaller multiband image
as input to the SEM that contains the majority of information
in the original HSI image. Alternative newer dimension
reduction methods14,15 could have been used, but we chose
PCA because of its overall acceptance in the community and
widespread availability.

In the third process, spectral/spatial fusion, the spatial
detections and spectral detections complement each other.
They are fused into a classification map based on geometry
and material type by a supervised cascaded neural network,
which consists of two levels of neural nets. The first level
(sensor level) consists of two neural nets: a spectral neural
net (SN1) and a spatial neural net (SN2). The second level is
a single neural net, which is the fusion neural network
(FNN). The algorithm flow is shown in Fig. 1.

On the front side of the spectral/spatial fusion network,
the spatial detections (clusters) are fed into the spatial sensor
net without assigning specific classification labels. The spec-
tral detections are similarly fed into the spectral sensor net
without specific labels. On the back side of the network,
supervised training is performed on a small number of
objects that are recognized in a scene by a human analyst.
The detection decisions from both sensor nets are fed into
the FNN for the final classification.

2.1 Spatial Segmentation of PCD

A PCD exists in a 3-D space ðx; y; zÞ. Each point is repre-
sented by the vector ri ¼ rixxþ riyyþ rizz, where x, y, and
z are orthonormal unit vectors. The set of all points in the
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point cloud is denoted by ri ∈ Ω for ∀ i ∈ ½1; N�, where N is
the number of points in the cloud of the observed space Ω.

A combined mean-shift and dispersion-based approach
is proposed for the spatial segmentation and classification
of PCD. Typically, for PCD from active sensors such as
LIDAR, manmade objects are denser than natural ones.
With active sensors such as LIDAR, manmade objects tend
to reflect better than most natural objects, such as tree leaves,
grass, or wetlands. As a result, manmade objects, in general,
produce more points than natural objects. Accordingly,
the manmade objects are denser. Objects with a smaller
dispersion-based density metric as will be described in
Sec. 2.1.2 are more likely to be natural, whereas objects
with a larger value are more likely to be man-made.

2.1.1 Mean-shift initial segmentation

A mean-shift clustering is proposed for performing the spa-
tial segmentation of PCD. This method is a nonparametric
clustering technique that requires no knowledge of the num-
ber of clusters or the shape of these clusters. The method was
originally introduced by Fukunaga27 and is discussed further
in Refs. 28 and 29. The goal of using mean shift is to cluster
densest object in 3-D within a spatial distance defined by
parameter “bandwidth.” An object that is clustered together
is one that can fit within the boundary of 3-D bandwidth. For
instance, with bandwidth of 3 m, any object with each
dimension of <3 m is clustered to become an object.

Clusters from this method are formed at the densest areas
in Rd space. Mean shifting from an initial point toward a
denser area occurs and clusters are formed with a particular
size. This causes either new clusters to be created or existing
ones to expand along its path. When the mean-shift con-
verges to a fixed point, it is reinitialized with a new unused
point. The process is repeated until all points are used.

More specifically, mean-shift theory is based on density
search in space Rd, for a given dimension d. It is a hill climb-
ing algorithm applied to the multivariate density function
f̂ðrÞ at the point r by kernel density estimate function for
N data points

EQ-TARGET;temp:intralink-;e001;63;142f̂ðrÞ ¼ 1

Nhd
XN
i¼1

K

�
r − ri
h

�
; ∀ r ∈ Rd; (1)

where h > 0 is a smoothing bandwidth parameter and Kð·Þ is
a symmetric kernel. Typical kernels are obtained from the

uniform and Gaussian distributions. If the kernel is
Gaussian (as in our case), Kð·Þ can be expressed as

EQ-TARGET;temp:intralink-;e002;326;554Kðx; hÞ ¼ 1

ð2πhÞd2 exp
�
−0.5

kxk22
h

�
: (2)

Taking the gradient of the multivariate kernel density
estimate, we obtain the following expression:
EQ-TARGET;temp:intralink-;e003;326;485

∇f̂ðrÞ ¼
�

2ck
Nhdþ2

Xn
i¼1

g

�
k r − ri

h
k2
��

×

2
4
P

n
i¼1 rig

�
k r−ri

h k2
�

P
n
i¼1 g

�
k r−ri

h k2
� − r

3
5; (3)

where gðrÞ ¼ −k 0ðrÞ is defined as the derivative of Kð·Þ. The
second term in the right-hand side of (3) is the mean shift at
r, denoted as mgðrÞ. The vector always points toward the
direction of maximum increase in the density. The dimension
of the space is denoted by d. With this model, we implement
the mean-shift algorithm as follows:

EQ-TARGET;temp:intralink-;e004;326;329Step 1Þ Compute the mean-shift vectormðriÞ

¼

2
64
P

n
i¼1 rig

�
k r−ri

h k2
�

P
n
i¼1 g

�
k r−ri

h k2
� − r

3
75: (4)

EQ-TARGET;temp:intralink-;e005;326;258Step 2Þ Translate the density estimation rtþ1
i ¼ rti þmðriÞ:

(5)

EQ-TARGET;temp:intralink-;e006;326;220

Step 3Þ Iterate ð1Þ and ð2Þ until∇f̂ðrÞ < τ; for a predefined

tolerance τ: (6)

In summary, the mean-shift algorithm groups a point cloud
into separate clusters by shifting the mean toward a denser
direction where the majority of points are located. These clus-
ters are fed into a dispersion-based segmentation method.

