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Abstract. A neural network is presented for estimating cloud water and ice paths, effective
scattering heights of cloud water and ice, and column water vapor. The cloud water and ice are
then used to classify scenes as either clear or cloudy using a simple threshold test of 2 gm−2

for water and 10 gm−2 for ice. Training of the neural networks was performed using high
resolution spectra in micro-windows of O2 and CO2 near infrared absorption bands generated
from an ensemble of analyzed meteorological fields from ECMWF and surface properties from
MODIS. An independent test data set was generated using the same radiative transfer model, but
coupled with atmospheric profiles derived from CloudSat and Calipso data. Analysis indicates
that the algorithm provides approximately 75–90% accuracy with a 95-99% confidence level for
classifying scenes as either cloudy or clear over land surfaces in nadir viewing geometry. These
estimates are shown to be robust, in the sense that they are insensitive to realistic instrumental
errors, errors in the meteorological analyses and surface properties, and errors in the simulations
used for training.

Keywords: neural networks, clouds, remote sensing, carbon dioxide, radiative transfer, satel-
lites.

1 INTRODUCTION

As the importance of atmospheric chemistry increases, so too will measurements of trace gases
from space using high resolution spectroscopy. Examples include the European Space Agency’s
SCIAMACHY, Japan’s greenhouse gases observing satellite (GOSAT) and NASA’s ill-fated
Orbiting Carbon Observatory (OCO), which failed to reach orbit. Each of these instruments
measures high resolution spectra of reflected sunlight in the near infrared, from which trace gas
amounts can be inferred in clear (or near clear) sky conditions.

High resolution spectroscopy from space also opens new opportunities for cloud detection.
In observations deep within gas absorption lines, photons reflected from the surface are strongly
absorbed, leaving as the dominant component of the reflected radiance those photons scattered
by clouds and aerosols. Thus, detection of clouds against a bright background, historically
a difficult problem in remote sensing, should be possible with high resolution spectra. For
measurements of CO2, where high absolute accuracy is required and bright surfaces (such as
sun-glint) offer a signal-to-noise advantage, this is an important feature.

In this paper we examine the feasibility of cloud detection in the context of measurements
of CO2 by a hypothetical sensor, such as an etalon spectrometer, with high spectral resolution
over narrow spectral windows. As noted in Refs. [1, 2] and others, the measurement of CO2
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Table 1. Frequency windows and resolutions assumed for the spectrometer.

O2 A-band strong CO2 band weak CO2 band
Minimum wavenumber (cm−1) 13056.7 6203.6 4835.1
Maximum wavenumber (cm−1) 13061.3 6207.3 4838.8
Gaussian FWHM (cm−1) 0.05 0.05 0.05
Monochromatic samples per band 1001 801 801
Convolved channels per band 47 37 37

requires not only spectra in a CO2 absorption band but also spectra in a nearby band of a well-
mixed gas, usually O2, to provide the normalization needed to compute the column averaged
CO2 dry air mole fraction. We will suppose that the measurements are in the O2 A-band at
0.76µm, the weak CO2 band at 1.6µm and the strong CO2 band at 2.0 µm. Furthermore, we
will investigate the ability of neural networks to detect the subtle changes in the spectra caused
by cloud. Our principal objective will be to determine how reliably neural networks can detect
the presence of cloud, rather than the more difficult task of predicting its optical properties and
distribution in the atmosphere. The numerical experiments here are conducted with simulated
data over land surfaces only and in the nadir viewing mode. Part II of the manuscript will
extend the technique to lower resolution spectra and to the glint viewing mode as would have
been acquired by the OCO. Later studies will explore the application to measurements acquired
by the Japanese satellite GOSAT, which was launched in January 2009.

In Sec. 2 we describe the spectra used to train the neural networks. Mostly this draws
upon analyzed meteorological profiles from ECMWF [3], together with surface properties from
MODIS. Sec. 3 is devoted to the architecture and training of the hierarchy of neural networks
needed to span the wide range of cloud conditions encountered in the simulations. Sec. 4
presents the results for two data sets, one a subset of the simulated spectra withheld from the
training (the ‘hold-over’ data set), and the other a completely independent set of spectra de-
rived from CloudSat observations with collocated and simultaneous meterological fields from
ECMWF analyses. Finally, Sec. 5 contains the conclusions.

2 SYNTHETIC SPECTRA

Spectra were simulated for the hypothetical etalon spectrometer with the bands and spectral res-
olutions shown in Table 1. In order to ensure natural variations in the surface, the spectrometer
was assumed to follow Worldwide Reference System-2 (WRS-2) orbit paths [4]. The specific
path used for the training data was that for September 13, 2006 at 19:35 UTC as shown in Fig. 1.
Simulated radiances were calculated for the nadir viewing direction only. Sun glint calculations
will be addressed in Part II. Land surfaces were assumed to be polarizing and non-isotropic, with
the bidirectional reflectance distribution function (BRDF) and polarizing properties synthesized
from MODIS BRDF and POLDER data. Over the oceans the reflectance was calculated using a
facet model [5] with a small, additional component from reflection by whitecaps [6]. The solar
position was also taken from the WRS-2 orbit path, providing a range of solar zenith angles
typical of a sun-synchronous orbit.

Atmospheric profiles (12,991 in total) were drawn from the ECMWF data base [3] sequen-
tially as a function of orbit position. Formal selection criteria were not imposed to force matches
between the profile type and the surface type defined by the location in the orbit, so mismatches
between atmospheric and surface properties do exist in the training data. This in no way inval-
idates the results presented here, but the retrievals might be improved by forcing the training
data to be consistent.
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Fig. 1. The WRS-2 orbit (starting at 19:25 UTC on September 13, 2006) used in selecting
surface properties for the simulations. The ground track of the satellite is shown in green, while
the track in red is that of the sun.

Statistics of the cloud liquid water and ice water paths∗ for the 12,991 profiles are shown
in Fig. 2. Note that for clarity the profiles with cloud water and ice identically zero have been
ommitted from the plots (1714 profiles for water and 1402 for ice). Furthermore, profiles with
cloud amounts greater than 1000.0 g/m−2 (1075 profiles for water and 100 for ice) have been
reassigned to this value for clarity in the plots. Also shown are the effective pressure heights of
water and ice, defined by

pcw =
∑

j

pjcw,j/
∑

j

cw,j and pci =
∑

j

pjci,j/
∑

j

ci,j ,

where cw,j and ci,j denote the mass densities of water and ice in layer j, expressed in units of
gm−2, pj is the corresponding layer pressure, and the summations extend over the sixty layers
of the ECMWF data set. The ensemble means for the column totals of water and ice,

cw =
∑

j

cw,j and ci =
∑

j

ci,j ,

are approximately 270 gm−2 and 100 gm−2, but these quantities are extremely variable. It
is important to capture this variability when training the neural networks, for otherwise the
predictive skill of the networks will be impaired.

