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Abstract. We report the results of an oral cavity pilot clinical trial to
detect early precancer and cancer using a fiber optic probe with ob-
liquely oriented collection fibers that preferentially probe local tissue
morphology and heterogeneity using oblique polarized reflectance
spectroscopy �OPRS�. We extract epithelial cell nuclear sizes and 10
spectral features. These features are analyzed independently and in
combination to assess the best metrics for separation of diagnostic
classes. Without stratifying the data according to anatomical location
or level of keratinization, OPRS is found to be sensitive to four diag-
nostic categories: normal, benign, mild dysplasia, high-grade dyspla-
sia, and carcinoma. Using linear discriminant analysis, separation of
normal from high-grade dysplasia and carcinoma yield a sensitivity
and specificity of 90 and 86%, respectively. Discrimination of mor-
phologically similar lesions such as normal from mild dysplasia is
achieved with a sensitivity of 75% and specificity of 73%. Separation
of visually indistinguishable benign lesions from high-grade dysplasia
and carcinoma is achieved with good sensitivity �100%� and specific-
ity �85%�, while separation of benign from mild dysplasia gives a
sensitivity of 92% and a specificity of 69%. These promising results
suggest that OPRS has the potential to aid screening and diagnosis of
oral precancer and cancer. © 2008 Society of Photo-Optical Instrumentation Engi-
neers. �DOI: 10.1117/1.2907450�
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Introduction

iomedical optics has shown great promise in extracting bio-
hemical and morphologic information from precancerous
nd cancerous tissue in vivo that has been traditionally ob-
ained exclusively by microscopic examination of excised
issue.1–3 Optical techniques can provide clinicians greater
bility to noninvasively detect and monitor precancerous le-
ions during screening and treatment, particularly for exten-
ive lesions that require multiple biopsies to adequately assess
isease stage. The high turnover rate of cells in the epithelium
akes it the most common site for cancer to emerge.4 Epithe-

ial cancers are well characterized to develop in a multistep
rocess from the accumulation of genetic mutations over
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time, resulting from carcinogenic exposure. For the majority
of cancers, survival rate and quality of life are greatly im-
proved when cancer and its precursors are detected early. An
epithelial cancer where early detection is crucial to successful
clinical outcome is oral cancer.5 If caught early, the 5-yr sur-
vival rate increases dramatically from 26% for distant staging
to 82% for local staging.6 Even in developed countries such as
the United States, where dental exams are routine, oral cancer
is often not discovered until it has infiltrated surrounding or-
gans or tissues.6 Indeed, U.S. 5-yr survival rates have changed
little in the last 30 yr, remaining7 at approximately 55%.

Current oral cancer screening methods are limited by the
variety of tissue architecture and by the similarity of appear-
ance of benign inflammatory conditions to premalignant and
malignant lesions. Further complications arise in high-risk pa-
tients, who often have carcinogenic exposure that covers the
entire mucosal lining. After successful treatment of a cancer-
ous tumor, secondary tumors can develop in adjacent areas
over time. Monitoring these high-risk patients requires mul-
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iple biopsies taken routinely over many years. Clearly, non-
nvasive optical modalities to detect the early stages of oral
ancer have the potential to reduce patient pain, morbidity,
nd mortality. To this end, significant efforts have been di-
ected toward exploring optical imaging and optical spectros-
opy techniques to aid screening and diagnosis of the early
tages of oral cancer.8–20 A comprehensive overview of the
ew emerging methods for the detection and treatment of oral
arcinoma has recently been given in Refs. 21 and 22.

Optical imaging modalities such as confocal microscopy,
ptical coherence tomography �OCT�, and nonlinear optical
icroscopy have shown great potential for oral lesion dis-

rimination. While these nascent approaches alone or in com-
ination with exogeneous dyes, vital stains, or nanoparticles
re highly promising, they require some degree of equipment
omplexity and operator training. Autofluorescence imaging
nd spectroscopy has been shown to give improved lesion
ontrast, which has been attributed in part to porphyrin fluo-
escence. However, it has been argued that porphyrin fluores-
ence is not a good diagnostic indicator, as it is synthesized by
acteria not only on ulcerating tumors, but also on the dor-
ums of normal tongues and on gingival plaques.11 The pres-
nce of porphyrin fluorescence can therefore obscure detec-
ion of lesion grade using fluorescence techniques.
pectroscopic approaches that combine tissue autofluores-
ence and scattering showed promising sensitivity and speci-
city in pilot clinical trials, however, it required stratification
f tissue sites according to level of keratinization before sta-
istical analysis.16