2.1.2 Dispersion-based segmentation

Once the point cloud has been segmented into a number of
clusters, these clusters can be further segmented based on
density. We use a dispersion-based density metric to measure

Fig. 1 Algorithm flow for the proposed distributed adaptive sensor fusion architecture. A bottom-up
approach is used where spectral segmentation is applied to multiband spectral imagery (such as
HSI or MSI data) and spatial segmentation is applied to PCD (such as obtained from LIDAR). The groups
from the segmentation are then given class labels and fed into the cascaded neural networks.
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the density of each cluster in a space of dimension d. This
algorithm is described as follows:

EQ-TARGET;temp:intralink-;e007;63;730Dj ¼
1

d

�
d −

σx
jXj −

σy
jYj −

σz
jZj

�
→ ½0;1�; (7)

where d ¼ 3 for 3-D data; j is the cluster number; σx, σy, and
σz are the standard deviations in the x-, y-, and z-directions;
and jXj ¼ jrx max − rx minj, jYj ¼ jry max − ry minj, and jZj ¼
jrz max − rz minj, where the maximum and minimum values
are taken over cluster j. This function maps the sum of all
standard deviations of a cluster to [0, 1]. Note that dense
clusters have a density metric close to one and sparse clusters
have a density metric close to zero. Figure 2 shows a scatter
plot for a cluster of points in two directions that illustrate the
information we are trying to capture with this function. The
cluster in Fig. 2 is rotated so that its longest length is along
x-axis and its highest point to center mass is perpendicular to
this axis.

2.2 Multiband Spectral Segmentation

An unsupervised multiband segmentation approach is used
on the spectral data that makes use of a stochastic mixture
model (SMM),2 also sometimes called a finite mixture
model.3 The stochastic expectation algorithm is proposed
as a means to obtain and implement the solution.2,3,30 Our
implementation of the SMM and proposed algorithm is
described in this section.

2.2.1 Stochastic mixture model

An SMM is used as the foundation for the proposed multi-
band spectral segmentation method. According to the SMM,
a multimodal probability density function can be obtained by
the mixture model

EQ-TARGET;temp:intralink-;e008;63;368fðx;ΨÞ ¼
XM
i¼1

πifbðx;ΘiÞ; (8)

πi is the mixture weight for class i, x ∈ Rb, and fbðx;ΘiÞ is a
single unimodal distribution of dimension b, with parameters
Θi. Since we are now in spectral space, we distinguish the
dimensionality as different from spatial space by using the
notation b as the number of dimensions in spectral space.

The SMM describes the spectral data as a mixture of pixels
from M different spectrally homogeneous (unimodal) distri-
butions. In general, the unimodal distributions could be of
any type; however, we will be presuming the distributions
are multivariate normal. Consequently, each distribution
fbðx;ΘiÞ can be fully characterized by the parameters
Θi ¼ fmi; Kig, where mi and Ki are the mean and covari-
ance for class i. Figure 3 shows an example of three unim-
odal Gaussian distributions in a 2-D space that could be
modeled using (8).

The parameters of the SMM model

EQ-TARGET;temp:intralink-;e009;326;631Ψ ¼ fM; π1; π2; : : : ; πM;Θ1; : : : ;ΘMg; (9)

are not known and are estimated through an iterative pro-
cedure that maximizes the likelihood function LðX;ΨÞ of
the data set X

EQ-TARGET;temp:intralink-;e010;326;567LðX;ΨÞ ¼
YN
n¼1

XM
i¼1

πifbðxn;mi; KiÞ (10)

EQ-TARGET;temp:intralink-;e011;326;522LðX;ΨÞ ¼
YN
n¼1

Lðxn;ΨÞ; (11)

where Lðxn;ΨÞ is the pixel likelihood function.
The maximum likelihood solution is LðX; Ψ̂Þ, where

LðX; Ψ̂Þ > LðX;ΨÞ for every Ψ ≠ Ψ̂.

2.2.2 Expectation–maximization

The expectation–maximization (EM) algorithm is an itera-
tive method for finding a maximum likelihood solution of
parameters in statistical models, where the model depends
on unobserved latent variables.30 The EM iteration alternates
between performing an expectation (E) step, which creates a
function for the expectation of the log-likelihood evaluated
using the current estimate for the parameters, and maximi-
zation (M) step, which computes parameters maximizing
the expected log-likelihood found on the E step. These
parameter estimates are then used to determine the distribu-
tion of the latent variables in the next E step. With each iter-
ative step (j), the model parametersΨj are updated, such that
there is an increase in the likelihood function

Fig. 2 Scatter-plot of a cluster in 2-D. The x -axis crosses the centroid
point of the cluster at the direction, in which the cluster width is at its
maximum. The y -axis is perpendicular to the x -axis. The vertical
z-axis is orthogonal to the horizontal xy -plane.

