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Abstract. We investigate the appearance manifold of differ-
ent face poses using manifold learning. The pose estimation
problem is, however, exacerbated by changes in illumina-
tion, spatial scale, etc. In addition, manifold learning has
some disadvantages. First, the discriminant ability of the
low-dimensional subspaces obtained by manifold learning
often is lower than traditional dimesionality reduction ap-
proaches. Second, manifold learning methods fail to remove
the redundancy, such as high-order correlation, among origi-
nal feature vectors. In this work, we propose a novel ap-
proach to address these problems. First, face images are
transformed by Gabor filters to obtain a set of overcompleted
feature vectors, which can remove intrinsic redundancies
within images and provide orientation-selective properties to
enhance differences among face poses as well. Second, su-
pervised locality preserving projections �SLPPs� are pro-
posed to reduce dimensionality and obtain the low-
dimensional subspace, which has the ability to maximize
between-class distance and minimize within-class distance.
Finally, the support vector machine �SVM� classifier is ap-
plied to estimate face poses. The experimental results show
that the proposed approach is effective and efficient. © 2006
Society of Photo-Optical Instrumentation Engineers.
�DOI: 10.1117/1.2355524�
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1 Introduction

Human face pose estimation has a variety of applications,
such as face recognition, face tracking, and human-
computer interaction �HCI�. Due to the inadequacy of the
quality of 3-D quantities estimated from 2-D data, it is very
complex to estimate face poses from 2-D face images. In
addition, many factors exacerbate the problem, for ex-
ample, illumination conditions, face expressions, spatial
scale, etc. More importantly the appearance of the human
head can change drastically across different viewing angles,
mainly caused by nonlinear deformations during in-depth
rotations of the head.1 Many different approaches have
been proposed to solve this problem. Generally, the existing
pose estimation methods can be broadly classified into two
categories: feature-based2 and appearance-based
methods.3,4
e0091-3286/2006/$22.00 © 2006 SPIE
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There are four major problems to be solved in the exist-
ng approaches mentioned before. The first is that the face
egion must be extracted from a whole face image. It is
ery difficult to locate the face region from a side or a
rofile face image. The second is that original face images
re normalized manually. However, manual normalization
s tedious work and its cost is very high. The third is the
ifficult problem of extracting the face features accurately.
t is especially more difficult to extract features from a side
ace image than a frontal one. Lastly, face images with
arying intrinsic features such as illumination, face pose,
nd face expression are considered to constitute highly non-
inear manifolds in the high-dimensional observation space.
herefore, some pose estimation systems using linear ap-
roaches �for example, principal components analysis
PCA�� will ignore subtleties of manifolds. Manifold learn-
ng algorithms are better alternatives. However, the dis-
riminant ability of the low-dimensional subspaces ob-
ained by manifold learning is often lower than those
btained by the traditional dimensionality reduction ap-
roaches. Furthermore, the original feature vectors may in-
lude high-order correlation, which cannot be removed by
anifold learning algorithms. Therefore, a new approach

ased on manifold learning is proposed to address the four
roblems mentioned before. In our proposed approach, face
mages not removed from the background are first trans-
ormed by Gabor filters. Then, a novel supervised locality
reserving projection �SLPP� is proposed to project Gabor-
ased data out of the samples into a common low-
imensional subspace. For simplicity, the two combinations
f Gabor fiters �GF� and SLPP are abbreviated to GF
SLPP. Last, the support vector machine �SVM� classifier

s applied to estimate the face pose.

Proposed Combination Approaches of Gabor
Filters and the Supervised Locality
Preserving Projection

abor filters are particularly appropriate for use in face
ose estimation because they incorporate smoothing and
an reduce sensitivity to spatial misalignment and illumina-
ion change. GWT can also obtain image representations
hat are locally normalized in intensity and decomposed in
patial frequency and orientation.5 In addition, Gabor filters
an enhance pose-specific face features. Moreover, Gabor
lters transform the face images into frequency domain,
here unnoticeable information in the spatial domain will
ecome clear. The transformational results of face images
o well improving the discriminant ability of SLPP.

In our studies, the system processes face images as fol-
ows. A set of Gabor kernels hmn�x ,y� is specified and the
riginal image I�x ,y� is convolved with those kernels at
ach pixel. The result is a set of 2-D coefficient arrays,

mn = I�x,y�*hmn�x,y� , �1�

here Wm,n�x ,y� is the convolution result corresponding to
he Gabor kernel at scale m and orientation n. * denotes the
onvolution operator.

