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Abstract. In recent years, convolutional neural networks (CNNs) have been widely used in various computer
visual recognition tasks and have achieved good results compared with traditional methods. Image classification
is one of the basic and important tasks of visual recognition, and the CNN architecture applied to other visual
recognition tasks (such as object detection, object localization, and semantic segmentation) is generally derived
from the network architecture in image classification. We first summarize the development history of CNNs and
then analyze the architecture of various deep CNNs in image classification. Furthermore, not only the innovation
of the network architecture is beneficial to the results of image classification, but also the improvement of the
network optimization method or training method has improved the result of image classification. We also analyze
each of these methods’ effect. The experimental results of various methods are compared. Finally, the develop-
ment of future CNNs is prospected. © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.58.4.040901]
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1 Introduction
The convolutional neural network (CNN) was first proposed
in 1960s. Hubel and Wiesel1 observed for the first time that
neurons in the visual cortex were sensitive to moving edge in
their experiments on visual cortex cells of cats and proposed
the concept of “receptive field.” They further discovered
the hierarchical processing mechanism of information in vis-
ual cortical pathways, pointing out that simple cells detect
location information, and complex cells integrate informa-
tion stimulated by simple cells. The concept of “receptive
field” proposed in Ref. 1 was later introduced into the re-
search work of CNNs. In the 1980s, Fukushima and Miyake2

proposed “neocognitron” based on the “receptive field,”
which can be regarded as the first implementation of CNNs.
Neocognitron decomposes a visual model into several sub-
models and then processes them on the hierarchical and
progressive connected feature planes so that the recognition
can be completed even if the object has displacement or
slight deformation. Neocognitron is the first artificial neural
network based on local connectivity and hierarchical struc-
ture among neurons. But at that time, due to the lack of
suitable learning algorithm, the network adopted other unsu-
pervised algorithms and was mainly applied to handwritten
digit recognition.

After that, researchers have tried to use the multilayer per-
ceptron to learn features instead of manual design features
and trained the model with the backpropagation (BP) algo-
rithm, which was first proposed by Paul.3 Through the work
of Rumelhart et al.,4 BP gained recognition. LeCun et al.5

presented an application of BP networks to handwritten digit
recognition, which show that large BP networks can be
applied to real image-recognition problems without a large,
complex preprocessing stage requiring detailed engineering.
LeCun et al.6 summarized the end-to-end training principle

of modular system and proposed a CNN architecture called
“LeNet-5,” which showed better performance than all other
techniques on a standard handwritten digit recognition task
at that time. However, since some shallow machine learning
models7,8 were proposed one after another at that time, and
the traditional BP neural network would encounter problems
such as local optimum, overfitting, and vanishing-gradient9

as the number of network layers increased, the research on
deep neural network model was shelved.

Hinton et al.10,11 found that the artificial neural network
with multiple hidden layers has excellent feature learning
ability. The learned features are more fundamentally to
characterize the data, which is beneficial to visualize or clas-
sify the data, and the vanishing-gradient problem in neural
network training can be alleviated through normalized
initialization.12 Since then, deep learning has attracted more
and more attention. The CNN model AlexNet presented by
Krizhevsky et al.13 at the ILSVRC-2012 image classification
competition14,15 achieved a top-5 test error rate of 15.3%,
almost halved the error rate of image classification compared
to 26.2% achieved by the second-best entry.

CNNs have been proved to be effective in various fields
of visual recognition13,16–18 and have attracted more and
more attention from researchers in the field of deep learning.
Lecun et al.19published a review article in Nature titled
“Deep learning,” which sheds light on the basic principles
and core strengths of deep learning.

First, this paper introduces the history of CNN and then
analyzes the development of CNN architecture in image clas-
sification. Then the advantages and disadvantages of various
convolution network architectures are compared and ana-
lyzed, and the future development of CNN is prospected.

2 Deep Convolutional Neural Network
Since AlexNet13 achieved amazing results in ILSVRC-2012
image classification competition, more and more researches
have focused on the improvement of the architecture of*Address all correspondence to Xin Wang, E-mail: wangxin@csust.edu.cn
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CNN. Visual geometry group (VGG)20 and the inception
module of GoogLeNet21,22 demonstrated the benefits of in-
creasing network depth and width. ResNets23,24 constructed
the residual learning block through the shortcut connection
of identity mapping, making the neural network model break
through the barrier of hundreds or even thousands of layers.
DenseNet25 and others26 confirmed that refomulations of the
connections between network layers can further improve the
learning and representational properties of deep networks.
In this section, we first introduce the basic composition and
characteristics of CNNs through the network model of
LeNet-5 proposed by LeCun et al.6 Then the classical deep
CNNmodel structure in recent years is analyzed accordingly.