Similarly, Fig. 3 presents histograms of surface pressure, surface albedo in the O2 A-band,
column water vapor w (in units of kgm−2) and mean temperature, the last defined by

T =
∑

j

Tjδpj/
∑

j

δpj ,

where Tj and δpj denote the temperature and the pressure thickness of the jth atmospheric
layer. Again, each of these variables covers a wide range, representative of real world statistics.

∗The term ‘cloud liquid water path’ will be abbreviated to simply ‘cloud water’ or even ‘water’ when
there is little chance of confusion. Similar abbreviations will be used for ice.
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Fig. 2. Histograms of cloud water (upper left), cloud ice (upper right), effective scattering height
of cloud water (lower left) and effective scattering height of cloud ice (lower right) derived from
the 12,991 ECMWF profiles.

Spectra were computed using a realistic solar model with a multiple-scattering radiative
transfer code [7, 8]. In order to expedite the process, the low-streams interpolator [9] was
employed to provide fast radiative transfer with minimal impact upon accuracy. Monochromatic
radiances were computed at 1001 points in the window of the O2 A-band, and at 801 points
in each of the weak and strong CO2 bands. The monchromatic spectra were convolved with
gaussian line shape functions to produce 47 ‘measurements’ in the O2 A-band and 37 in each
of the CO2 bands.

The optical properties of ice clouds assumed the distributions of ice crystals to be bi-
modal, with the large mode temperature dependent [10]. Scattering properties were taken from
Refs. [11, 12] and [13]. For water clouds, the effective radius was modeled as in Ref. [14],
which in turn was derived from aircraft observations. The absorption and scattering properties
were calculated using Mie theory and an assumed gamma distribution for the droplet radius.
Finally, the vertical profile of CO2 volume mixing ratio was assumed to be constant with height
and fixed at 385 ppmv. Because the spectra are more sensitive to cloud than CO2, and because
CO2 is approximately well-mixed in the atmosphere, this assumption has little impact upon the
results. Examples of the spectra for the O2 A-band (top), weak CO2 band (middle) and strong
CO2 band (bottom) are shown in Fig. 4. Only part of an O2 A-band doublet is covered, while
the weak and strong CO2 windows span only two lines.

The spectra are affected by many factors, the most important being the surface albedo and
the vertical distribution of cloud. Generally, cloudy spectra are easily distinguished from clear,
as illustrated in the left-hand panel of Fig. 5, where a cloudy O2 A-band spectrum has been
rescaled to match as closely as possible a clear spectrum, both with the same viewing geometry,
surface pressure and surface albedo. Such is not always the case, however, as can be seen in the
right-hand panel of the figure, which shows a case where a cloudy sky spectrum closely matches
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Fig. 3. Histograms of surface pressure (upper left), O2 A-band surface albedo (upper right),
column water vapor (lower left) and mean temperature (lower right) derived from the 12,991
ECMWF profiles.

Fig. 4. Typical normalized spectra for the windows of the O2 A-band (top), weak CO2 band
(middle) and strong CO2 band (bottom). The monochromatic spectra are shown as solid lines,
while the convolved spectra are shown as diamonds.
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Fig. 5. Comparisons of a clear sky spectrum (blue) in the O2 A-band to a cloudy sky spectrum
(red) that has been scaled to fit. The scaled spectrum in the left-hand panel is clearly distin-
guishable from the clear sky case, while in the right-hand panel the two spectra are very similar
even though the cloud water and ice amounts are larger.

a clear sky spectrum after scaling. Because the rescaling would be almost indistinguishable
from a change in surface albedo for the clear atmosphere, such cases are challenging for the
neural network algorithm, unless independent estimates are available for the surface reflectance.
Therefore, in the analyses that follow, we assume that the surface properties can be prescribed
with sufficient accuracy using data from sensors like MODIS. Equally, we assume that the
surface pressure and the mean temperature of the atmospheric profile are available from reliable
meteorological analyses.

3 NEURAL NETWORK CLOUD SCREENING ALGORITHM

Neural networks are a logical choice for cloud screening for two reasons. First, they can identify
the subtle variations in reflected radiances caused by slight changes in the atmosphere. Second,
once the off-line neural network training has been completed, the inversion process requires
minimal computation, yielding fast results relative to typical forward model run times, an im-
portant feature when processing large data sets. It should be noted, however, that delays in
processing may occur if the algorithm relies on ancillary data, such as atmospheric properties
from ECMWF reanalysis or MODIS surface properties, as are used here.

This work employs neural networks with standard multi-layer perceptron architecture, trained
via back-propagationof sensitivities [15]. Although many flavors of neural networks exist, com-
mon to the feed-forward architecture is preservation of the mapping in sets of weights, biases,
transfer functions and other conditioning variables (also known as network parameters) that are
determined during training by presenting to the neural network a series of matched predictor-
target pairs. Once the training has been performed, the inversion of future inputs is then a matter
of applying the network parameters to the set of inputs.

Examples of using neural networks to retrieve atmospheric variables from satellite measure-
ments include estimation of surface wind speeds from SSMI measurements [16], retrieval of
temperature and moisture profiles from Atmospheric InfraRed Sounder (AIRS) and Advanced
Microware Sounding Unit (AMSU) data [17], as well as retrieval of temperature, water va-
por and ozone from the Infrared Atmospheric Sounding Interferometer (IASI) [18] (applied to
simulated data). Multi-layer perceptrons (MLP) have been applied to the problem of land clas-
sification with heuristic methods for determining the ideal number of layers, nodes and other a
priori network parameters [19].

3.1 Network architecture

The basic architecture for a single layer of a feed-forward neural network is shown in Fig. 6.
The input to layer m consists of a vector am−1

j of predictors that are combined linearly with
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weights wm
ij and biases bm

i ,

nm
i =

∑
j

wm
ij am−1

j + bm
i .

Each nm
i is subjected to a transfer function to produce the layer output am

i ,

am
i = fm(nm

i ),

where m indicates layer number, i is the node index, j varies over the layer inputs and f
represents the transfer function.

The transfer function in the hidden layer, used to scale nm
i to values between 0 and 1,

commonly takes the form of the log-sigmoid function,

f(x) = 1/(1 + exp(−cx)),

or the hyperbolic tangent,
f(x) = tanh(cx/2),

which differs only by a constant offset and a scale factor. In this work we chose the former, and
set c = 0.3 on purely empirical grounds.