Fig. 3 Three unimodal Gaussian distributions are shown in 2-D
space. Each distribution f bðx ;Θi Þ can be fully characterized by the
parameters Θi ¼ fmi ; K ig, wheremi and K i are the mean and covari-
ance for class i .
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EQ-TARGET;temp:intralink-;e012;63;752LðX;Ψjþ1Þ ≥ LðX;ΨjÞ. (12)

The algorithm terminates when a maxima has been found.
Unfortunately, there are some disadvantages to the EM

algorithm. First, the maxima achieved through the process
just described may be either a local maxima or the global
maximum. The EM process of increasing the overall mixture
likelihood in incremental steps can sometimes cause it to get
stuck in a local maxima (rather than converge to the global
maximum) if that path requires a step which does not
increase the overall likelihood. Second, the EM process
tends to converge slowly to a final solution. Finally, the
number of model components (M) must be determined in
advance.

2.2.3 Stochastic expectation–maximization algorithm

The SEM algorithm overcomes some of the disadvantages of
the EM approach and it is proposed here to estimate the
parameters of the SMM. SEM models and fits iteratively
an M-component Gaussian mixture model to the given set
(or bands) of data. The method is a variation of the EM
algorithm, mentioned previously. The SEM algorithm is
an iterative method that uses stochastic cluster assignment
for finding maximum likelihood or maximum a posteriori
(MAP) estimates of parameters in statistical models.
During each iteration, SEM segmentation assigns each
pixel to one cluster based on the maximum of posterior
probability, similar to the EM. However, it does so in a way
that overcomes some of the disadvantages of SEM.

In an attempt to avoid getting stuck in local minima, SEM
uses a hard segmentation technique to compute estimates of
the weight, mean, and covariance for each unimodal distri-
bution. Specifically, only the pixels within each cluster are
used to compute these estimates. The process of assigning
pixels into clusters causes SEM to take larger steps than
the EM approach and offers an ability to jump away from
a path toward local minima in favor of reaching the global
maximum. However, unfortunately, although the chances are
improved for reaching the global maximum, there is still no
guarantee the final model solution corresponds to the global
solution. Taking larger steps also has the benefit of causing
SEM to converge faster than the EM.

SEM provides an unsupervised approach to segment
multivariate data into clusters without having a priori knowl-
edge of the number model components M. Unlike the EM
algorithm, SEM does not require the actual number of
model component to be known. SEM only requires the maxi-
mum number of components to be specified. SEM begins
with a specified maximum number of mixture model compo-
nents. Subsequently, during any of the iterations, if a model
component weight falls below a specified threshold, γmin then
SEM is reinitialized with one less component: M → M − 1.

Initialization of SEM algorithm. An initial “guess” of the
maximum number of mixture components M is chosen,
along with the minimum allowable component weight γmin.
The pixel component posterior probability is initialized with
the uniform distribution

EQ-TARGET;temp:intralink-;e013;63;112Piðxn; Ψ̂ðjÞ
i Þ ∼ U½0;1� ∀ i; n: (13)

Stochastic assignment (S-step at the j-th iteration). A
stochastic mixing model (SMM) provides an effective

method for describing the spectral statistics of pixel ensem-
bles of this type. The SMM is defined in terms of several
“pure” or “hard” constituent classes, each of which is
described by a unique multivariate Gaussian probability den-
sity. Image pixels belonging to a given class are assumed
to be independently drawn from the density that defines
that class. Figure 4 shows each pixel randomly assigned to
a class i assigned using a multinomial distribution with
probability pi.

An indicator function is used to designate class
membership
EQ-TARGET;temp:intralink-;e014;326;631

IiðxnÞ ¼ 1; if xn is assigned to class i; otherwise;

IiðxnÞ ¼ 0: (14)

Expectation (E-step at j-th iteration). Compute the pixel-
mixture model likelihood and pixel-component posterior
probabilities

EQ-TARGET;temp:intralink-;e015;326;549Lðxn; Ψ̂ðjÞÞ ¼
XM
i¼1

πðjÞi fbðxn;mðjÞ
i ; KðjÞ

i Þ (15)

EQ-TARGET;temp:intralink-;e016;326;503Piðxn; Ψ̂ðjÞÞ ¼ πðjÞi fbðxn;mðjÞ
i ; KðjÞ

i Þ
Lðxn; Ψ̂ðjÞÞ

: (16)

Maximization (M-step at the j-th iteration). The SMM
parameters for the next step πðjþ1Þ

i and Θðjþ1Þ
i ¼

fmðjþ1Þ
i ; Kjþ1

i g are estimated

EQ-TARGET;temp:intralink-;e017;326;407π̂ðjþ1Þ
i ¼ NðjÞ

i

N
; (17)

EQ-TARGET;temp:intralink-;e018;326;366mðjþ1Þ
i ¼ 1

NðjÞ
i

XN
n¼1

IðjÞi ðxnÞxn; (18)

EQ-TARGET;temp:intralink-;e019;326;322Kðjþ1Þ
i ¼ 1

NðjÞ
i

XN
j¼1

IðjÞi ðxnÞðxn −miÞðxn −miÞT; (19)

where N is the number of pixels and NðjÞ
i is the number of

pixels in class i at the j-th iteration.

Fig. 4 Stochastic assignment step. This diagram shows an example
of each pixel randomly assigned to a class i assigned using a multi-
nomial distribution with probability pi .
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Figure 5 shows an illustration of the multivariate normal
contours resulting from such estimations.