Here we present the results of the first pilot clinical trial
hat assesses the optical technique of oblique polarized reflec-
ance spectroscopy �OPRS� to discriminate oral precancers
nd cancers from normal or benign tissue. OPRS is a nonin-
asive optical modality that employs polarized light illumina-
ion and polarization sensitive detection. This method is very
imple and robust and, thus, provides an attractive approach
or earlier cancer detection in the oral cavity including screen-
ng in a high-risk population. OPRS is based on the following
oncept: the electric field orientation, or polarization, of the
ncident light remains unchanged after interaction with the
ptically dilute epithelial layer. In contrast, photons that
ropagate deeper to the optically dense stroma are remitted
rom tissue with their polarization state randomized. In OPRS,
wo scattered signals are collected: one with polarization par-
llel and the other with polarization perpendicular relative to
he illumination polarization. The small epithelial signal can
herefore be isolated by subtracting the perpendicular polar-
zation intensity from the parallel polarization intensity.23–27

ombining polarization-sensitive detection with an oblique
ndoscopic collection geometry further resolves scattering
ignals from the upper epithelial layer and from the lower
tromal layer.28 This additional depth-dependent optical infor-
ation carried by polarized light has the potential to enhance

iscrimination of the varying grades of dysplasia and carci-
oma from visually indistinguishable benign lesions.

The two scattering signals collected by OPRS can be used
eparately or in combination to yield diagnostically relevant
arameters. In this pilot clinical study, we extracted 10 spec-
roscopic features and nuclear size of epithelial cells with the
oal to identify key parameters for detection and monitoring
f precancerous lesions in the oral cavity. A thorough statisti-
ournal of Biomedical Optics 024011-
cal analysis of the spectral parameters and extracted nuclear
size was performed using linear discriminant analysis �LDA�
and evaluated using receiver operating characteristic �ROC�
analysis. OPRS was found to be sensitive to four clinically
relevant histological groups: normal, benign, mild dysplasia,
and severe dysplasia �defined as tissue requiring surgical ex-
cision for treatment�. We demonstrated that the features that
provide the best discrimination differ according to diagnostic
category. This result emphasizes that a combination of fea-
tures is required to efficiently tackle the multitask problem of
cancer detection and diagnoses.

2 Materials and Methods
2.1 Clinical Measurement
A pilot clinical study was conducted with informed consent
on 27 patients over the age of 18 that were referred to the
Head and Neck Clinic at The University of Texas M. D.
Anderson Cancer Center �MDACC� with oral mucosa lesions
suspicious for dysplasia or carcinoma. A medical doctor per-
formed a standard oral cavity examination, followed by spec-
troscopic measurements which were typically performed on
one to two visually abnormal sites and one visually normal
site. In some cases, more than one measurement was per-
formed on the same tissue site without removing the probe.
All measurements from the same tissue site were averaged to
give a single spectrum.

A calibration spectrum was acquired before or after each
patient evaluation using a diffuse reflectance substrate stan-
dard �Labsphere, Inc.�. Data from three patients were re-
moved from the analysis because of improper handling of the
endoscope or malfunctioning of the clinical device. Biopsies
were taken of all measured tissue sites. The biopsied tissue
was sectioned into 4 �m transverse slices and mounted onto
microscope slides. The slides were stained with a hematoxylin
and eosin �H&E� stain for standard histological analysis.
Paired normal and abnormal slides were reviewed by a trained
pathologist at MDACC. Detailed descriptions were made of
each slide indicating the extent of dysplasia, inflammation,
keratinization, and hyperplasia.

2.2 Instrumentation
Although detailed extensively in Refs. 28 and 29, we briefly
describe the instrument used in this clinical study for conve-
nience. The illumination source was a broadband white light
Xe pulsed lamp with ca. 4-�s pulse widths and a wavelength
range of 400 to 700 nm. Light was delivered to the tissue site
of interest though a single optical fiber with a core diameter of
200 �m and 0.22 numerical aperture �NA�. The power deliv-
ered to the tissue was approximately 100 �W, well below the
acceptable threshold limit value given by the American Con-
ference of Governmental Industrial Hygienists.30 Two identi-
cal optical fibers were placed on either side of the illumination
fiber for collection of the remitted light. Two pieces of polar-
izing film with an extinction transmittance of 0.002% were
adhered to the distal end of the fiber optic probe. These po-
larizers set the orientation of the illumination and collection
polarization states and were oriented orthogonal to each other.
The two collection fibers had polarizing film with transmis-
sion axes either parallel or orthogonal to the illumination po-
larization state. A protective fused silica window of defined
March/April 2008 � Vol. 13�2�2
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hickness was placed over the fibers and polarizing film. The
llumination fiber was oriented normal to the silica window
urface and the collection fibers were oriented at ca. 37 deg
ith respect to the illumination fiber. With this geometry, the