The architecture of a neural network begins with a set of predefined inputs, commonly
called predictors, which are ultimately to be mapped into the output space. There are two pri-
mary criteria for selection of the predictors. Firstly, they should be the variables that capture the
variability in the parameters that are to be retrieved and secondly, they should be variables that
are readily available. For this work the predictors are the measured (or simulated) radiances,
as well as the surface pressure, surface reflectance and the mean atmospheric temperature (de-
scribed previously) that are obtained from ECMWF reanalysis. In a two-layer neural network
the results from the first layer (the hidden layer) serves as the input to the second layer (the
output layer), giving rise to the term ‘feed-forward’. Normally a linear transfer function is used
in the output layer, as was done in this work. The outputs from the second layer in a two-layer
architecture are the estimates of the retrieval variables, often referred to as the targets. Generally
the targets are simply defined by the problem at hand, in this case being cloud water, cloud ice,
effective pressure heights of cloud water and ice, and column water vapor (cw, ci, pcw, pci, w).
To classify scenes as either cloudy or clear a simple threshold test is then performed on the
estimated values of cw and ci as will be discussed in Sec. 4.1.

3.2 Network training

Fundamental to neural networks is the training method used to optimize the weights and bi-
ases that define the mapping between measurement and state space. This work uses back-
propagation of sensitivities, which is a form of least mean square minimization via steepest
descent, as it has been shown to be fast, robust and relatively simple [15]. Proper network
behavior is presented to the algorithm in the form of matched predictor-target pairs, and the
routine seeks the solution by following the negative of the gradient of the cost function, F̂ ,
defined to be the L2-norm of the difference between the modeled data aM

r from the final layer
(indexed M ) and the observed (target) data tr,

F̂ =
∑

r

[aM
r − tr]

2.

The gradient of the cost function with respect to the weights in layer m is

∂F̂

∂wm
ij

=
∂F̂

∂nm
i

∂nm
i

∂wm
ij

= sm
i am−1

j ,
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am−1

1

am−1

2

am−1

3

am−1

4

am−1

pm−1

nm

1

nm

2

nm

pm

nm
i =

∑pm−1

j=1 wm
ija

m−1
j + bm

i

am
i = fm(nm

i )

LEVEL (m − 1) LEVEL m

Fig. 6. Structure of one layer of a feed-forward neural network. The inputs am−1
j at the left are

combined linearly with weights wm
ij and biases bm

i to produce nm
i . Each nm

i then is subjected
to a non-linear transfer function fm to produce the output am

i on the right. Here subscripts
represent node number, and superscripts represent layer number.

where sm
i denotes the sensitivity of the network error to a change in the ith element of the input

at layer m,

sm
i =

∂F̂

∂nm
i

.

Similarly, the gradient with respect to the biases in layer m is

∂F̂

∂bm
i

=
∂F̂

∂nm
i

∂nm
i

∂bm
i

= sm
i .

In the case of a single layer, when there are no hidden nodes, the sensitivites are easily com-
puted, but for a multi-layer network the calculation is slightly more complicated. However, the
recurrence relation, derived from the chain rule of differentiation,

sm
i =

∑
j

(
∂F̂

∂nm+1
j

)(
∂nm+1

j

∂nm
i

)
=
∑

j

sm+1
j

(
∂nm+1

j

∂nm
i

)
,

shows that the sensitivities can be propagated backwards from the output layer. Furthermore,
the derivative above is easily calculated, since

∂nm+1
j

∂nm
i

=
∑

k

∂nm+1
j

∂am
k

∂am
k

∂nm
i

=
∂nm+1

j

∂am
i

∂am
i

∂nm
i

= wm+1
ji

∂fm(nm
i )

∂nm
i

,

allowing the sensitivities to take the simple form

sm
i =

∂fm(nm
i )

∂nm
i

∑
j

sm+1
j wm+1

ji .
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The recursion starts in the last layer M , where

sM
i = 2(aM

i − ti)
∂aM

i

∂nM
i

= 2(aM
i − ti)

∂fM (nM
i )

∂nM
i

.

Computationally the weights and biases are determined iteratively via

wm
ij (k + 1) = wm

ij (k) − α(k)
∂F̂

∂wm
ij (k)

, (1)

bm
i (k + 1) = bm

i (k) − α(k)
∂F̂

∂bm
i (k)

, (2)

where k represents the iteration number and α(k) is the learning rate. Inserting the expressions
for the partial derivatives of the cost function into Eqs. (1) and (2), we obtain

wm
ij (k + 1) = wm

ij (k) − α(k) sm
i (k) am−1

j (k), (3)

and
bm
i (k + 1) = bm

i (k) − α(k) sm
i (k). (4)

In practice, Eqs. (3) and (4) were replaced by

wm
ij (k + 1) = wm

ij (k) − tanh(α(k) sm
i (k) am−1

j (k)) (5)

and
bm
i (k + 1) = bm

i (k) − tanh(α(k) sm
i ). (6)

The modification significantly improves the stability of the training algorithm, because the hy-
perbolic tangent limits steps that are unrealistically large, as often occurs in the first few itera-
tions. For small arguments,

tanh(x) ≈ x,

so there is no impact upon the final convergence. Note that the application of the hyperbolic
tangent function is completely independent of the transfer function f that was described previ-
ously.

After each iteration of training, the new weights and biases are used to make updated pre-
dictions of the output parameters. Then the mean squared error (MSE) between the predicted
and the target value is calculated, providing an indicator of improvement or degradation in the
new set of weights and biases. Iterations proceed until preselected convergence criteria are met,
as will be discussed in the following subsections. Several techniques designed to balance speed
and accuracy are discussed extensively in the literature; see, for example, Refs. [19] and [20].
The following subsections discuss the implementation of these methods to achieve the best
neural network performance.

3.2.1 Data division and normalization

When training neural networks it is standard practice to withhold a subset of the predictor-target
data from the training session to be used to check the network predictive skill. In this work 75%
of the simulated data was used for training, while the remaining 25% was split roughly in half
to create selection and validation subsets. The selection set is used to pick the best of a series of
trained neural networks, to be discussed in Sec. 3.3, while the validation set is used to quantify
the predictive skill, as will be shown in Sec. 4.2. Also withheld from the training routine is a
set called the hold-over data, whose composition and use will be discussed in more detail in
Sec. 4.2.
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After division of the data, the mean and standard deviation of each predictor were calculated
from the training data set and used to normalize the predictors in order to provide numerical
stability in the training routine. These normalization constants now become an inherent part of
the algorithm and must be applied to any future predictors prior to performing a retrieval.