2.1 LeNet

Lecun et al.6 proposed a CNN named LeNet-5. The network
model of LeNet-5 is shown in Fig. 1. According to Fig. 1,
CNN architecture is generally composed of convolution
layers, subsampling (pooling) layers, and fully connected
layers. The following three sections are explained in turn.

2.1.1 Convolution layer

The convolution layer consists of multiple feature maps,
which are obtained by convolution of the convolution kernel
with the input signal. Each convolution kernel is a weight
matrix, which can be a 3 × 3 or 5 × 5 matrix for a two-
dimensional (2-D) image of a single channel. Figure 2 illus-
trates an example of the 2-D convolution.

The convolution operation provides a way to process var-
iable-size inputs using convolution kernels, and different
input features are extracted through convolution operation
in convolution layer. The first layer extracts lower-level
features such as edges, end points, and corners. Then the
higher layer extracts more complex and higher-level features
by processing the lower-level features. Convolution layer
mainly has the characteristics of sparse interactions and
weight sharing.

Sparse interactions. Traditional neural networks use
matrix multiplication to build connections between inputs
and outputs. Each output unit interacts with each input unit.
When an input image contains thousands of pixels, this
connection will increase the storage requirements of the
model and increase the amount of calculation. Different from
the traditional connection, the convolution network has the
characteristic of sparse interactions (also known as sparse

connectivity), which is achieved by controlling the size of
the convolution kernel far less than the size of the input.
The graphical interpretation of the sparse connections is
shown in Fig. 3. In this figure, the input unit X3 and the out-
put unit affected by X3 are highlighted. If there are m inputs
and n outputs, the fully connected form of the model requires
m × n parameters and the complexity of the corresponding
algorithm isOðm × nÞ. In sparse connection, the connections
number of per output is kðk ≪ mÞ, so this connection only
needs k × n parameters and the complexity of the corre-
sponding algorithm is Oðk × nÞ. The sparse interaction of
convolution layer not only reduces the storage requirements
of the model but also requires less computation to obtain the
output, thus improving the efficiency of the model.

Weight sharing. The convolution layer also has the char-
acteristic of weight sharing, which is realized by the convo-
lution kernel. Convolution kernels are used to control the
number of parameters and to impose a spatially restricted
weighting to handle variable-size inputs. Weight sharing
means that units in a layer use the same weights and devia-
tions. For example, the C1 layer of LeNet-5 is a convolution
layer, which is obtained through the calculation of six con-
volution kernels, and each convolution kernel has a fixed
weight when convolving with the previous layer. When the
input is a single-channel signal, the C1 layer contains six
convolution kernels with the size of 1 × 5 × 5. If the bias
is taken into account, the C1 layer contains a total of ð63 ×
5 × 5þ 6Þ ¼ 156 parameters. Compared with the fully con-
nected network architecture, the weight sharing reduces the
network training parameters to a greater extent, which can
effectively prevent the network overfitting caused by a large
number of parameters and improve the efficiency of network
operation.

2.1.2 Subsampling layer

Usually, a subsampling (pooling) layer is inserted periodi-
cally between the convolution layers, whose function is to
gradually reduce the spatial size of the data, so as to reduce
the number of parameters in the network and reduce the con-
sumption of computing resources. The pooling layer can also
learn some invariant features of the input. Commonly used
pooling layer methods are global average pooling27 and max
pooling. The input data processed by the pooling layer is
generally a feature map obtained after convolution operation.
The most commonly used max pooling layer is shown in
Fig. 4. It can be seen that the max pooling unit is only

Fig. 1 LeNet-5 model diagram.6
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sensitive to the surrounding maximum, not to the exact loca-
tion. Therefore, by pooling the obtained features, we can
learn some invariant features of the input. In LeNet-5, the
max pooling layer mainly uses a spatial window with a size
of 2 × 2 and a step size of 2 to convolute. The maximum
value in this window is taken as the output result.

2.1.3 Fully connected layer

After a series of convolution and pooling layers, the feature
map of the image is extracted, and all the neurons in the fea-
ture map are transformed into a fully connected layer.
Finally, the output can be classified by softmax layer. The
function of the fully connected layer is to integrate the local
information with class distinction both in convolution layer
and pooling layer28 so as to improve the performance of the
whole CNN.