ollection fiber’s acceptance cones cross each other and with
he illumination beam in the superficial tissue layer as shown
n Fig. 1. The collection efficiency of a single obliquely ori-
nted beveled fiber peaks at the maximum overlap of the il-
umination beam with the collection acceptance cone. Figure
�a� is a plot of the collected intensity of a single collection
ber from a diffusely reflecting substrate �Labsphere, Inc.�.
he probe used in this study has a fused silica window that
cts as a spacer such that the maximum overlap is at the tissue
urface. The window and tissue thicknesses with respect to
he maximum collection depth are illustrated above the plot in
ig. 1�a�. This overlap drops to 50% at a depth of 300 to
00 �m, the typical thickness of oral epithelium. Hence, su-
erficial traveling photons approximately 0.07 mm3 below
he tissue surface are collected with greater efficiency than
eeper traveling photons. The collection fibers deliver the re-
itted light to a grating spectrograph coupled to a gated in-

ensified photodiode array detector. Operating in gated mode
nables all measurements to be conducted under room light
llumination so that OPRS measurements could blend seam-
essly into a clinical examination or preoperative surgical
rocedure.

.3 Data Analysis

.3.1 Preprocessing
he collected parallel and perpendicular spectra were dark
ubtracted and then divided by the sum of the scattered light
ollected through both collection channels from a diffuse re-
ectance standard �Labsphere, Inc.� to correct for the
avelength-dependent response of the detection system and

he spectral profile of the source. The parallel and perpendicu-
ar signals were studied alone and in the following combina-

ig. 1 �a� Overlap of illumination and collection acceptance cones as
function of distance from the distal end of the illumination and

ollection fibers. Distance zero corresponds to the epithelium surface.
easurements were made in water using a reflectance standard �Lab-

phere, Inc.�. �b� Illustration of distal probe geometry. The center fiber
elivers light to the tissue; the outer two fibers collect the scattered

ight with polarization parallel and orthogonal to the incident
olarization.
ournal of Biomedical Optics 024011-
tions: the ratio of parallel to perpendicular, parallel minus
perpendicular, and the sum of the parallel and perpendicular
signals. The sum of the parallel and perpendicular spectra is
equivalent to the diffuse reflectance spectrum and their differ-
ence is defined as the depolarization ratio. Spectra were
down-sampled using an averaging window with a spectral
width of 5 nm to reduce data size and computation time.

The spectra were normalized to remove interpatient varia-
tion. Three approaches were tested: �1� no normalization, �2�
division of entire spectra by the intensity value at 420 nm,
and �3� additive dc offset applied to the entire spectra such
that value at 420 nm was equal to the mean for all spectra
within the same spectral type �e.g., parallel or ratio of parallel
and perpendicular signals etc.�. This normalization was in-
tended to preserve the relative intensity scale between differ-
ent spectral types. Normalization method 2 gave the highest
area under the ROC curve for all classification tasks consid-
ered and hence was used throughout this study.

2.3.2 Determination of the Most Discriminatory
Wavelength

The most discriminatory wavelengths were determined using
the area under the ROC curve, which is a commonly used
summary statistic to assess the effectiveness of a two-outcome
classification process.31 The area under the nonparametric
curve �AUC� was computed using the trapezoid rule. On the
occasion when ties existed, the best wavelength was chosen
manually such that wavelength variations were minimized.

2.3.3 Features
Two features were extracted from each spectrum of the five
spectral types �parallel, perpendicular, diffuse, depolarization
ratio, parallel/perpendicular�, one being the mean intensity
across the entire spectrum and the other being the intensity at
the most discriminatory wavelength, yielding 10 spectral fea-
tures per measurement site. In addition, nuclear size was ex-
tracted from the depolarization ratio spectrum using a Mie
theory based algorithm described in Refs. 27 and 32. Figure
2�a� shows example depolarization ratio spectra for each di-
agnostic category and their corresponding fit. Figure 2�b�
compares the mean nuclear size per diagnostic category ex-
tracted from OPRS measurements and from direct measure-
ments of the biopsied tissue histology slides. Hence, a total of
11 features were extracted from each measurement site for use
in eight binary classification tasks: �1� normal versus severe
dysplasia �SD�, �2� normal versus mild dysplasis �MD�, �3�
normal versus MD and SD combined, �4� MD versus SD, �5�
benign versus SD, �6� benign versus MD, �7� benign versus
MD and SD combined, and �8� benign versus normal.

2.3.4 Selection of the Most Discriminatory Features
In many classification tasks, a combination of features yields
better discrimination than can be achieved with any single
feature. Since there are 11 features in each of the two-class
classification problems, 211−1=2047 different combinations
of features are possible, for example: feature 1 alone; features
1 and 2 combined; features 1 and 3 combined; features 2 and
3 combined; features 1, 2, and 3 combined; etc. We exhaus-
tively searched through these 2047 combinations to identify
the feature or combination of features that best discriminates
March/April 2008 � Vol. 13�2�3
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etween two diagnostic classes using33 LDA. LDA was cho-
en because it works well with small datasets and it preserves
he physical origins of features. Leave-one-out cross valida-
ion was employed to train and test all LDA models.