3.2.2 Shuffles

Once the training data set has been decided upon, the iterative method desribed by Eqs. (5)
and (6) is used to determine the set of weights and biases. During one iteration all predictor-
target pairs are presented to the neural network before the MSE is calculated. Note that the input
is necessarily a rank two matrix with dimensions equal to the number of predictors and number
of training cases. In an attempt to increase the generality of the neural network, the order in
which the predictor-target pairs are presented changes for each iteration by scrambling the input
matrix in a process called shuffling. Therefore, future references to the iteration number will be
replaced with shuffle number.

3.2.3 Update of learning rate

As the algorithm searches state space for a solution that minimizes the MSE, the speed and
accuracy of the convergence can be maximized by dynamically adjusting the learning rate,
α(k). A performance increment, denoted γ(k) and defined to be the ratio of the new MSE to
the old MSE, is calculated after each shuffle, and then compared with a performance threshold
γ0, taken to be 1.04 in practice. If γ(k) > γ0, the algorithm is penalized via a reduction in
α(k),

α(k) → α(k − 1)α2, where α2 = 0.7,

and the newly calculated weights and biases are rejected in favor of the values from the previous
shuffle. On the other hand when γ(k) < γ0, the new weights and biases are retained and α(k)
is increased,

α(k) → α(k − 1)α1, where α1 = 1.05.

3.2.4 Momentum coefficient

To reduce oscillations in the search trajectory and to help avoid the algorithm halting in local
minima of the cost function, the second term on the right-hand side of Eq. (5) is rewritten as a
linear combination of the gradient and the previous weights using the momentum coefficient,
ε(k), as follows:

wm
i,j(k+1) = wm

i,j(k)− [(1−ε(k)) tanh(α(k) sm
i (k) am−1

j (k))+ε(k)(wm
i,j(k)−wm

i,j(k−1))].
(7)

The second term in the bracket on the right-hand side of Eq. (7) is the momentum term, which
serves as a low pass filter, damping out oscillations in the search trajectory. The value of ε(k)
is updated after each training shuffle based on the MSE performance in a way similar to adjust-
ments in the learning rate. That is, ε(k) is increased when γ(k) < γ0, but is decreased when the
new MSE is more than 4% larger than the MSE from the previous shuffle (when γ(k) > γ0).
However, the penalty when γ(k) > γ0 is more severe for ε(k) than it was for α(k); ε(k) is
reset to zero, in which case Eq. (7) reverts to the form of Eq. (5), since the momentum term has
effectively been removed.

Journal of Applied Remote Sensing, Vol. 3, 033548 (2009)                                                                                                                                    Page 10



Table 2. Convergence criteria used for training of the neural networks.

Variable Purpose Value
Minimum shuffles Minimum number of training shuffles 100
Maximum shuffles Maximum number of training shuffles 2000
NumRunMean Number of shuffles to calculate mean MSE 5
MaxErrorUp Maximum number of shuffles for which 8

the MSE ratio is allowed to increase
α0 Initial learning rate 0.2
α1 Increase in learning rate 1.05
α2 Decrease in learning rate 0.7
γ0 Performance threshold 1.04

(tolerated increase in MSE)
γ(k) Performance increment (MSEnew/MSEold) Varies at each shuffle
ε0 Initial momentum coefficient 0.5
ε(k) Calculated momentum coefficient Varies from 0.0 to

1.0 at each shuffle

3.2.5 Early stopping

The predictor-target combinations that are presented to a neural network during the training
routine are meant to be examples of the ideal relationship between input and output space.
However, it is important to avoid lack of generalization, or over-training, such that the network
simply memorizes the training data set. A straightforward method for identifying the onset of
this condition is to monitor the difference between the MSE of the training and validation data
sets. Although fluctuations in MSE are expected as the algorithm iterates towards a solution,
the running mean value of the MSE for both training and validation data sets should continue to
decrease. The major symptom of over-training is a continued decrease in the training data MSE
with simultaneous increase in the validation data MSE. When this occurs the training session
should be halted, a technique referred to as early-stopping.

The basic criteria for halting training is to set both a minimum and maximum allowed num-
ber of shuffles, the values of which are given in Table 2. Two additional training criteria were
introduced to provide early-stopping. First, the MSE is averaged over NumRunMean shuffles to
produce a running mean, which helps to filter noise in the MSE from one shuffle to the next. The
second variable for early stopping, MaxErrorUp, is the maximum number of shuffles that the
ratio of the running mean of the MSE of the validation and training data (R = MSEval/MSEtrn)
is allowed to increase. After each shuffle MSEval and MSEtrn are updated and R is calculated.
If R continues to grow sequentially for a number of shuffles equal to MaxErrorUp, then the
training is halted, and the set of weights and biases from the shuffle with the lowest training
MSE are retained. Note that the minimum number of shuffles must be achieved before training
is allowed to stop, regardless of the value of R. Some experimentation with the parameters
listed in Table 2 was performed and the neural networks were found to be fairly insensitive to
minor changes in the values, while major deviations from these recommended values yielded
inferior results.

3.2.6 Determining the number of nodes

As discussed previously, the function of the neural network training session is to determine the
optimum set of weights and biases by minimizing the mean squared error (MSE) between the
predicted and the target value of each variable. In theory the combination of multiple layers of
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Table 3. Results from neural network training with a varying number of nodes in the hidden
layer. Results are given for an average of fifteen trained networks in each case.

Number MSEtrn Number Time per Run Time
of nodes of shuffles shuffle [sec] [sec (min)]

2 371.8 344 0.5 166 (3)
5 290.7 590 1.6 916 (15)
10 257.5 518 4.5 2344 (39)
20 205.3 738 14.9 11,029 (184)
30 198.4 452 30.4 13,728 (229)
40 192.8 681 53.3 36,263 (604)

weights and biases with the associated transfer functions allows for infinitely complicated rela-
tions between the measurement and state space [15], although in practice there are limitations
due to imperfect training data sets, measurement noise and other complications.

In a two-layer network the matrix of weights and vector of biases in the first (hidden) layer
have the dimensions

W 1 = [P, N ] and b1 = [N ],

where P is the number of predictors and N is the number of nodes in the hidden layer. For the
second (output) layer the dimensions are

W 2 = [N, T ] and b2 = [T ],

where T is the number of target variables. Therefore, the total numbers of weights and biases
for the two-layer model are

Wtotal = NP + NT = N(P + T ) and btotal = N + T,

respectively.
Although some rules of thumb exist for determining N based loosely on the independent

pieces of information in P and T , often an empirical tack is employed. Table 3 provides a
summary from training sessions performed on the same set of predictor-target data, but with
the number of nodes in the hidden layer varying between 2 and 40. The data for each case is
an average of fifteen training runs, i.e., committee members (to be discussed in Sec. 3.3). It is
evident that as the number of nodes is increased, thereby allowing for more elaborate mappings
between measurement and state space, the MSE in the training data is reduced, as should be
expected. However, there is not a clear correlation between an increase in the number of nodes
and a reduction in the number of shuffles required to satisfy the stopping criteria of the training
process. It is obvious though that the time required per shuffle increases steadily as nodes are
added to the hidden layer, and the total training time increases substantially.