2.2.4 SEM processing flow

Figures 6 and 7 are diagrams that show the processing flow
of the multiband segmentation. The SEM portion described
in Sec. 2.2.3 is shown by the block diagram in Fig. 6. The
overall multiband processing (including band reduction) is
shown in Fig. 7. If the number of spectral bands is high
(larger than, say, 10), band reduction should be performed
prior to running SEM. If so, among all the input spectral
bands b, the user defines the number of principle compo-
nents bands q, which is the reduced number of bands for
SEM to apply in the SMM (finite mixture model). The origi-
nal input of b bands of a spectral data cube is transformed to
a smaller number q, the number of principle component
bands, resulting in the dimensional reduction to the q
band data cube. SMM is then applied with mixture model
components and parameters (mean, covariance, weight)
from the process computed as shown in Fig. 6 to perform
clustering to obtain a cluster pixel index image map. The
result is a classification map in which a pixel contains its
clustered class. In SEM segmentation, a pixel is assigned
to only one cluster, at each iteration, based on the maximum
of posterior probability (similar to the mean-shift algorithm).

2.3 Spectral–Spatial Neural Net Sensor Fusion

We propose a cascaded architecture for spectral–spatial neu-
ral net sensor fusion (spectral–spatial NNSF) using cascaded
back propagation neural networks to accomplish sensor
fusion classification for our two independent data sources
(spectral and LIDAR/3-D point cloud). Our motivation
comes from observing the successful performance of
NNSF methods in scenarios relevant to our application; spe-
cifically, the successful data fusion by Chair and Varshney31

was shown to be achieved similarly (in terms of probability
of detection and probability of false alarms) by a cascaded
neural net by Levine and Khuon.32–36 Successful perfor-
mance of neural networks was achieved for nonlinear detec-
tion and classification problems for imagery data fusion in
this research. A detailed discussion of the FNN for data/
sensor fusion can be found in Refs. 31–37.

The spectral–spatial NNSF builds upon the work of Levin
and Khuon32 to accomplish multisensor data fusion. The
architecture consists of a set of independent-sensor neural
nets, one for each sensor, coupled to a fusion net. Each sen-
sor is trained (from a representative data set of the particular
sensor) to map to a hypothesis space output. The decision
outputs from the sensor nets are used to train the fusion
net to an overall decision. Unlike the NNSF used for the fire-
fly experiments in Ref. 32, where the decision set is the same
for all sensor neural nets and the FNN, in the proposed spec-
tral–spatial NNSF, the decision set of the spectral neural net
can be different from the decision set of the PCD neural net
and both decision sets are different from the fusion decision
set. This is because of the different types of PCD and
spectral multiband sensors (e.g., LIDAR, PCD, and HSI)
and classifications.

The cascaded networks are implemented within the dis-
tributed adaptive framework for spectral and PCD fusion
shown in Fig. 8. Two registered classified data sets are
first generated. The spectral multiband data set that is
classified by SEM is fed into the first sensor neural net
(SN1) along with the Z data. As shown, a “Get Z from
PCD” process is performed prior to feeding the spectral
segmentation into the SN1 network to provide additional
information about the spectrally segmented clusters
extracted by SEM. In this step, after the HSI is registered
to the LIDAR data, the Z information (elevation) on each
HSI pixel is obtained and used with the segmentation to
help define the SN1 network. For instance, a cluster with
sand material can be defined as part of the beach if the
height is relatively low but another cluster with sand
material can be part of tall building or a car garage if
the height is relatively high.

Similarly, the PCD data set that is segmented and classi-
fied by mean shift is fed into the second sensor neural (SN2).
During the training phase, a number of selected objects in the
PCD classification map are used to train its sensor net. All
pixels of a particular object are mapped to the same output
neuron in SN1 and for the same object in spectral classifi-
cation map all pixels are mapped to the same output neuron
in SN2, as described in the material that follows.

The spectral–spatial NNSF is used to combine spectral
classification of multiband (pixel) with spatial classification
of PCD containing point cloud clusters. NNSF is a super-
vised classifier and is implemented in two phases as follows:

Fig. 5 This diagram shows an example of the contours for three multi-
variate Gaussian distributions (in two dimensions) defined by the
mean and covariance estimates computed at one of the iterations.

Fig. 6 This block diagram shows the SEM portion of the processing
flow for MSI/HSI processing, implemented as a loop of the stochastic,
expectation, and maximization steps.
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Training phase: Repeat a training set that covers all
classes until all neural nets are fully trained when the
error at each output neuron is smaller than a predefined
tolerance:

• Spectral-NN (SN1): Choose a pixel in color/MSI/HSI
with its pixel class mapped to its class neuron. Then
train the net.

• PCD-NN (SN2): Choose nearest pixel in the PCD with
its cluster-class mapped to its class neuron. Then train
the net.

• FSN-NN: Outputs from spectral-NN and PCD-NN are
mapped to its class neuron. Then train the net.

Production phase: Repeat for each pixel p to generate
output image.

Fig. 7 The overall processing steps for the spectral segmentation (including band reduction if it is
needed) are shown.