The performance of a feature combination was evaluated
sing the area �AUC� under the nonparametric ROC curve
enerated from the LDA decision variable. All possible LDA
odels were compared. The best LDA model was defined as

hat which had the highest area under the ROC curve. LDA
alculations were carried out using the classify function in
ATLAB® R7 Statistics Toolbox �The MathWorks, Natick,
assachusetts�. For each binary classification task, several of

he 2047 LDA models can have statistically equivalent dis-
rimination. A bootstrapping technique was used to estimate
he mean difference in the AUC between LDA models and the
wo-sided p value of that difference.34 Any p values below the
onventional threshold of 0.05 were regarded as statistically
ignificant. The top N models with AUCs statistically indis-
inguishable from the maximum AUC observed were consid-
red to be comparable models.

We hypothesized that dominant features would appear with
igher frequency, while irrelevant features would appear ran-
omly. Consequently, the fractional occurrence of individual
eatures within the top N LDA models within each diagnostic
ategory was counted. Those features that appeared with a
requency of 0.5 or greater are considered to be of diagnostic
mportance.

ig. 2 �a� Examples of experimental depolarization ratio spectra �soli
ations �dotted curves� obtained using Mie scattering calculations and
ndicate nuclear size extracted using OPRS measurements and dark
iopsied tissue mounted on microscope slides. The standard deviatio
ournal of Biomedical Optics 024011-
2.3.5 Precautions Taken to Avoid Overtraining
Overtraining is a concern any time one develops a classifica-
tion model with a small dataset. To reduce this risk, we used

Table 1 Distribution of anatomical sites within the oral mucosa mea-
sured with OPRS.

Clinical appearance Diagnosis for Abnormals

Location Normal Abnormal Benign �B� MD SDa

Tongue 7 22 8 7 7

Buccal 13 7 3 3 1

Floor of mouth 1 2 0 1 1

Gingiva 1 2 1 0 1

Soft Palate 0 2 1 1 0

Total measured 22 35 13 12 10

aSevere dysplasia is defined as tissue that requires surgery for treatment; it
includes tissue that has the histopathological diagnosis of moderate to severe
dysplasia or carcinoma. The physical appearance was noted prior to OPRS
measurement as either normal or abnormal. Biopsies were taken of all 57 mea-
sured sites. Histopathology of abnormal biopsies is catergorized as benign,
MD, or SD.

s� for each diagnostic category and corresponding theoretical simu-
r graph of mean nuclear size per diagnostic category. Light gray bars
ars indicate nuclear size obtained directly from stained and sliced
variations in nuclear sizes between different patient sites.
d curve
�b� ba
gray b

ns show
March/April 2008 � Vol. 13�2�4
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eave-one-out cross validation to generate the LDA models.
s a further check, a permutation test was applied in which

he pathology definition of each patient measurement was ran-
omly shuffled while the prevalence of disease was kept
onstant.35 The shuffling was repeated 1000 times for each
inary classification task, so that the mean and standard error
f the area under ROC curves could be calculated and com-
ared with the observed area under ROC curves.

Results
.1 Sample Distribution
able 1 summarizes the distribution of sites from the oral
avity that were measured, then subsequently biopsied. A total
f 57 sites in 24 patients were measured and analyzed in this

ig. 3 Representative images of biopsied tissue diagnosed as �a� norm
istopathological analysis. Scale bar is 100 �m.

ig. 4 Measured spectra. The first row shows all the spectra collected
pectra according to diagnostic class for the parallel, perpendicular,
hown as solid green curves, benign tissue shown as dashed blue cur
otted curves.
ournal of Biomedical Optics 024011-
study. Table 1 is divided into two categories based on the
examining physician’s visual impression at the time of biopsy:
�1� normal and �2� abnormal. All visually normal sites were
confirmed to be normal by histological analysis. The clinically
appearing “abnormals” were further subdivided into three cat-
egories according to their histological diagnosis: benign �B�,
MD, or SD. We defined SD as tissue that requires surgical
excision. In this study, all but one SD site were classified as
carcinoma �the other was classified as moderate dysplasia�.
Figure 3 shows images taken of representative histopathology
slides from this study illustrating the morphology of the dif-
ferent diagnostic categories. All binary combinations of the
four diagnostic classes were used to test classification of
OPRS data.

benign, �c� MD, or �d� SD. Tissue was stained with H&E for standard

e two collection channels. The second and third rows show the mean
reflectance, and depolarization ratio. Spectra from normal tissue are
ld dysplasia as red dash-dotted curves, and severe dysplasia as black
al, �b�
from th
diffuse
ves, mi
March/April 2008 � Vol. 13�2�5
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.2 Measurement Repeatability
o assess the reproducibility of our measurements, 51 of the
7 tissue sites had two subsequent measurements performed
ithout removing the probe. We calculated a mean intensity
ifference over all wavelengths between the two spectra from
he same tissue site and their average spectrum. An average
alue for the intensity difference for all 51 sites was ca. 10%.
he repeatability of spectral shape is also important especially
hen performing nuclear size extraction. Therefore, we ran