While the MSE is the sum of the squared differences between the predicted and target val-
ues for all the retrieval variables (cw, ci, pcw, pci, w), it is instructive to examine a few cases to
see the effect on the retrieval of cloud water and cloud ice. Shown in Table 4 are values of cw

and ci predicted by networks with different numbers of nodes for a clear sky case, a moderately
cloudy case and a thick cloud case. As can be seen from the top section of the table, and as
will be demonstrated in Sec. 4, the neural networks have very little skill in estimating cloud
amounts for clear sky cases. In general the predicted value is always an overestimate of the
target value. For the moderately thick cloud case (middle section of Table 4), the differences
between the predicted and target value for cloud water are minimized by the neural network
with twenty nodes, while forty nodes provided a minimum difference for cloud ice. However,
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Table 4. Predicted values of cloud water and ice from neural network training with a varying
number of nodes in the hidden layer. A clear sky case is shown at the top, a moderately thick
cloud case in the middle, and a thick cloud case at the bottom.

Number Target Predicted (P-T)/T (%) Target Predicted (P-T)/T (%)
of nodes cw cw cw ci ci ci

2 0.0 99.0 – 0.0 48.7 –
5 0.0 23.5 – 0.0 15.0 –
10 0.0 21.1 – 0.0 −5.5 –
20 0.0 7.4 – 0.0 −8.3 –
30 0.0 −18.3 – 0.0 −6.7 –
40 0.0 20.2 – 0.0 −2.4 –

Number Target Predicted (P-T)/T (%) Target Predicted (P-T)/T (%)
of nodes cw cw cw ci ci ci

2 73.8 105.7 43.2 12.8 52.3 309
5 73.8 86.8 17.6 12.8 31.1 143
10 73.8 84.1 14.0 12.8 20.8 62.5
20 73,8 75.8 2.7 12.8 16.9 32.0
30 73.8 86.2 16.8 12.8 18.0 40.6
40 73.8 82.8 12.2 12.8 15.2 18.8

Number Target Predicted (P-T)/T (%) Target Predicted (P-T)/T (%)
of nodes cw cw cw ci ci ci

2 241.2 226.9 6.3 103.8 78.9 −24.0
5 241.2 150.3 −37.7 103.8 87.6 −15.6
10 241.2 153.5 −36.4 103.8 113.4 9.2
20 241.2 154.7 −35.9 103.8 108.6 4.6
30 241.2 187.1 −22.4 103.8 107.8 3.9
40 241.2 186.4 −22.7 103.8 100.1 −4.2

for the thick cloud water case (bottom section of Table 4), there is little difference in the predic-
tions between the five, ten and twenty node networks, while the thirty and forty node networks
provide marginally better results. For the thick cloud ice case the thirty node network again
provides the most accurate result. Although these results suggest that more nodes in the hidden
layer yields higher retrieval accuracy, for the developmental work we have selected ten nodes as
a compromise for its faster training time. For an operational code, probably more nodes would
be an advantage.

3.2.7 Summary of neural network training

Once the overall network architecture has been decided, the number of hidden nodes chosen,
and training has been halted, either by the early stopping criteria or by reaching the maximum
number of allowed shuffles, the final set of weights and biases are used to predict the target
parameters. These predictions are regressed against the true target values. The slope and bias
of the linear fit for each trained neural network is retained, and used later to adjust retrieved
values, as will be discussed in Sec. 3.3.

Shown in Fig. 7 are results of the mean squared error for a typical training session after im-
plementation of the techniques discussed above. The abscissa indicates the number of iterations,
or shuffles, that occurred before training criteria were satisfied. The left panel shows results for
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Fig. 7. Each panel shows neural network mean squared errors (MSE) against the left ordinate
for the selection (thin blue), validation (thin teal) and training (thin green) data sets as functions
of training shuffle number for a single training case. Shown against the right ordinate are the
corresponding values of the momentum coefficient, ε(k) (red diamonds), and the learning rate,
α(k) (thick red). The left panel is for a case that required about 2000 shuffles to satisfy the
stopping criteria, while the right panel shows a case that stopped after just over 300 shuffles.
The only difference between the two cases is the initial set of weights and biases used to seed the
neural network. Note the occasional reset of the momentum coefficient to zero due to violation
of the γ0 performance threshold.

a case that required about 2000 shuffles to satisfy the stopping criteria, while the case shown in
the right panel stopped after only 300 shuffles. Note that the only difference between these two
cases is the set of initial weights and biases used to seed the algorithm, as will be discussed in
the next section. It is clear that the MSE in each of the training, selection and validation data
sets converges asymptotically as the algorithm iterates, suggesting that further shuffles would
provide only insignificant reductions in the MSE. Also shown in Fig. 7 are the values of the
learning rate, α(k), plotted as the thick red line against the right ordinate. The decrease of this
value towards zero is desirable behavior, as it indicates that the algorithm is taking smaller and
smaller steps in solution space as iterations proceed, thus increasing the accuracy of the final
solution. The momentum coefficient, ε(k), generally has values between 0.5 (the initial setting)
and 0.6, but occasionally is reset to zero when the performance increment is violated.

3.3 Consulting a committee of neural networks

As with any minimization problem, it is difficult to distinguish between local and global min-
ima. A convenient way to deter the algorithm from converging on solutions that correspond to
local minima is to perform multiple searches, each beginning from a randomly selected point
in state space. To this effect, a congress of fifteen neural networks are trained, each using a
different random set of initial weights and biases.

After a training session has been performed on a congress of neural networks and all of
the weights, biases and other necessary conditioning variables stored, predictions of the target
parameters can be made from a set of predictors. However, it is critical that the predictors be
conditioned in the same way as for the training session, including normalization by the mean
and standard deviation obtained from the training data prior to training (see Sec. 3.2.1). After
predictions have been made by each congress member, the correction from the linear regression
mentioned in Sec. 3.2.7 is applied to each, a committee of the best five neural networks is
selected, based on the members that return the lowest MSE for the selection subset defined in
Sec. 3.2.1. The final prediction for each target is the average of the predictions by the selected
committee. This process helps minimize random errors in the predictions.
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3.4 Sensitivity to predictors and measurement noise

In addition to the spectra, the neural networks require estimates of the surface pressure, the
surface albedo and the mean of the atmospheric temperature profile. As the latter variables
will be obtained from meteorological analyses and satellite observations, they will be subject
to error, so it is important to test the impact of such errors upon the predictions of the neural
networks. To this end, random errors were drawn from gaussian distributions with mean zero
and standard deviations equal to 2%, 10% and 2% of the estimated values of surface pressure,
surface reflectance and mean temperature, and then were added to those variables.