Fig. 8 The proposed spectral sensor and PCD fusion architecture are shown. This approach is initiated
with concurrent spectral and spatial segmentation processes that operate on geometrically registered
spectral and spatial data, respectively. Elevation data (Z data) available from the PCD is subsequently
used to help label classes from the spectral segmentation just prior to input into the spectral sensor neural
network (SN1). Spectral and spatial neural networks (SN1, SN2) are initialized from the Z -data modified
spectral segmentation and spatial segmentation processes. Outputs from the SN1 and SN2 processes
are fed into the FNN.
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• Spectral-NN: Input p class in color/MSI/HSI and out-
put to the FNN.

• PCD-NN: Input p class in PCD with its cluster-class
and output to the FNN.

• FSN-NN: Outputs from spectral-NN and PCD-NN are
input into FSN-NN and then output the result.

After both sensor neural nets are completely trained, the
final outputs are fed into the fusion net (FNN) for fusion
training. When the fusion net is completely trained, the cas-
caded neural nets are ready for the production phase.

In the production phase, each pixel in the PCD data set
and the corresponding pixel in spectral multiband data set are
both fed simultaneously into their own sensor net. The out-
puts from all sensor nets are fed simultaneously into the
fusion net. By repeating this routine, the fusion classification
map is generated. Using the z-coordinate obtained from the
PCD data set, the fusion classification map is generated in
3-D.

3 Description of the Experiment

3.1 Data Collection and Image Registration

The experiment considered the specific case of HSI for spec-
tral multiband data and PCD extracted from LIDAR. Data
were collected during an unclassified airborne collection
of LIDAR and HSI data that was performed under contract
with NGA by the University of Florida and Optech
International in November 2010. A CASI 1500 sensor
was used to collect 72 spectral channels of HSI data in
the 0.367 to 1.04 μm spectral region at a 1-m spatial ground
sampling distance (GSD). An Optech ALTM sensor-3001
(a linear-mode sensor) was used to collect LIDAR data at
1 point∕m2. The two sensors were mounted on the same air-
craft enabling the data to be collected simultaneously. This
also enabled the geometric registration of the LIDAR and
HSI data to be relatively simple. Multiple flight lines
were collected. The specific scenes used for this experiment
were collected over the University of Southern Mississippi
Gulf Park Campus near Long Beach, Mississippi.

The LIDAR PCD was registered to the HSI using an
eight-parameter transformation. The corresponding points
were manually picked and then used in a least squares sol-
ution to determine the parameters of the transformation.
Application of this new transformation was quite simple
because the LIDAR data are composed of simple points,
which can be modified via an equation without any depend-
ence on adjacent pixels and no worries of interpolation/
resampling. With a 1-m resolution for both data sets, the
error at the center of the data was determined to be
∼1∕3 m. We are studying a relatively small area and so
this registration error was acceptable to us. Improvements
to the process are certainly possible in terms of accuracy
and automation, but this is a subject of its own, and further
investigation is considered beyond the scope of our cur-
rent study.

Figures 9 and 10 show scenes of the study site from the
registered HSI data and LIDAR data, respectively. Figure 9
is an RGB color composite scene of HSI visible bands of
this area. Figure 10 shows the corresponding registered
PCD-derived elevation data (Z data). In Fig. 10, the brightness
level corresponds to elevation, where the height is indicated by

brightness. Bright areas correspond to high areas; dark values
correspond to low areas. There is some stripping of periodic
lines running diagonal across the scene, which creates a chal-
lenge to our approach. This artifact was introduced into the
data at some point during the sensor collection.

3.2 Implementation of Algorithms to Registered
Hyperspectral and LIDAR Data

Once the registration was completed, the algorithms
described in Sec. 2 were applied to the registered data. To

Fig. 9 RGB color composite of visible bands from the 72 bands of HSI
data shows the study area of the experiment. Privacy statement:
Domestic imagery was collected in accordance with a valid Proper
Use Memorandum approved by NGA, and is not directed at U.S.
persons.

Fig. 10 The PCD-derived elevation data (Z data) from LIDAR, regis-
tered to the HSI data, is shown. The brightness level corresponds to
elevation, where the height is indicated by brightness. Bright areas
correspond to high areas; dark values correspond to low areas.
Privacy Statement: Domestic imagery was collected in accordance
with a valid Proper Use Memorandum approved by NGA, and is
not directed at U.S. persons.
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begin the processing, the 3-D point cloud LIDAR data were
spatially segmented into a map of clustered objects based by
a multidimensional mean-shift segmentation, which contains
numeric labels for each object. Independently, the multiband
HSI data were spectrally segmented using SEM into a map
containing numeric labels for the segmented regions based
on spectral similarity. Up to this stage, the process has
been unsupervised, and neither the labels for the object
map or spectral map are associated with known objects or
classes. To begin the next stage, the labels are manually
given an association with specific types of objects (for the
object map) and specific materials (for the spectral map).
In this manner, the segmentation maps become class
maps, providing classifications of spatial objects and classi-
fications of material classes. These class maps provide the
inputs for the process shown in Fig. 8.

For sensor fusion, spatial detections and spectral detec-
tions are fused into final detections by a cascaded neural net-
work, which consists of two levels of neural nets. The first
layer is the sensor level consisting of two neural nets: spatial
neural net and spectral neural net. The second level consists
of a single neural net, i.e., the FNN.