he nuclear extraction algorithm on a subset of the 51 patient
ites that had duplicate measurements. Fifteen sites were cho-
en randomly without reference to the diagnosis. The ex-
racted nuclear size for both repeat measurements was com-
ared to the nuclear size found using the mean spectrum. We
ound that the average nuclear size difference between the
easured spectra and the mean spectrum was 0.45 �m. This

s well below the size difference �ca. 2 �m� between diagnos-
ic categories of normal and SD. However, these data indicate
hat probe handling is an important issue in clinical trials that
an lead to an increase in variations of optical measurements
n vivo. Translation of the probe between measurements can
ause differences in the spectra as the tissue volume sampled
ill have changed. The tissue volumes may have differing

cattering characteristics that may affect collection of parallel
nd perpendicular components and extraction of the depolar-
zation ratio spectrum. In addition, it has been shown that the
ressure applied to the tissue can significantly affect fluores-
ence spectral intensity.36 Further work must be performed in
his area to fully assess the effect of probe pressure and han-
ling on spectroscopic measurements.

.3 Polarized Reflectance Spectra
igure 4 shows the measured spectra before normalization.
he diagnostic category is indicated by the color of the
urves: solid green, normal; dashed blue, benign; dash-dotted
ed, mild dysplasia; and dotted black, severe dysplasia. The
rst row shows all measured spectra from the parallel and
erpendicular collection channels. The second and third rows
how the averaged spectra per diagnostic class for the parallel,
erpendicular, diffuse reflectance, and the depolarization ra-
io. Analysis of the mean spectra showed a good, albeit quali-
ative, separation of all diagnostic classes.

Table 2 The wavelengths, given in nanometers
diagnostic classes.

Spectral Type

Normal
from
SD

Normal
from
MD

No
fr

MD

Parallel 581 465 6

Perpendicular 454 576 4

Diffuse 539 465 7

Depolarization ratio 602 465 6

Parallel/perpendicular 633 565 6
ournal of Biomedical Optics 024011-
A qualitative look at the mean spectra reveals differences
in the total intensity, which is modulated by hemoglobin ab-
sorption. Within a narrow wavelength band, the mean spectral
differences can be quite large. For example, the mean perpen-
dicular spectra have the largest separation between diagnostic
classes for wavelengths shorter than 450 nm. Similarly, the
mean depolarization ratio spectra have the largest separation
between normal and SD in the red or long-wavelength region.
As a whole, the mean spectra hint at the possibility of using
select wavelength regions for improved diagnostic discrimi-
nation, thus prompting an analysis of the optimal wavelength
for maximum separation of two diagnostic classes for each
spectral type.

3.4 Diagnostically Relevant Features

Table 2 shows the best wavelengths determined for the eight
two-outcome diagnostic classification tasks and five spectral
types. All spectra used in this analysis were normalized to one
at 420 nm, as described in Sec. 2.3.1. Table 3 lists the AUCs
for individual features and the best combination of features, as
determined by exhaustive LDA search, for each classification
task considered. An AUC of 1 corresponds to perfect classifi-
cation while an AUC of 0.5 corresponds to chance perfor-
mance. Comparison of the individual feature AUC and the
LDA AUC per classification task shows that the LDA model
typically performs better. Note that the performance of indi-
vidual features varies quite drastically, depending on the clas-
sification task. These results demonstrate that a combination
of features is needed to efficiently tackle the multitask classi-
fication problem involved in cancer detection and diagnosis.

Discrimination of normal from SD has a relatively high
LDA AUC. This is consistent with our expectations since nor-
mal and SD are two extremes of the continuum of histopatho-
logical status. Likewise, histopathologically similar tissue
such as normal and MD is more difficult to discriminate. The
similarity of normal and MD tissue can be seen in Fig. 3,
where the areas of MD �indicated by increased nuclear den-
sity� encompass a small section at the basal layer. It is not
uncommon for MD to be focally located amid normal tissue.
In an OPRS measurement, the optical signal from MD is
weighted by the surrounding normal tissue. Similarly, the
AUC for the classification task of normal from MD and SD

rovided the maximum separation between two

MD
from
SD

Benign
from
SD

Benign
from
MD

Benign
from

MD and SD

Benign
from

Normal

581 539 597 497 465

454 454 602 491 486

586 539 497 497 497

454 539 497 581 465

633 644 512 644 512
, that p

rmal
om

and SD

55

54

18

28

12
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ombined yield a similar AUC to that of normal from MD. In
omparison, clear diagnostic potential is shown for the clas-
ification task of MD versus SD.

One of the most clinically challenging classification tasks
equires the ability to distinguish between dysplastic tissue
nd benign tissue, which has the outward appearance of dys-
lasia or carcinoma but is histologically normal. Therefore, it
s encouraging that some features in our study show clear
eparation between benign and SD sites. Similar to what is
bserved when normal tissue is used as the reference, there is
ess discriminatory power for the classification tasks differen-
iating benign from MD or benign from MD and SD
ombined.