Another source of retrieval error that requires quantificat ion is the random instrument noise,
which for the hypothetical etalon spectrometer we assume to be dominated by photon noise.
Thus, the signal-to-noise ratio has the simple form

SNR = SNR0

√
I/I0,

where SNR0 is the signal-to-noise ratio at the reference radiance I0. We assume the latter to
be the radiance reflected in a clear, non-absorbing atmosphere from a surface with unit albedo
when the sun is at 45◦ zenith angle. For the corresponding SNR0, we assume a modest value
of 100. Noise from a gaussian distribution with mean zero and standard deviation

N =
√

II0/SNR0

is added to the radiance spectra. The noise for each spectral sample is assumed to be indepen-
dent of all other samples.

The results from the sensitivity testing described here will be presented in Secs. 4.2.3
and 4.3, where it is shown that the neural network algorithm is robust to variations in all predic-
tion variables, including instrument noise.

4 ANALYSIS OF NEURAL NETWORK PREDICTIONS

In this section we describe experiments of increasing complexity to test the skill of the neural
network in classifying clear and cloudy scenes. First, a single neural network is used to illustrate
general features of the results. Next the concepts of neural network committees and hierarchies
are described, and it is shown how these improve the retrieval of cloud properties. These tech-
niques then are applied to an independent data set to show how the algorithm performs under
more realistic conditions.

4.1 Predictions using a single neural network

First a single neural network was trained using the techniques described in Sec. 3.2, and then
predictions were made using the validation subset as input. The true and predicted values of
cloud water and ice are shown as a scatter plot in Fig. 8. The horizontal and vertical bisection
lines drawn at 2 gm−2 for cloud water and at 10 gm−2 for cloud ice, represent thresholds for
clear and cloudy scenes.

These thresholds were derived from the expression relating cloud optical thickness, τ , and
column water, W (either liquid or solid in units kgm−2), in the visible and near infrared;

τ =
3

2

W

ρre

,

where ρ is the density of liquid water or solid ice in units kgm−3 and re denotes the effective
radius in units meters [21]. Effective radii of 10 µm and 50 µm were assumed for water and ice
particles, respectively, as well as an optical thickness of 0.3, the suggested cutoff for retrievals
of XCO2

from measurements in the near-infrared [2].
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Fig. 8. Predicted versus target values of cloud water (left) and cloud ice (right) determined by a
single neural network on the validation data set that has not been truncated into hierarchy ranges,
nor stratified by surface type. Note the logarithmic scale of both axes. The linear regression
coefficient (R), the slope (m) and the bias (b) are given in the legend, along with the number of
data points (N ). The horizontal and vertical bisection lines indicate appropriate thresholds for
distinguishing cloudy scenes from clear.

For both of the plots shown in Fig. 8, the correlation between the predicted and the target
values improves with increasing cloud amount. Certainly for points with target cloud amounts
below the thresholds, the predicted value has almost zero correlation as well as high deviation,
while for large cloud amounts the correlation is tight. For scenes with no cloud water,† the
predicted values span a wide range of values.

4.2 Predictions using neural network committees and hierarchies

The predictions in Fig. 8 were made using neural networks trained with data spanning the full
breadth of cloud water and ice (approximately 0–5000gm−2and 0–2000gm−2). The issue of
decreasing accuracy with decreasing optical thickness is presumably due to the difficulty in
identifying small changes in signal that occur in thin cloud versus the much larger changes that
occur when the optical thickness is large.

One technique for overcoming this difficulty is to train a series of neural networks, each
using training data that spans a limited range of cloud water. The distinct neural networks,
hereafter referred to as hierarchy members, can be thought of as specialists in their range of ex-
pertise. Experimentation indicated that selecting four training ranges, listed in Table 5, provided
enough resolution to solve the aforementioned problem, while still providing enough training
spectra for each hierarchy from the original set of 12,991 spectra.

Prior to truncation of the training data, the hold-over data set, mentioned in Sec. 3.2.1, is
withheld from the full synthetic data set. This produces a collection of predictor-target pairs
including profiles with cloud water and ice spanning approximately the full range of values
found in the training data set. This hold-over set is used to test the retrieval skill in situations
where the correct hierarchy member is not known a priori, as occurs when processing real
soundings.

4.2.1 Stratifying scenes by IGBP surface type

Although the sensitivity study described in Sec. 3.4 indicated that the neural network retrievals
are insensitive to variations of order 10% in surface reflectance, due to large changes in re-
flectance over natural surfaces, it was found that neural network predictions were improved if

†A small offset has been added to allow identical zeros to be plotted on a logarithmic scale.
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Table 5. Thresholds of M , the combined cloud liquid and ice water in units gm−2, used to build
neural network hierarchy members.

Hierarchy index Training range (gm−2)
H0 0 ≤ M ≤ 1
H1 1 < M ≤ 40
H2 40 < M ≤ 300
H3 300 < M

scenes were stratified according to the International Geosphere-Biosphere Programme (IGBP)
surface type. Four surface categories were distinguished:

(1) permanent snow and ice (IGBP=15);

(2) barren or sparsely vegetated (IGBP=16);

(3) water (IGBP=17);

(4) all other surface types.

Although not strictly correct terminology, these categories are referred to as ice, desert, ocean
and land in the remainder of this document for convenience. For brevity, only results over land
are reported in the work presented here, the performance for other surface categories being
similar. In Part II of the manuscript the results will be extended to include all surface types.

4.2.2 Predictions on the validation data set

After the 12,991 ECMWF profiles were split according to the four surface types and then into
the four hierarchy regimes based on cloud amount, the subsets of synthetic spectra were used to
train the corresponding sixteen congresses of neural networks. The results from the validation
subsets are shown in the left and right panels of Fig. 9 in the form of scatter plots of the predicted
values of cloud amount versus the target values from the four hierarchy members. In these plots
each hierarchy member is plotted in a different color. Although the accuracy of the retrieved
cloud amount is still proportional to the cloud water, the correlation is much tighter than the
results shown in Fig. 8 when no hierarchy was used and no stratification by surface type was
made.