LeNet-5 is a classical CNN architecture. The combination
of convolution layer, pooling layer, and fully connected layer
is still the basic components of modern deep CNN. LeNet-5
has a groundbreaking significance for the development of
deep CNNs.

2.2 AlexNet

Due to insufficient hardware computing and data, LeNet-5
did not attract enough attention after it was proposed.
With the development of computer hardware and the
increase in the amount of data available for neural network
training, in 2012, AlexNet network13 won the ILSVRC-2012
image classification competition15 with a far lower error rate

than the second place. Since then, deep neural networks have
begun to attract widespread attention. The structure of
AlexNet is shown in Fig. 5. Compared with LeNet-5, the
improvements of AlexNet network architecture are as
follows:

(1) ReLU activation function.29 ReLU can introduce both
nonlinearity and sparsity into the network. Sparsity
can activate neurons selectively or in a distributed
manner. It can learn relatively sparse features and
achieve automatic dissociation.

(2) Data augmentation. AlexNet uses label-preserving
transformations to artificially enlarge the dataset.
The form of data augmentation consists of generating
image translations, horizontal reflections, and alter-
ing the intensities of the RGB channels in training
images.

(3) Dropout.30 Neurons can be discarded from the net-
work according to a certain probability to reduce net-
work model parameters and prevent overfitting.

(4) Training on two NVIDIAGTX 580 3GB GPUs. With
the development of GPU parallel computing ability,
this method speeds up network training.

(5) Local response normalization (LRN). The nearest
data are used for normalization, and the classification
results are improved slightly in Ref. 14.

(6) Overlapping pooling. The pooling step size is
smaller than the corresponding edge of pooling
kernel.

Fig. 2 An example of a 2-D convolution.
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AlexNet is a milestone in the development of deep
CNN, which has caused a new wave of neural network
research. The success of AlexNet mainly depends on the
development of computer hardware and the enhancement
of data sets.

2.3 ZFNet

After AlexNet achieved excellent results in the ImageNet
image classification competition, researchers began to study
the CNN more deeply. However, there is no clear theoretical

Fig. 4 Schematic diagram of the max pooling layer.

Fig. 3 Sparse connections: (a) when S; is generated by convolution with a kernel width of 3, only three
outputs are affected by X 3 and (b) when using the fully connected form, the connection is no longer
sparse, and all outputs are affected by X 3.
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explanation for why a CNN model can perform well. Zeiler
and Fergus31 proposed a visualization technique to under-
stand CNNs and proposed ZFNet. The network has made
minor improvements on AlexNet; the main contribution of
Ref. 31 is to explain to a certain extent why CNNs are effec-
tive and how to improve network performance. The main
contributions are detailed as follows:

(1) The deconvolution network is used, and the feature
map is visualized. The feature maps prove that the

shallow network learns the edge, color, and texture
features of the image, and the high-level network
learns the abstract features of the image. There are
hierarchies among features. When the level is deeper,
the invariance of the feature’s invariance is stronger,
and its discriminative ability is stronger too.

(2) By visualizing the feature map of the middle layer
of the convolution network model, it is found in
AlexNet, the feature extracted is blurred due to the
large convolution kernel of the first convolution
layer.

(3) Several occlusion experiments show that model is
highly correlated with local features in classification.

(4) It is demonstrated that deeper network models have
better performance.

The ZFNet is shown in Fig. 6. It changed the size of the
convolution kernel in AlexNet’s first layer from 11 × 11 to
7 × 7 and changed the step size of the convolution kernel
from 4 to 2. Comparing ZFNet model with AlexNet single
model, the error rate of top-5 is reduced by 1.7%,31 which
confirms the correctness of this improvement.

2.4 VGG-16/19

The shallow neural network model has certain limitations
in large-scale image recognition tasks. In order to further
explore the performance of the deeper network model,
Simonyan and Zisserman20 proposed the VGG. The main
contribution of VGG is a thorough evaluation of networks
of increasing depth using an architecture with very small
(3 × 3) convolution filters, which shows that a significant
improvement on the prior-art configurations can be achieved
by pushing the depth to 16 to 19 weight layers. Simonyan
and Zisserman20 mentioned six different network configura-
tions and compared them on the ImageNet dataset. The con-
figuration information of convolution network is shown in
Table 1, and the performance of the corresponding network
model is shown in Table 2.