Due to the limited amount of data in this pilot study, there
s not enough statistical power to distinguish between small
ifferences in ROC area. For example, in the classification
ask of normal from SD, 36 LDA feature sets with the highest
OC areas were found to be statistically indistinguishable.
ather than attempting to identify a single “best” model,
hich is impossible to do in a pilot study, we identified the

eatures that most frequently appear in the set of statistically
ndistinguishable best performing models. Table 4 shows the
requency with which each feature occurs in the top N feature
ets with statistically similar ROC areas for each classification
ask. Dashed lines delineate features that appear with a fre-
uency of 0.5 or greater. We suggest that these features war-
ant the greatest attention in future large clinical trials.

Table 3 Area under the ROC curve for individu

Normal from

Individual Features SD MD MD

Nuclear size 0.79 0.69 0

Mean parallel 0.81 0.50 0

Mean perpendicular 0.69 0.60 0

Mean diffuse 0.79 0.53 0

Mean depolarization ratio 0.84 0.53 0

Mean par/per 0.73 0.66 0

Parallel, x nm 0.84 0.60 0

Perpendicular, x nm 0.78 0.65 0

Diffuse, x nm 0.82 0.60 0

Depolarization ratio, x nm 0.85 0.61 0

Par/per, x nm 0.77 0.67 0

Best LDA combination 0.89 0.72 0

Eight binary classification tasks, indicated by the colu
correspond to the intensity at the most discriminatory wa
0.5 is chance performance.
ournal of Biomedical Optics 024011-
3.5 Check for Overtraining
With a small data set, overtraining is always a concern. As
noted in the methods section, leave-one-out cross validation
was used for classifier training to reduce this risk. As an ad-
ditional check, a permutation test was conducted where the
diagnostic state of the measured site was randomly assigned
for a given classifier task while preserving the number of
patients within each class. The results are shown in Fig. 5.
The mean � standard deviation of the AUCs for a randomly
shuffled task is shown as a gray cross-hair with error bars,
while the real AUC of the top LDA model is shown as a filled
black circle with a single bar indicating the extent of AUC
values within the top N comparable LDA models. The ran-
domly assigned permutations have AUCs that are clustered
around 0.5 or chance performance, whereas the real AUCs are
well above the error bars. The p values of the permutation
tests showed significant difference between the real AUC and
the randomly shuffled AUCs. For example, the permutation
test for classifying normal and SD has a zero p value. These
results demonstrate that the LDA model is capturing meaning-
ful differences between the diagnostic classes as opposed to
merely magnifying chance differences in the feature values.

4 Discussion
Given the variety of oral mucosa and the resulting spectral
diversity that can confound classification, it is noteworthy that

res and the best LDA combination of features.

Area under ROC

MD
from Benign from

SD SD MD MD and SD Normal

0.65 0.75 0.62 0.68 0.56

0.82 0.88 0.65 0.76 0.69

0.77 0.82 0.73 0.77 0.81

0.82 0.86 0.69 0.77 0.74

0.82 0.90 0.60 0.74 0.57

0.69 0.70 0.55 0.62 0.63

0.87 0.90 0.68 0.78 0.77

0.86 0.89 0.74 0.78 0.83

0.86 0.90 0.69 0.78 0.78

0.86 0.91 0.64 0.76 0.72

0.71 0.71 0.58 0.62 0.70

0.87 0.91 0.76 0.78 0.84

dings, were considered. Features identified by x nm
h. A value of unity indicates perfect performance, while
al featu

and SD

.74

.64

.53

.62

.67

.69

.68

.57

.64
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tatistical significance was obtained across diagnostic classes
ithout the need to stratify the data according to tissue loca-

ion �i.e., buccal, tongue, etc.� or tissue keratinization. The
etailed interpretation of these findings as they relate to tissue
orphology is somewhat difficult, although a qualitative un-

erstanding can be obtained, thus guiding future studies and
robe designs.

In Fig. 3, the progression of normal tissue to premalig-
ancy then to malignancy can be viewed in terms of the
hysical alteration of normal tissue from a homogeneous two-
ayer structure to a very irregular single layer tissue. It has
een shown that changes in spectral profiles that accompany
rogression to carcinoma can be related to changes in both the

able 4 For each classification task, the frequency of appearance of
eature sets is shown.

eatures indentified by x nm correspond to the intesity at the most discriminatory
.5 appear above the dashed line. These features are considered to be the mo
ournal of Biomedical Optics 024011-
epithelium and the stroma such as increased microvascular-
ization and scattering alterations.2,37,38