Two experiment trials were made. In the first trial, the
SEM parameter controlling the number of class labels was
set to five. In the second trial, this parameter was set to
six. This parameter determines the maximum number of
classes so there is the possibility the SEM algorithm
might generate less than this maximum. Otherwise, the
processing for the mean-shift and the cascaded fusion proc-
esses were similar in these trials, except that for the fusion
process, the number of input neurons in the neural net would
change based on the class labels resulting from the SEM
process.

4 Results
In the first trial, the spectral and spatial segmentation algo-
rithms resulted in five spectral categories and four spatial cat-
egories, respectively. For the spectral segmentation, SEM’s
parameter to control the maximum number of cluster labels
was set to five. SEM generated exactly five labels, even though
less than five labels were possible. We assigned class labels
posteriori based on our observation of the correspondence
between the segmented clusters and obvious ground features
and clusters in each of the five classes. In this manner, the
labels were assigned the names Non-Veg01, Non-Veg02,
Veg01, Veg02, and Others. Accordingly, each pixel in the
scene was classified as some type of material class. For the
spatial segmentation, the mean-shift and dispersion classifier
algorithms segmented the original point cloud into four cat-
egories associated with objects: Man-made, Natural, Higher
ground, and Grass/Ground (Bare-earth).

Figure 11 shows the segmentation results for the HSI and
LIDAR of the study area, as well as the results of fusing the
information through a cascaded neural net. This figure shows
a sequence of results that demonstrates (qualitatively/visu-
ally) that the fusion step improves classification beyond
the single sensor level. Figure 11 contains four 2-D images:
the classification map of HSI multibands (top left), the clas-
sification map of LIDAR point cloud (top right), the fusion
classification map (bottom left), and the RGB composite of
the HSI scene (bottom right).

In Fig. 11(a), the spectral classes resulting from clustering
the HSI data are broad categories that correspond to spec-
trally similar materials but they do not always correspond
to a similar type of physical object: a red class object can
be a rooftop, road, parking lot; and a brown object can be
a different type rooftop or road, as well as a tennis court.

Similarly, the spatial classes of LIDAR data in Fig. 11(b)
are vague: Higher ground can be a grassy area; and a Grass
area can contain no actual grass at all. This figure shows that
in some cases, tree branches appear to obscure a portion of a
building (highlighted by two yellow circles). The mean-shift
method provides foliage penetration and feature extraction
from the scene in 3-D. Note also that despite the periodic
(diagonal) lines seen in Fig. 9(b), the segmentation as
shown here is performed with only some minor problems
with these lines. This is due to the robustness in mean-
shift segmentation and classification algorithm. Although
some of the periodic lines remain in the LIDAR class
map, later we will see these lines are removed during fusion
process.

The success of the fusion step is shown in Fig. 11(c),
where the fusion classes are clearer and more specific
than any single sensor class. For instance in the fusion
class map, the red class specifically corresponds to building
rooftops and are clearly separated from the parking lots,
roads, and tennis court. Grassy areas are clearly separated
from trees.

The regions within the yellow circle and rectangles pro-
vide specific examples of the success achieved by the fusion
approach. As a first example, consider the region within the
circle of Fig. 11(a). The SEM algorithm had difficulty in this
region, where too much of the region was segmented into
clusters that are obviously associated (visually) with grass
that was found throughout the rest of the scene. This region
should have been segmented predominantly into trees. Use
of the PCD information provided the fusion process suffi-
cient information so that the area was correctly segmented
into a cluster associated (visually) with trees that were
found throughout the rest of the scene. As a second example,
consider the two rectangular regions at the top left portion of
the scene. The SEM algorithm incorrectly associates these
two regions with the same class; however, the rectangular
region on the left is a tennis court and the region to its
right is a rooftop containing a multiple materials. Use of
the elevation information in the PCD provides the fusion
algorithm with sufficient data to segment the region on
the right into the same cluster as the rooftop that is adjacent
to it (on the right side). As a third example, the SEM algo-
rithm incorrectly segmented the rectangular region at the far
right of the scene into many areas of clutter. The fusion proc-
ess consolidated these areas into far less clutter.

Figure 12 shows a class reference map, which is an RGB
image with an overlay delineating some of the test areas used
as ground truth to compute quantitative segmentation results
given in the tables. Test areas were defined for five regions
containing a building (or part of a building), five regions con-
taining a road or parking lot, five regions containing at least
one tree, and five grassy regions for a total of 20 test areas.

Tables 1 and 2 show some quantitative segmentation
results for the HSI and fused HSI/LIDAR runs. The number
of pixels in each test area was different, but it seemed most
appropriate to compute an unweighted average of class
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assignments over the regions. This is because we are inter-
ested in the results for class objects not individual pixels.
Consequently, e.g., two buildings (or two grassy regions)
should be given equal weight even though one building
(or grassy region) may be much larger than the other.
Segmentation results were extracted over these 20 test
areas and the individual percentages of class assignments
from each area were averaged giving equal weight to each
area. Summary confusion matrices are shown that were com-
puted for four broadly defined classes. Both the number
assigned to each category and the percentages assigned to
each category are shown.