Unlike AlexNet and ZFNet, VGG uses a small convolu-
tion kernel of 3 × 3 throughout the construction of the net-
work and superimposes deep networks by superposing 3 × 3
small convolution kernels. In the experiment, in order to
keep the computational complexity of the constituent struc-
tures at each feature layer roughly consistent, the number of
convolution kernels at the next layer is doubled when the size
of the feature map is reduced by half through the max pool-
ing layer. The various configurations in Table 1 almost have

Fig. 6 ZFNet structure diagram.31

Fig. 5 AlexNet structure diagram.
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the same number of parameters, and Table 2 shows the
results of various VGGNets in a single-scale test. The results
show that the VGG-19 model achieved the best results, with
an error rate of 8.0%. This also confirms that increasing net-
work depth is beneficial to improve the accuracy of image
classification. At the same time, it can be found that the result
of A-LRN in Table 2 is worse than that of A. This also shows
that the effect of LRN on classification results is not benefi-
cial. With the introduction of batch normalization (BN),32

LRN is replaced already.

The innovation of VGG is mainly the application of 3 × 3
small convolution kernels. The receptive field of two 3 × 3
convolutions is equivalent to that of a 5 × 5 convolution
(as shown in Fig. 7), and the receptive field of three 3 × 3
convolutions is equivalent to that of a 7 × 7 convolution.
The network used three 3 × 3 convolutions instead of a 7 ×
7 convolution for two main reasons: First, it contains three
ReLU layers instead of one, making the decision function
more discriminatory; second, it can reduce the number of
parameters. For example, if the input and output both have

Table 1 ConvNet configuration.20

ConvNet configuration

A A-LRN B C D E

11 weight layers 11 weight layers 13 weight layers 16 weight layers 16 weight layers 19 weight layers

Input (224 × 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64

Maxpool

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128

conv3-128 conv3-128 conv3-128 conv3-128

Maxpool

conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256

conv3-256

Maxpool

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512

conv3-512

Maxpool

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv3-512 conv3-512 conv3-512

conv3-512

Maxpool

FC-4096

FC-4096

FC-1000

Softmax
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C channels, 3 × ð3 × 3 × C × CÞ ¼ 27 × C × C parameters
are required for three convolution layers of 3 × 3, and
7 × 7 × C × C ¼ 49 × C × C parameters are required for one
convolution layer of 7 × 7.

Before VGG, An et al.33 also used small convolution ker-
nels for experiments, but the network was not as deep as
VGG and was not tested on large-scale ImageNet datasets.
Using small convolution kernels, VGG can make the CNN
reach a depth of 19 layers. In the ILSVRC-2014 image clas-
sification competition, VGG took the second place with a
7.3% (Ref. 20) top-5 error rate, this also confirms the bene-
fits of neural network depth for neural network classification
results.

2.5 GoogLeNet/Inception v1 to v3

GoogLeNet and VGG were the winner and runner-up of the
ILSVRC-2014 image classification competition. VGG built
a deeper network model through the construction of small
convolution kernels, and GoogLeNet was inspired by net-
work in network27 to broaden the network structure and skill-
fully proposed the inception module.21 The network with the
inception module allowed the model to better describe the
input data content while further increasing the depth and
width of the network model. The inception module has been
constantly updated and improved since it was proposed. The
different versions of the inception modules are described as
follows.

2.5.1 Inception v1

The biggest highlight of inception v1 is the introduction of
1 × 1 convolution kernel inspired by network in network.27

The structure of inception v1 is shown in Fig. 8.
As can be seen from Sec. 2.1, one function of the convo-

lution layer is to reduce and increase the dimension via using
the number of channels (filters) in the convolution layer. In
inception v1, the dimension is reduced mainly by 1 × 1 con-
volution kernel, which can reduce the number of network
parameters and feature maps. The input feature maps are
convoluted by 1 × 1 convolution kernel. This operation is
equivalent to the original image scale transformation under
the condition of unchanged size, which can greatly improves
the accuracy of image classification. Inception v1 also uses
convolution kernels of 1 × 1, 3 × 3, and 5 × 5, which also
increases the adaptability of the network to the scale trans-
formation of the input image.

The GoogLeNet constructed by inception v1 is shown in
Fig. 9. Compared with VGG, GoogleNet has 22 layers, and
the network is deeper and wider. GoogLeNet took the first
place in the ILSVRC-2014 image classification competition
with a 6.7% (Ref. 21) top-5 error rate.