The frequency of appearance of features in Table 4 points
toward their diagnostic importance. The features that occur
most consistently are nuclear size, the intensity ratio of paral-
lel to perpendicular channels, and the mean perpendicular sig-
nal. Nuclear size appears with the highest frequency in clas-
sification tasks involving normal tissue while the mean
perpendicular feature and the ratio of parallel to perpendicular
feature dominate cases that involve benign tissue. Clearly
nuclear size is a measure of the morphological changes that
occur in superficial �i.e., epithelial� tissue. The regular appear-
ance of nuclear size is consistent with histopathology where

ual features within the best performing statistically comparable LDA

gth. Features are sorted such that those that occur with a frequency greater than
ostically relevant.
individ

wavelen
st diagn
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pithelial cell nuclei are well documented to enlarge with the
rogression of cancer.4 In Fig. 2�b� both the extracted and
easured nuclear size shows an increase with disease

rogression.
The ratio of the parallel to the perpendicular signal, on the

ther hand, can be interpreted as the ratio of shallow to deep
issue changes. This can be seen if the parallel/perpendicular
ignal is rewritten as ��Ipar− Iper� / Iper�+1, where �Ipar− Iper�
epresents photons that have undergone few scattering events,
hile Iper represents photons that have had many scattering

nteractions. The mean perpendicular feature is, therefore, a
easure of the interaction of photons in tissue below the epi-

helium where increases in capillary density will manifest as
emoglobin modulation of the perpendicular scattering spec-
rum. These alterations in the perpendicular spectrum will
hen affect the parallel/perpendicular ratio.

Recent work in other organ sites indicates that changes in
lood content and oxygenation that occur below the epithe-
ium can be related to tumor development and, potentially, to
remalignant lesion formation. Siegel et al. reported increased
lood supply in subepithelial mucosa before the development
f dysplasia in adenomatous human colon biopsies and rat
olons treated with a carcinogen.39 Zonios et al. found an
ncrease in hemoglobin concentration in adenomatous colon
olyps, but not hemoglobin oxygenation.40 In contrast, Bard
t al. found that endobroncho tumors were characterized by
ower blood oxygenation.41 In another study, Fawzy et al.
emonstrated that malignant lung lesions had differences in
lood volume fraction and oxygen saturation when compared
o normal or benign lesions.42 In their investigation, the blood
olume fraction was significantly higher in malignant lesions
han benign lesions.

These findings can be extended to the oral mucosa where
5% of all precancerous lesions have the clinical appearance

ig. 5 Permutation test to check for overtraining. The diagnosis as-
ignment was shuffled for each classification task while preserving the
umber of patients within each class. The mean and standard devia-

ion of the area under the ROC curve, AUC, obtained using the
huffled data sets is shown as gray cross hairs. The AUC for the true
DA feature sets is shown in black. The highest LDA AUC is shown as
filled black circle, while a lower black whisker indicates the lowest

tatistically equivalent LDA AUC. The true LDA AUCs are well above
he permuted AUCs, which are grouped around chance performance,
emonstrating that the data is not overtrained.
ournal of Biomedical Optics 024011-
of white patches or leukoplakia.43 Reviews of the prognosis of
oral premalignant lesions in several countries including the
USA, India, Hungary, Netherlands, and Norway by Silverman
et al.44 and Rebeil45 has shown that the rate of malignant
transformation of leukoplakia can range from less than 1% to
18%, where the highest transformation rate was found in the
USA. Less frequently encountered is a red patch or erthy-
roplakia, which is nearly always associated with dysplasia or
carcinoma at the time of identification.5 Both erythroplakia
and their mixtures with leukoplakia are at a higher risk for
malignancy. The clinical description of erythroplakia as a red
patch indicates an increase in blood perfusion. The implica-
tion that capillary density is correlated with precancer pro-
gression in the oral cavity is a subject of interest for future
work.

Adding to the interpretation of the mean perpendicular fea-
ture is the fact that the polarization change that gives rise to
the perpendicular signal can be viewed as a diffusion process
where depolarization increases with increasing optical-tissue
interaction.24 Consequently, areas of increased scattering in
superficial regions of tissue such as keratin or dysplasia will
also contribute to the perpendicular signal. The oblique col-
lection geometry of our probe makes it more sensitive to su-
perficial tissue changes as the collection efficiency is greatest
in the first 300 to 400 �m of tissue. This sensitivity enhances
the effects of increased superficial scattering. It is well known
that the nonuniformity of appearance of oral cavity lesions,
arising from architectural and morphological changes, is cor-
related with transformation to invasive cancer.46–48 Work in
the breast, cervix, and bronchus has also indicated that the
local variation of tissue can potentially yield diagnostically
relevant information.41,49–51 We hypothesize that it is this
combination of blood absorption from deeper tissue and lo-
calized increases in epithelial scattering, resulting from
changes in the local tissue morphology, that causes the per-
pindicular and the parallel/perpendicular features to appear
with such high frequency in the top LDA models for classifi-
cation tasks involving benign tissue. Further study of these
high-frequency features is necessary to fully assess
their physical meaning and their impact on diagnostic
classification.