These tables show the some of the success achieved for
the proposed HSI-LIDAR processing approach. The overall
(average) classification accuracy improved from 74.5% (HSI
only) to 98.5% (HSI-LIDAR). The overall false alarm rate
decreased from 25.5% to 1.5%.

We should mention that the confusion matrices in these
tables do not exhaustively represent the performance of
the algorithm. In particular, the classification accuracies of
the regions containing “L shaped” buildings in the center
and upper center of the image do not exhibit the positive
improvements expected of the algorithm. More investigation
is needed to determine the full reason why the algorithm fails
in some regions. However, a partial explanation for some of

Fig. 12 An RGB reference map with an overlay delineating some of
the test areas used as ground truth to extract assigned class labels
and compute the confusion matrix results in Table 2. A similar map
overlay (not shown) was used to compute the results shown in
Table 1.

Fig. 11 The class map results of the first trial are shown. The HSI SEM segmentation map is displayed in
(a). The red class consists of one type of spectrally similar nonvegetation material: Non-Veg01. The gray
class consists of another type of nonvegetation material: Non-Veg02. The green class consists of one
type of spectrally similar vegetation: Veg01. The dark green class consists of another type of vegetation:
Veg02. The black class is of Others. The LIDAR mean-shift segmentation map is displayed in (b). There
are four classes in the map: Man-made (red), Higher ground (orange), tall Natural (green), and Grass/
ground (dark green). The class map for the FNN fusion processing is shown in (c). The corresponding
RGB scene of HSI for the study site is shown in (d). Note that errors with the SEM segmentation found
within the yellow circle and rectangles in (a) are resolved by using the information from the LIDAR seg-
mentation (b) in a cascaded neural net to produce the fusion class map in (c).
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the regions is that problems can occur with zero (or near
zero) data returning from either sensor data source, such
as with shadows or obscurations. Such missing data can
cause confusion to the FNN, resulting in an erratic mapping
between sensor neural net outputs.

Figure 13 shows the results of generating fusion 3-D clas-
sification maps in two perspective views using the cascaded
neural net result shown in Fig. 11(c) and the 3-D information
in LIDAR. Here, a 3-D image is shown from two different
views. The colors for some of the label assignments are dif-
ferent due to the rendering process, but it is basically the
same image as Fig. 11(c) portrayed in 3-D. With the addi-
tional z-dimension and two different views, this image pro-
vides a clearer separation of two objects: the tree branch
leans over the building. In foliage penetration, with this
mean-shift capability, the existence of a particular target
can be verified simply by removing the overhanging foliage
to expose its physical shape in red color.

In the second trial, SEM’s parameter to control the maxi-
mum number of classes was set to six, and the result of the
SEM run was to generate exactly six classes. Figure 14
shows the final product of this trial: fusion images in 3-D
from PCD and HSI containing six classes. In addition to
the five classes in Fig. 13, an additional class is added
into the fusion classification. Instead of a single class of
Trail or Road for a brown object, it is replaced by two
brown classes. The light brown class is for Court (tennis
court), Parking (parking lot), or Sand (sandy object/area)
and the dark brown class is for Road (dark road) or Asphalt.

5 Discussion
Two-stage neural net classification provides a capability in
multi-intelligence sensor fusion of two independent sensors,
PCD and spectral multiband. The results from HSI and
LIDAR multisensor fusion suggest that classification
based on these two data types can be less ambiguous than
single sensor classification.

The spectral and spatial sensor fusion of HSI and PCD
provides a number of capabilities. The results of our inves-
tigation can be summarized as follows:

• The mean-shift algorithm provides an unsupervised
method for processing PCD data. The algorithm provides
a data reduction technique to remove redundant data, and
an unsupervised segmentation method to organize data in
nonoverlapped clusters for classification.

• The SEM algorithm is an unsupervised method for
processing MSI/HSI data that provides finite mixture
models and clustering.

• Spectral and spatial sensor-level classes are
complementary.

• Sensor fusion can be achieved by cascaded neural nets.
• Fusion classification provides more detailed and accu-

rate classification than a single-sensor classifier.

Results of the experiment support our initial hypothesis.
Specifically, the overall (average) classification accuracy for
the areas examined quantitatively in the scene improved from
74.5% (HSI only) to 98.5% (HSI-LIDAR). The overall false
alarm rate decreased from 25.5% to 1.5% in these regions.
However, as mentioned in Sec. 5, these quantitative results
do not exhaustively represent the performance of the

Table 1 HSI segmentation results. A summary confusion matrix of
the HSI trial is shown that was computed for four broadly defined
classes. Both the number assigned to each category and the percent-
ages assigned to each category are shown. Test areas were defined
for five regions containing a building (or part of a building), five regions
containing a road or parking lot, five regions containing at least one
tree, and five grassy regions (total of 20 test areas). Segmentation
results were extracted over these 20 test areas and the individual per-
centages of class assignments from each region were averaged giv-
ing equal weight to each area. The total number of points is 26,821.