Since the outputs Wm,n�x ,y� consist of different locali-
ies, scales, and orientation features, we concatenate all
hese features into a feature vector X. Without loss of gen-

rality, assume each output Wm,n�x ,y� is a column vector,
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which can be constructed by concatenating the rows �or
columns� of the output. Before the concatenation, each out-
put Wm,n�x ,y� is down-sampled by a factor � to reduce the
dimensionality of the origin vector space. Then, it is nor-

Fig. 1 Some samples of face

Fig. 2 The influence of the reduced dimension d� for accuracy rate

bof face pose estimation.
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alized to zero mean and unit variance. Let Wm,n
� denote a

ormalized output, and then the feature vector X��� is de-
ned as:

��� = �W0,0
���t

,W0,1
���t

, . . . ,W4,7
���t

�t, �2�

here t is the transpose operator. The feature vector thus
ncompasses all the output Wm,n�x ,y� as important dis-
riminating information.

After high-order information features are extracted by
he Gabor filters, an immediate problem is to reduce the
imensionality and uncover the intrinsic low-dimension-
lity manifold. In this work, we propose a SLPP approach.

LPP seeks a transformation W to project high-
imensional input data X= �x1 ,x2 , . . . ,xm� into a low-
imensional subspace Y = �y1 ,y2 , . . . ,ym�. The linear trans-
ormation W can be obtained by minimizing an objective
unction as follows:6

in �
i,j

�wTxi − wTxj�2Sij , �3�

here Sij evaluates the local structure of data space. It can

in JDL-PEAL face database.
e defined as follows:

September 2006/Vol. 45�9�
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Sij = �exp�−
�xi − xj�2

t
	 if xi and xj are close

0 otherwise

 , �4�

where parameter t is a suitable constant. The minimization
problem can be converted to solving a generalized eigen-
value problem as follows:

XLXTW = �XDXTW , �5�

where Dii=� jSji is a diagonal matrix, and L=D−S. For a
more detailed derivation and justifications of LPP, refer to
Ref. 6.

The d-dimensional data from LPP are further mapped
into d�-dimensionality discriminant subspace through the
linear discriminant analysis �LDA� algorithm. To minimize
the intraclass distances while maximizing the interclass dis-
tances of the face manifold, the column vectors of discrimi-
nant matrix W� are calculated by the eigenvectors of Sw

−1Sb
associated with the largest eigenvalues,

Sw
−1SbW� = �W�, �6�

where Sb is the between-class scatter matrix, and Sw is the
within-class scatter matrix. Then the matrix W� projects
vectors in the low-dimensionality face subspace into the
common discriminant subspace, which can be formulated
as follows:

Z = W�Y = W�WXZ � Rd�, Y � Rd, W� � Rd��d, �7�

where Z encodes classification information.

3 Experimental Results

In this section, we manually selected two collections of
face images from the JDL-PEAL face database.7 They both
include 130 subjects, which are selected randomly, each
with seven differently posed face images varying intrinsic
features such as pose, illumination, and expression. The
difference between the two collections is that the first col-
lection is used as a training set while the second one is used
as a testing set. In the first collection, all face images were
resized to 24�18. Some samples are illustrated in Fig. 1.
Before performing the proposed approach, several param-
eters need to be fixed. First, for the Gabor filters, we chose
five scales and eight orientations, and the number of � is 4.

Table 1 The accuracy rate �percent� of the com
fication. d=20 and d�=6.

Face pose −45 deg −30 d

GF+SLPP accuracy rate 96.23 96.5

GF+PCALDA accuracy rate 64.14 65.7

SLPP accuracy rate 75.23 78.5

PCALDA accuracy rate 58.21 59.6
Second, the two reduced dimensions d and d� of the pro-

Optical Engineering 090503-3
osed method are fixed. d is defined as 20. The reduced
iscriminant dimension d� is generally no more than L−1,
here L denotes the number of face poses.
We compared our proposed GF+SLPP algorithm with

CALDA, GF+PCALDA, and SLPP. For PCALDA, the
lgorithm is exploited to obtain the subspace in the training
et directly. For SLPP, we utilize the SLPP approach with-
ut Gabor filters to learn the subspace in the training set.
or GF+PCALDA, the approach is similar to the GF
SLPP approach, but the dimensionality reduction ap-
roach is replaced by PCALDA.

In the GF+SLPP approach, the reduced discriminant di-
ension d� influences the performance of the proposed ap-

roach. It can be seen from Fig. 2 that as d� increases, the
F+SLPP has a higher accuracy rate.
The experimental results with the optimal reduced di-

ensions are listed in Table 1. It can be seen from Table 1
hat the discriminant ability of the SLPP approach is better
han the PCA+LDA approach, and the GF+SLPP method
chieves the best performance.

Conclusions

e propose a combination approach of Gabor filters and
upervised locality preserving projections. Experimental re-
ults show that GF+SLPP has the best performance among
ll the involved approaches.
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