Having provided four hierarchy members, each with a given range of expertise, a method for
selecting the most reliable prediction from a set of measurements with unknown cloud amount is
needed. The tight correlation with the hierarchy member trained using cloud water greater than
300 gm−2 (H3 in Table 5) suggests the following decision tree. First make a prediction using
the largest hierarchy member (H3). If the predicted value falls within the range of expertise
of H3, then retain the predicted value. Otherwise, make a second prediction using the next
hierarchy member (H2) trained using cloud between 40 gm−2 and 300 gm−2. If the predicted
value falls within the range of expertise of H2, then retain the predicted value. Repeat for
H1 and H0, retaining the appropriate prediction. This method is referred to hereafter as the
‘trickle-down’ technique. For cases when none of the hierarchy members return a predicted
value within its range of expertise, the scene is flagged and a dummy value (-999.9) is returned.
For the retrievals on the entire independent data set discussed below, only 78 of 12,991(0.5%)
of the scenes were indeterminate, and none occurred over land.

Journal of Applied Remote Sensing, Vol. 3, 033548 (2009)                                                                                                                                    Page 17



Fig. 9. Predicted vs target values of cloud water (left) and cloud ice (right) for four individual
hierarchy members on the validation data set using a committee of five neural networks. The
linear regression coefficient (R), the slope (m) and the bias (b) are given in the legends, along
with the number of data points (N ). Results are for measurements over land surfaces only.

Fig. 10. Predicted vs target values of cloud water (left) and cloud ice (right) on the hold-over
data set using the trickle-down strategy with a four member hierarchy, each consisting of a five
member neural network committee. The linear regression coefficient (R), the slope (m) and the
bias (b) are given in the legends, along with the number of data points (N ). Results are for land
surfaces only. Corresponding contingency table results are summarized in Table 6.

4.2.3 Predictions on the hold-over data set

Shown in Fig. 10 are predictions for cloud water (left) and cloud ice (right) on the hold-over
data set for scenes over land surfaces. It is evident that the trickle-down technique provides a
good retrieval for cloud water, especially when the water exceeds the 2 gm−2 threshold. In the
case of cloud ice there are horizontal striations, indicating that the wrong hierarchy member was
selected for the final prediction, generally leading to an overestimate of the true value. Overall
the classification skill is reasonable. For both cloud water and cloud ice, the linear correlation
coefficient is high (R = 0.96 and R = 0.95, respectively), while the slope is at or near one
(m = 1.00 and m = 0.94, respectively) and the bias is small (b = 3.4 gm−2 and b = 9.3 gm−2,
respectively) relative to the range of values.

Although the regression analysis provides a useful metric of accuracy, it is desirable to
quantify the skill of the clear and cloudy classifications statistically. This is done through a
contingency table, which bins each retrieval into one of four logical categories, true positive
(TP), true negative (TN), false positive (FP) or false negative (FN), where true (T) refers to
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Table 6. Contingency tables for classifications on the hold-over data set (corresponding to
Fig. 10) for cloud water and ice. The results are for land surfaces, excluding IGBP types 15, 16
and 17.

Variable Clear atmospheres Cloudy atmospheres ACC PPV
Total Predicted Predicted Total Predicted Predicted
cases clear cloudy cases clear cloudy

# TPR # FNR # FPR # TNR
Water 110 94 86% 16 14% 328 8 2% 320 98% 95% 92%

Ice 172 135 79% 37 21% 266 42 16% 224 84% 82% 76%

correct and false (F) to incorrect classification, while positive (P) refers to clear and negative
(N) to cloudy conditions, based on the 2 gm−2 and 10 gm−2 thresholds introduced above. For
a perfect algorithm, all cases will be correctly classified into the two diagonal elements of the
contingency table (TP + TN = 100%), but in practice the non-zero off-diagonal elements (FP
and FN) indicate the frequency of error in the classification. The performance is summarized
by the true positive rate TPR = TP/P, the false negative rate FNR = FN/P, the false positive
rate FPR = FP/N and the true negative rate TNR = TN/N.

Several useful diagnostic statistics can be calculated from the contingency table values.
Here we report the value of the accuracy,

ACC = (TP + TN)/(P + N),

which represents the fraction of all scenes that were correctly classified, and the positive pre-
dictive value,

PPV = TP/(TP + FP),

which gives the confidence level that scenes reported as clear are actually clear. Since the most
egregious behavior of the cloud screening is passing cloudy scenes as clear if the subsequent
numerical cost of analyzing scenes is high, it is best to maximize the number of TP while
simultaneously minimizing the number of FP. In general this result also leads to high values of
the PPV. Note however, that a subtlety of the PPV is that it can be weighted heavily by either
the TP or the FP, depending on the relative number of clear to cloudy scenes contained in the
data set. For example, if there are ten times more clear scenes than cloudy ones, then it is likely
that a classification algorithm that has only modest skill still will produce very high values of
PPV. In general it is important that the training data set contains profiles covering the full
range of realistic scenarios, while the independent data set should contain realistic frequencies
of occurence of cloudy versus clear scenes.

The contingency table corresponding to Fig. 10 for cloud water and cloud ice is presented
in Table 6. The relatively high values of TPR, ACC and PPV, along with the low value of FPR,
indicate good classification skill, although the results are significantly better for cloud water
than for cloud ice, a result that persists through all data sets.

Next, the sensitivity tests described in Sec. 3.4 were performed on the hold-over data set,
first by adding noise to the variables separately and then simultaneously. Contingency tables
were calculated for each scenario, with results summarized in Tables 7 and 8. Each of the
individual perturbations has only a small effect on the statistics. Comparison of the results for
the combined uncertainties with the results made with no uncertainties added (Table 6) shows
that the degradation in skill is slight, with a decrease in accuracy and positive predictive value of
about 2% for both cloud water and ice. These results show that the neural network algorithm is
robust to realistic uncertainties in the predictors. The results presented in the following section
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Table 7. Contingency tables for the sensitivity tests performed on the hold-over data set for
cloud water. The results are for land surfaces, excluding IGBP types 15, 16 and 17.

Perturbation Clear atmospheres Cloudy atmospheres ACC PPV
Total Predicted Predicted Total Predicted Predicted
cases clear cloudy cases clear cloudy

# TPR # FNR # FPR # TNR
Mean temp 110 90 82% 20 18% 328 8 2% 320 98% 94% 92%
Surf pres 110 94 86% 16 15% 328 8 2% 320 98% 95% 92%
Surf Refl 110 94 86% 16 15% 328 11 3% 317 97% 94% 90%
Inst noise 110 93 85% 17 15% 328 9 3% 319 97% 94% 91%
Combined 110 90 82% 20 18% 328 10 3% 318 97% 93% 90%

Table 8. Contingency tables for the sensitivity tests performed on the hold-over data set for
cloud ice. The results are for land surfaces, excluding IGBP types 15, 16 and 17.