Another important outcome of the statistical analysis is the
ability of OPRS to separate benign lesions from all other le-
sion types despite having the same or similar outward appear-
ance. Many optical techniques are capable of discerning nor-
mal from malignant oral mucosa with a high degree of
sensitivity and specificity, but discrimination of benign lesions
from precancer and cancer is more elusive. A few groups have
reported discrimination of the differing grades of abnormal
human oral cavity tissue in vivo using imaging techniques.
Wang et al. was able to separate benign from dysplastic and
cancerous buccal mucosa autofluorescence �sensitivity of
81%, specificity of 96%� using a partial least squares artificial
neural network analysis.52 Onizawa et al. were able to sepa-
rate benign from cancerous oral cavity tissue with a sensitiv-
ity and specificity of 91% and 84%, and also benign from
dysplasia plus cancer with a sensitivity of 94% and a speci-
ficity of 96% using UV flash photography.8 Kulapaditharom
and Boonkitticharoen reported a sensitivity and specificity of
100% and 73%, respectively, for separation of benign from
dysplastic plus malignant tissue.53 Although these imaging
March/April 2008 � Vol. 13�2�9
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tudies showed good sensitivity and specificity they had cer-
ain limitations. The results by Wang et al. were limited by the
solation of their study to a single oral cavity location �buccal

ucosa� and the similar history of carcinogenic exposure
areca quid chewing and smoking�. The results achieved by
nizawa et al. and Kulapaditharom and Boonkitticharoen

ould be attributed to increased porphyrin fluorescence with
ysplasia. However, Betz et al. indicated that porphyrin fluo-
escence is not a good indicator of disease as it was only
resent in one-third of tumors they studied and was also
resent on normal tongue and gingival plaques.11

Overall spectroscopic studies have shown less optimistic
esults. Muller et al. found a sensitivity and specificity of 64
nd 90%, respectively, for separating dysplasia from cancer
sing trimodal spectroscopy.16 De Veld et al. recently con-
luded that neither diffuse reflectance spectroscopy nor tissue
utofluorescence �alone or in combination� could distinguish
enign tissue from dysplastic and cancerous tissue based on a
linical trial of 134 abnormal lesions.54 The results of our
ilot clinical trial are more consistent with the cited imaging
ork. We have also found that the OPRS is capable of distin-
uishing benign tissue from normal, precancerous, and can-
erous tissue with good sensitivity and specificity. Although it
s more informative to report AUCs rather than a single point
n the ROC curve, Table 5 lists the sensitivity and specificity
f OPRS for all diagnostic classification tasks for easy com-
arison to work by others. In each case, the ROC threshold
as chosen such that it gave both high sensitivity and high

pecificity. We suggest that multiple diagnostically relevant
eatures that can be extracted from a single OPRS measure-
ent are the key to its diagnostic performance.
Separation of normal tissue from SD yielded a sensitivity

f 90% and a specificity of 86%. Discrimination of identical
ooking benign lesions from severe dysplasia was also
chieved with high sensitivity �100%� and specificity �85%�.
valuation of all dysplasia �including carcinoma� against nor-
al or benign tissue yielded sensitivities and specificities of

3 and 64% and 86 and 61%, respectively. Lesser diagnostic
rades such as MD and benign lesions do not require surgical
esection, but must be monitored for possible transformation

able 5 Sensitivity and specificity of OPRS for all binary combina-
ions of four distinct histological groups: normal, benign, MD, and
D.

Normal from MD from

MD MD and SD SD SD

ensitivity �%� 75 73 90 80

pecificity �%� 73 64 86 83

Benign from Benign from

MD MD & SD SD Normal

ensitivity �%� 92 86 100 85

pecificity �%� 69 61 85 73
ournal of Biomedical Optics 024011-1
to malignancy. OPRS was able to discriminant MD from SD
with a sensitivity of 80% and specificity of 83%. These com-
pelling findings emphasize the need for a large prospective
study to assess OPRS as an adjunct to clinical examination for
the detection and monitoring of precancerous and cancerous
tissue.

5 Conclusion
The oral cavity has a variety of tissue architectures in addition
to a whole host of benign conditions such as leukoplakia,
erythroplakia, and lichen planus that can mask precancer and
cancer. Using a multipronged approach to discriminate the
earliest stages of precancer could solve this problem. An ideal
pared down system would be simple, low-cost, robust, and
noninvasive. We believe that OPRS has the potential to fulfill
these requirements. Our results from a preliminary pilot clini-
cal trial have demonstrated the ability of OPRS to discrimi-
nate, with high sensitivity and specificity, normal tissue from
high-grade dysplasia and cancer �SD�. Further, OPRS can dis-
criminate visually identical lesions such as benign from SD
and benign from premalignant and malignant lesions. These
promising results suggest that OPRS has the potential to aug-
ment current clinical practice for diagnosis and monitoring of
oral premalignancies and malignancies.
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