2.5.2 Inception v2

The architecture of inception v2, as shown in Fig. 10, is
mainly updated on the basis of inception v1 from the follow-
ing aspects:

Table 2 ConvNet performance at a single test scale.20

ConvNet
config. (Table 1)

Smallest image side

Top-5 val. error (%)Train (S) Test (Q)

A 256 256 10.4

A-LRN 256 256 10.5

B 256 256 9.9

C 256 256 9.4

(256, 512) 384 8.8

D 256 256 8.8

(256, 512) 384 8.1

E 256 256 9.0

(256, 512) 384 8.0

Fig. 7 A stack of two 3 × 3 convolutions replacing the 5 × 5
convolutions.

Fig. 8 Inception v1 module.21
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(1) BN32 layer is added to normalize the output of each
layer to a N (0, 1) Gaussian distribution so that the
network can be converges faster and can be initialized
more freely. BN layer not only increases the robust-
ness of the model but also reduces the use of dropout
as a regularization technique.

(2) In the model, a stack of two 3 × 3 convolution kernels
are used to replace 5 × 5 convolution kernels in the
inception v1 module, thus increasing the network
depth. The overall depth of the 22-layer GoogLeNet
built with inception v2 module has been increased by
9 layers.

Inception v2 architecture on the ImageNet test data set
yielded a top-5 error rate of 4.9%,22 which was lower than
the 4.94% top-5 error rate of PReLU proposed by He et al.34

in the same time. PReLU’s top-5 error rate of 4.94% was the
first to surpass human-level performance (5.1%)15 on the vis-
ual recognition challenge.

2.5.3 Inception v3

The architecture of inception v322 is shown in Fig. 11. It is
mainly updated on the basis of inception v2 as follows:

Fig. 9 GoogLeNet structure diagram.21
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(1) Spatial factorization into asymmetric convolutions:
Using a 3 × 1 convolution followed by a 1 × 3 con-
volution is equivalent to sliding a two-layer network
with the same receptive field as in a 3 × 3 convolution
(see Fig. 12). If the number of input and output filters
is equal, the two-layer solution is ½9−ð3þ3Þ�

9
¼ 33%

cheaper than a single convolution layer. In theory,
if one can replace any n × n convolution by a
1 × n convolution followed by a n × 1 convolution
and the computational cost saving increases dramati-
cally as n grows.

(2) The network width has increased, and the network
input has changed from 224 × 224 to 299 × 299.

Inception v3 module obtained 3.58% (Ref. 21) top-5 error
rate of on the ImageNet test set.

2.6 ResNets

2.6.1 ResNet

It can be found from the above development of various CNN
models that increasing the depth and width of neural net-
work can improve the network performance. For example,
VGG greatly improves network performance by adding net-
work depth to AlexNet. For the original network such as
VGG, simply increasing the depth will lead to vanishing/
exploding gradients. He et al.23 pointed out that the problem
of vanishing gradients has been largely addressed by normal-
ized initialization12 and intermediate normalization layers.
Although it is possible to train dozens of layers of networks
by the above method, another problem arises, i.e., degrada-
tion problems. As shown in Fig. 13, when the number of
network layers increased, the accuracy of training set was
saturated or even decreased. This cannot be interpreted as
overfitting, as overfit should be better in the training set.
The degradation problem shows that deep networks cannot
be optimized easily and well.

He et al.23 proposed the ResNet in order to solve the
above problems. The main contribution of ResNet is to solve
the side effects (degradation) caused by increasing network
depth so that network performance can be improved by
simply increasing network depth. ResNet constructed by
residual learning blocks can break through a 100-layers
barrier and even reach 1000 layers.

The ResNet is mainly composed of the residual learning
block, as shown in Fig. 14. In the residual learning block
in Fig. 14, assuming the original function to be learned is
HðxÞ, the residual learning block is then converted to FðxÞ ¼
HðxÞ − x. These two expressions have the same effect, but

Fig. 10 Inception v2 module.22

Fig. 11 Inception v3 module.22

Fig. 12 Spatial factorization into asymmetric convolutions diagram.
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the difficulty of optimization is different. To the extreme, if
an identity mapping was optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.23 The addition connection of the identity
mapping does not add additional parameters and computa-
tion to the network but can greatly increase the training speed
of the model and improve the training effect.

Two residual blocks are used in the ResNet network struc-
ture for ImageNet. One is to concatenate two convolution
kernels of size 3 × 3 as one residual block shown in
Fig. 15(left), and the other is to connect the 1 × 1, 3 × 3, and
1 × 1 kernels together as a “bottleneck” building block
shown in Fig. 15(right). In the “bottleneck” building block,
the first 1 × 1 convolution kernel mainly reduces the dimen-
sion of the feature map from 256-dimensional to 64-dimen-
sional. Next, the convolution kernel of 3 × 3 is used for
calculation, and finally the data dimension is changed to
256 using the convolution kernel of 1 × 1.