Perturbation Clear atmospheres Cloudy atmospheres ACC PPV
Total Predicted Predicted Total Predicted Predicted
cases clear cloudy cases clear cloudy

# TPR # FNR # FPR # TNR
Mean temp 172 137 80% 35 20% 266 44 17% 222 83% 82% 76%
Surf pres 172 136 79% 36 21% 266 42 16% 224 84% 82% 76%
Surf refl 172 135 79% 37 21% 266 44 17% 222 83% 82% 75%

Inst noise 172 134 78% 38 22% 266 43 16% 223 84% 82% 76%
Combined 172 132 77% 40 23% 266 47 18% 219 82% 80% 74%

on the independent data set were performed with these uncertainties added to simulate real
world conditions.

4.3 Predictions on independent data set

The tests thus far have assumed perfect simulations of spectra, whereas any numerical model
can provide only an approximation to reality. To assess the impact of errors in the simulations,
we generated an independent set of spectra that used CloudSat observations of clouds, coupled
with meteorological analyses from ECMWF interpolated in time and space to the vertical grid
used by CloudSat (typically with 125 layers). The aerosol and surface models were similar
to those used for training, namely, a two-layer model of aerosol, with continental and oceanic
types [22], and polarized, non-isotropic reflection, with parameters derived from MODIS and
POLDER. A more thorough description of model implementation can be found in [23].

Scatter plots of the predictions of cloud water and ice are presented in Fig. 11 for land
surfaces. Comparison of the results with and without uncertainties (blue diamonds and teal
triangles) indicates only minor differences in the retrieved values, again supporting the robust-
ness of the algorithm. Overall, the accuracy of the retrievals compares well to results from the
hold-over data set (Fig. 10), although there is a much higher percentage of profiles with true
cloud amounts below the threshold level, i.e., clear cases. For cloud water (left panel) there is a
tight correlation for high cloud amounts, while the values below the clear-cloudy threshold are
essentially uncorrelated and have high variance. Again, the horizontal striations in the retrieved
values are caused by incorrect assignment of the hierarchy member to make the final prediction,
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Fig. 11. Predicted versus target values of cloud water (left) and cloud ice (right) on the indepen-
dent data set using the trickle-down technique with a four member hierarchy, each consisting of
a five member neural network committee. The linear regression coefficient (R), the slope (m)
and the bias (b) are given in the legends, along with the number of data points (N ). The results
are for measurements over land surfaces. The corresponding contingency tables are shown in
Table 9.

Table 9. Contingency tables for retrievals on the independent data set for cloud water (top)
and cloud ice (bottom) corresponding to the data presented in Fig. 11. The results for all land
surfaces.

Variable/ Clear atmospheres Cloudy atmospheres ACC PPV
error

Total Predicted Predicted Total Predicted Predicted
cases clear cloudy cases clear cloudy

# TPR # FNR # FPR # TNR
Water/none 4422 3356 76% 1066 24% 633 22 4% 611 96% 79% 99%
Water/all 4422 3157 71% 1265 29% 633 19 3% 614 97% 75% 99%
Ice/none 4117 3770 92% 347 8% 938 189 20% 749 80% 89% 95%
Ice/all 4117 3736 91% 381 9% 938 193 21% 745 79% 89% 95%

a persistent problem with the trickle-down technique. Also of concern is the large variation in
the predicted values when the target cloud amount is identically zero.‡ These issues are even
more apparent in the cloud ice retrievals (right panel).

Despite these deficiencies, the neural network still provides accurate classifications of scenes
as either clear or cloudy. The contingency tables presented in Table 9 show that the accuracy
and positive predictive value remain high, the latter with values of 99% and 95% for cloud wa-
ter and ice, respectively, even with uncertainties added. Thus, we may have high confidence
that scenes predicted as clear are in fact clear at the 2 gm−2 and 10 gm−2 thresholds. Fur-
thermore, the relatively high true positive rates (71% and 91%) mean that the algorithm is not
simply screening out all of the scenes, as might be done if the clear-cloudy thresholds were set
unrealistically low.

Although not essential parameters for identifying clear scenes, the remaining three parame-
ters predicted by the neural network might be useful to more sophisticated retrieval algorithms,
such as that described in Ref. [24], for determining XCO2

from high resolution spectral mea-

‡A small offset has been added to allow plotting on the logarithmic scale.
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Fig. 12. Neural network predictions of the effective height of cloud water (left), effective height
of cloud ice (right) and column water vapor (lower), as determined by the four member hierar-
chy using the trickle-down method on the independent data set.

surements in the near infrared. Shown in Fig. 12 are scatter plots for the effective heights of
cloud water (left) and ice (right), and also column water vapor (lower). Overall the variance
in these variables is high, and they are more susceptible to uncertainties than cloud water and
ice. The retrievals of cloud water and ice are not significantly affected by removing these ad-
ditional parameters from the neural network algorithm, although it does reduce the size of the
neural network weight and bias matrices, thereby decreasing the training time and storage re-
quirements. Although future training sessions might benefit from removal of these variables,
since the number of nodes in the hidden layer could be increased to offset the time savings, they
have been retained in the current exploratory version of the algorithm. It is hoped that future
improvements will allow more accurate retrieval of these parameters.

5 CONCLUSIONS

A methodology using neural networks has been developed for classifying scenes as either clear
or cloudy using high resolution spectra in micro-windows of the near infrared absorption bands
of O2 and CO2. The neural networks have a two-layer, feed-forward architecture. Training
of the neural networks was performed using predictor-target pairs synthesized with a multiple-
scattering radiative transfer code using sixty-layer analyzed meteorology profiles from ECMWF
and surface properties from MODIS. Committees of neural networks were trained over four
cloud water ranges and four distinct IGBP surface types to provide better accuracy of the pre-
dictions. A methodology was developed to select the hierarchy member to make the final pre-
diction.

Increasingly complicated experiments were conducted to show that the algorithm provides
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satisfactory skill in distinguishing cloudy from clear scenes, even when realistic uncertainties
were added to the predictor variables. The accuracy and confidence levels of the neural net-
work predictions were confirmed with an independent data set generated using CloudSat clouds,
ECMWF meteorology interpolated in time and space to the fine vertical resolution of CloudSat,
and surfaces that were both polarizing and non-isotropic. Typically, the accuracy and confidence
levels for predictions of water cloud were 75% and 99%, while those for ice cloud were 89%
and 95%.
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