Building Road/parking Trees Grass Total

Building (5 areas) 2931 1961 0 45 4937

Road/parking (5 areas) 2958 3033 0 213 6204

Trees (5 areas) 14 186 10,268 2158 12,626

Grass (5 areas) 0 0 2 3052 3054

Building (5 areas) 63.8% 35.5% 0.0% 0.7%

Road/parking (5 areas) 44.5% 53.4% 0.0% 2.1%

Trees (5 areas) 0.1% 0.8% 80.8% 18.4%

Grass (5 areas) 0.0% 0.0% 0.1% 99.9%

Average correct ID ¼ 74.5%

Average false alarm ¼ 25.5%

Total number of points ¼ 26;821

Table 2 HSI-LIDAR segmentation results. A summary confusion
matrix of the HSI-LIDAR trial is shown that was computed for four
broadly defined classes. Both the number assigned to each category
and the percentages assigned to each category are shown. Twenty
test areas were defined in a similar manner as for the HSI trial results
shown in Table 1. Segmentation results were extracted over these
test areas and the individual percentages of class assignments
from each area were averaged giving equal weight to each area
region. The total number of points is 25,766.

Building Road/parking Trees Grass Total

Building (5 areas) 4989 0 0 0 4989

Road/parking (5 areas) 0 5589 0 31 5620

Trees (5 areas) 0 358 11,658 465 12,481

Grass (5 areas) 0 0 0 2676 2676

Building (5 areas) 100.0% 0.0% 0.0% 0.0%

Road/parking (5 areas) 0.0% 99.7% 0.0% 0.3%

Trees (5 areas) 0.0% 1.9% 94.4% 3.7%

Grass (5 areas) 0.0% 0.0% 0.0% 100.0%

Average correct ID ¼ 98.5%

Average false alarm ¼ 1.5%

Total number of points ¼ 25;766
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algorithm. There are some exceptions we noted, where there
are regions of the image that do not exhibit the positive
improvements expected. We gave a partial explanation,
above, but more investigation is needed to determine the
full reason why the algorithm does not always act as
expected.

The proposed method provides a classification map that
delineates objects based on similarities in 3-D geometry and
material composition. A number of spectral ambiguities were
observed in the HSI scene, such as the ambiguity between

roofs and parking lots, because they are often both composed
of asphalt, and thus have similar signatures. The spectral
classifier operating on HSI data is not able to distinguish
this difference. Combining HSI and PCD by cascaded neural
nets provides a better 3-D classification map than either sen-
sor-level classification. False alarms are reduced by resolv-
ing the geometric and spectral ambiguities that often occur
when using a single source of imagery. In addition to better
classification, the periodic lines observed in the original
LIDAR map and classification map are removed completely

Fig. 13 Fusion 3-D classification maps for five classes. Shown are fusion 3-D classification maps for five
classes in two perspective views. Building structure (red) objects are seen in open area or partially under
foliage. Tree/Foliage (green) with branches and leaves cover a large area in the scene and some of them
block objects underneath from being seen. The Road/Trail (tan) objects cover a higher ground. The
Grass (blue) consists of lower vegetation at the ground level. The undeterministic class Others
(black) is for shadow and less reflectance areas.

Fig. 14 Fusion classification maps for six classes. Fusion 3-D classification maps are shown for six
classes in four perspective views. Building structure (red) objects are seen in open area or partially
under foliage. Tree/Foliage (light green) with branches and leaves cover a large area in the scene
and some of them block objects underneath from being seen. Asphalt/Road (brown) creates a drivable
and connected road system. The Court/Parking/Sand (tan) covers a higher ground. The Grass or low
vegetation (dark green) consists of lower vegetation at the ground level. The undeterministic class Others
(black) is for shadow and less reflectance areas. These six fusion-level classes are less ambiguous
compared to those ambiguous sensor-level classes.
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from the fusion classification maps by the neural net sensor
fusion. Given that we have only validated this approach on
one data set, the proposed framework should be tested on
additional combined MSI/HSI and PCD data sets.

Fortunately, the proposed multisource fusion approach of
combining spectral and spatial information is observed to be
quite forgiving of mistakes made by either individual
method, which is the strong advantage of multisource fusion.
However, there is much potential for improvement. The pro-
posed framework is generic in the sense that alternative
approaches to mean shift and SEM that feed the FNN could
be used and possibly improve performance. Certainly, better
spectral-only classification accuracy can be achieved than
that shown in Fig. 14(a). For example, the SEM method
for HSI segmentation could be replaced by alternative unsu-
pervised approaches, such as one of the newer spectral
segmentation methods mentioned earlier,6–12 older methods
in Ref. 13, or the spectral–spatial methods mentioned
earlier16–24 Furthermore, PCD data also provide the opportu-
nity to use scene geometry and solar illumination conditions
to make radiometric corrections to improve classification
results by mitigating shadows and illumination variations.38

Additional modifications could be made to the sensor
fusion models. For example, neural net sensor fusion
could be extended to more than two sensors. If there were
two simultaneous data collections of LIDAR and HSI sen-
sors several days before a storm and there was another
data collection of radar sensor several days after the storm,
change detection could be performed by fusing HSI and
LIDAR data for classification, which can then be compared
against the radar data classification. Alternatively, other
fusion techniques, beyond neural net sensor fusion, such
as the belief/mass Dempster Shafer and the linear-quadratic
estimation Kalman filtering could be explored for sensor
fusion. Further, the fully unsupervised sparse modeling
approach for direct data fusion of HSI and LIDAR8 is an
alternative classification algorithm that could be combined
with the neural net fusion algorithm.
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