ResNet, constructed by residual learning block, won the
first place in the ILSVRC-2015 image classification compe-
tition with a top-5 error rate of 3.57%.23 As the number of

layers increases, ResNet solves the “degradation” problem
well, as shown in Figs. 16 and 17.

2.6.2 Improvement of ResNet

Soon after ResNet put forward, He et al.24 further studied the
identity mapping in the residual learning block and improved
it. The method is compared with the original ResNet and
Highway networks.23,35 The results further confirm the impor-
tance of identity mapping. The main contributions of Ref. 24
are as follows:

(1) By comparing the original shortcut connection with
other shortcut connections as shown in Fig. 18, the
importance of identity mapping is demonstrated
further.

(2) Change the location of the ReLU activation function
in the residual learning block and preactivate it as
shown in Fig. 19 (e) so that the output of the residual
learning block is still an identity mapping.

Among the various types of shortcut connections shown
in Fig. 18, the network consisting of the original shortcut
connections achieved a 6.61% (Ref. 24) error rate on the
CIFAR-10 data set, which is better than the other connec-
tions. This confirms the importance of the identity mapping.
In the experiment,24 among the various usages of activation,
the best classification results were obtained using a full pre-
activated connection [Fig. 19(e)].

2.6.3 Other residual networks

With the increasing depth of residual networks, the dimin-
ishing feature reuse will make the networks training very
slow.36 In order to reduce the impact of “feature disappear-
ance,” Zagoruyko and Komodakis37 proposed a wide-drop-
out block, as shown in Fig. 20(d). This block makes it
possible to increase the depth of the original residual network
by increasing the network width. The experiment also proves
its feasibility.

ResNeXt, proposed by Xie et al.,38 puts forward the con-
cept of cardinality beyond depth and width, and points out
that increasing cardinality is more effective than increasing
the depth and width. The residual learning block of ResNext
is shown in Fig. 21. ResNeXt secured second place in
ILSVRC-2016 image classification competition with 3.03%
top-5 error rate.38 In addition, Szegedy et al.39 proposed
inception v4 by combining inception module with residual

Fig. 13 Training error and test error on CIFAR-10 with 20-layers and 56-layers “plain” networks.23

Fig. 14 Residual learning block.23

Fig. 15 A deeper residual function F for ImageNet.
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learning block and constructed inception-ResNet-v2 net-
work. The network achieves good results in the ILSVRC-
2016 image classification competition with a top-5 error rate
of 3.08%.39

2.7 DenseNet

Since ResNet was put forward, many networks have been
developed using ResNet. Each network has its own charac-
teristics and its performance has been improved. As the
depth of CNNs increases, the input or gradient must passes
through many layers, which will vanish and “wash out”
when it reaches the end (or beginning) of the network.25

This has aroused people’s rethinking of the network struc-
ture. Before the dense block was put forward, Huang
et al.40 trained deep network with stochastic depth to achieve
good results. This shows that some network layers in the
residual network carry unnecessary information for classifi-
cation results, which can be discarded in training.

Based on Ref. 40, considering create short paths from early
layers to later layers, Huang et al.25 proposed DenseNet,
which is mainly composed of dense blocks as shown in
Fig. 22.

There are L connections with the traditional L layer
neural network, and the dense block of L layer has L×ðLþ1Þ

2

connections. The network setup growth rate k indicates the
added number of input channels when pass through a layer.
For example, assuming that K0 as the number of input fea-
ture maps, and the output of each nonlinear transformation
H is k feature maps, then the input of the i’th layer is
K0 þ ði − 1Þ × k. One major difference between DenseNet
and the previous mentioned networks is that DenseNet can
accept fewer feature maps as the output of the network layer.
DenseNet is constructed mainly by dense blocks, as shown
in Fig. 23. In the same dense block, the feature size is
required to be the same size. The transition layers are set
between different dense blocks to achieve down sampling.

The main advantage of DenseNet is that the features
extracted by some earlier layers can still be directly used
by deeper layers through dense connections. Through the
setting of the growth rate k, DenseNet can adjust the number
of feature maps, thus effectively reducing the number of
parameters.

DenseNet outperformed ResNet on the CIFAR-10 data-
set, and on the ImgeNet dataset, DenseNet was able to con-
verge faster by increasing the number of layers.25 DenseNet
is also widely used as a commonly used neural network
model today.

3 Auxiliary Methods and Strategies
This section mainly introduces some auxiliary methods and
strategies in the development of CNNs, including the
improvement of activation functions, normalization, and
some other strategies.

3.1 Activation Function

Before the ReLU activation function, the traditional neural
network mostly uses sigmoid as the activation function. In
general, sigmoid functions can be divided into logistic sig-
moid and tanh sigmoid. The sigmoid function in this paper
generally refers to the former, as shown in Fig. 24.

Fig. 16 Results of ResNet classification on CIFAR-10.23 Dashed lines denote training error and bold
lines denote testing error.

Fig. 17 Results of ResNet classification on ImageNet.23 Thin curves
denote training error and bold curves denote validation error of the
center crops.
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The output value of the sigmoid function is between 0
and 1, which is consistent with the definition of probability
output. The nonlinear sigmoid function is widely used in
the activation function because of its large signal gain in the
central region and small signal gain on both sides, similar to
the excitation and suppression states of neurons. However,
when the number of neural network layers increases, the sig-
moid gradient value will gradually become smaller, network
learning becomes very slow, and even the gradient will van-
ish. Therefore, the network cannot be deepened indefinitely
until the ReLU function is presented.

ReLU is the activation function used by many current
network models. ReLU has the following advantages over
sigmoid: unilateral inhibition, relatively wide excitation
boundaries, sparse activation, and alleviate the vanishing-
gradient problems.

Leaky ReLU41 improved the negative half axis of ReLU
function to avoid zero gradient, but the experimental results
were not greatly improved. He et al.34 put forward the
PReLU function on this basis, as shown in Fig. 25. The
learnable parameter a is added to PReLU. When a ¼ 0,
PReLU becomes the ReLU function, and when a ¼ 0.01,
PReLU becomes the leaky ReLU. Experiments show that
this adaptive activation function can improve the classifica-
tion results of the network.

3.2 Normalization

In the training process, when the input distribution in the
hidden layer of the deep neural network is offset, the global
distribution will gradually approach the upper and lower
bounds of the value range of the nonlinear function, resulting

Fig. 18 Various types of shortcut connections: (a) Original, (b) constant scaling, (c) exclusive gating,
(d) short-cut only gating, (e) conv shortcut, and (f) dropout shortcut.24
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Fig. 19 Various usages of activation: (a) original, (b) BN after addition, (c) ReLU before addition,
(d) ReLU-only preactivation, and (e) full preactivation.24

Fig 20 Wide-dropout block: (a) basic, (b) bottleneck, (c) basic-wide, and (d) wide-dropout.37

Fig. 21 Equivalent building blocks of ResNeXt.38 (a) Aggregated residual transformations. (b) a block
equivalent to (a), implemented as early concatenation. (c) a block equivalent to (a, b), implemented as
grouped convolutions.
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in slow training convergence. Therefore, the network needs
to be normalized.

The proposition of BN32 has a milestone significance in
the field of deep learning. BN takes minibatch as the unit to
unify the input distribution of the nonlinear function into a
standard normal distribution with a mean of 0 variance of 1,
which makes the input value of activation function to fall in
the region where the nonlinear function is sensitive. BN
improves the speed of training, accelerates the convergence
process, and improves the classification results. Moreover,
BN can be seen as a regularization technique that prevents

overfitting, similar to dropout.30 The addition of BN in
the network also makes the network initialization less
demanding.

The disadvantage of BN is that the network is dependent
on minibatch dimension, and the change of batch dimension
will affect the classification effect. When the batch size is
small, the network effect of using BN layer is obviously
worse as shown in Fig. 26. This does not satisfy some net-
works that require batch size 1 or 2 for other visual recog-
nition tasks.16,42,43

To alleviate this problem, layer normalization,44 instance
normalization,45 group normalization,46 and other normaliza-
tion methods have been proposed. Figure 26 confirms that
group normalization computation accuracy is more stable
than BN when batch size changes. Figure 27 is a schematic
diagram of various normalization methods.

Normalization is an indispensable part of the modern con-
volution network architecture. It has made a vital contribu-
tion to the development of CNNs.

3.3 Other Strategies

In the development of a CNN in image classification field,
the improvement of some network initialization methods has
also played a positive role. Network initialization is to ensure
that the activation value of each layer does not appear satu-
ration when the network is initialized, and the activation
value of each layer is not 0. Sutskever et al.47 proposed a

Fig. 22 Dense block.25

Fig. 23 DenseNet structure diagram.25

Fig. 24 Sigmoid and tanh function diagram.
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Xavier initialization method to solve the network initial-
ization problem. AlexNet13 used random initialization for
network training, and VGGNet20 initialized the deep net-
work by initializing the shallow model first and then
applying its parameters to the deeper model. Ioffe and
Szegedy32 proposed BN and He et al.34 proposed
Microsoft Research Asia (MSRA) initialization method,
they all considered the nonlinear ReLU function situation,
and the deep neural network initialization problem was
solved more effectively.

In addition to network initialization, the innovation of
optimization method has also promoted the development
of CNN. The optimization algorithm develops from sto-
chastic gradient descent (SGD) to gradient descent with
momentum47, and then to Adam with adaptive learning
rate,48 which is widely used nowadays. In the latest work,
Reddi et al.49 explained how the exponential moving average
used in Adam leads to nonconvergence through a simple
convex optimization problem and proposed a beyond Adam
algorithm.

Fig. 25 ReLU vs. PReLU.34 (a) ReLU function and (b) PReLU function.

Fig. 26 Experimental results based on ImageNet dataset.

Fig. 27 All kinds of standardized schematic diagram.
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4 Comparison of Various Image Classification
Methods

The analysis and comparison results of various image clas-
sification methods are shown in Table 3. The main compar-
ative factors include model name, publication year,
algorithm test data set, algorithm evaluation index, network
model parameters, algorithm experimental results, algorithm
characteristics, and notes (such as algorithm achievements,
whether multiscale training is needed, and so on).

Table 3 compares and analyzes the performance of vari-
ous image classification algorithms on the ImageNet data set
or CIFAR-10 data set and summarizes the characteristics of
the algorithm.

5 Summary
From the initial appearance of AlexNet to the gradual
increase of network layers of VGGNet, all of them show the
potential of neural network depth. The ingenious design of
the inception module also shows the charm of the neural net-
work architecture. ResNets further explores the effect of the
neural networks depth, which plays a crucial role in the
development of today’s networks. On the other hand,
DenseNet makes CNNs better for learning representation
from the point of feature reuse, which provides a new per-
spective for the development of network architecture. In the
following, the development trend of CNNs in image classi-
fication is prospected through several aspects.

5.1 Application of Transfer Learning

In the application of deep neural network, when we are faced
with a large amount of data, it takes a lot of calculation and
time to train the model and optimize the parameters after
building the deep neural network model. If a model that has
been trained for a large amount of time can solve the same
kind of problems, then the cost performance of the model
will be greatly improved, which promotes the use of trans-
ferable model to solve the same kind of problems.

Zeiler and Fergus31 used a CNN for pretraining on
ImageNet data sets, and then migrated the network to cal-
tech-101 and caltech-256 for image classification data sets,
respectively, for training and testing. The accuracy of image
classification was improved by about 40%. Through transfer
learning, we can apply a well-trained model to solve the sim-
ilar problems by making small adjustments and achieve good
results. At the same time, we can effectively solve the prob-
lem with less original data by adopting transferable model.
Using transfer learning, the network model in image classi-
fication can be further applied to semantic segmentation,
object detection, and other fields. In recent years, many
researchers have devoted themselves to the field of transfer
learning.

5.2 Introduction of Visual Attention Mechanism

In recent years, attention mechanism has been adopted in the
field of deep learning. Visual attention mechanism is a spe-
cial brain signal processing mechanism of human vision. By
rapidly scanning the whole image, human vision can obtain
the target area that needs to be paid attention to, then devote
more attention resources to this area to obtain more detailed
information of the target, and inhibit other useless informa-
tion. Hu et al.52 introduced attention mechanism to construct
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squeeze-and-excitation module, which reconstructs the rela-
tionship between feature channels by embedding multiscale
processing. SENet won the ILSVRC 2017 image classifica-
tion championship with a top-5 test set error rate of 2.251%.

In the future, the design of CNN framework can seek for
introducing and strengthening attention mechanism in differ-
ent layers to make computer vision closer to human visual
ability.

5.3 Study on the Stability of CNN

A CNN has a large number of parameters, so the experiment
of CNN often fails to achieve the effect of network in cor-
responding papers. At present, the parameter setting in train-
ing CNN is mostly based on experience and practice. The
optimization analysis of parameters and the study of system
stability are the problems to be solved.

5.4 Hardware Development and Data Set Building

The development of deep learning is inseparable from the
innovation of hardware devices and the expansion of data
sets. With the support of hardware devices and data sets,
CNN will further help and solve the cognitive defects
existing in the current network structure.
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