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Abstract. A linear coherent superposition method for estimating the
plane wave far-field scattering pattern from multiple biological cells
computed by the finite-difference time-domain �FDTD� method is pre-
sented. The method enables the FDTD simulation results of scattering
from a small number of complex scatterers, such as biological cells, to
be used to estimate the far-field pattern from a large group of those
same scatterers. The superposition method can be used to reduce the
computational cost of FDTD simulations by enabling a single large
scattering problem to be broken into smaller problems with more
practical computational requirements. It is found that the method
works best in cases where there is little multiple scattering interaction
between adjacent cells, so the far-field pattern of multicell geometry
can simply be calculated as a phase-adjusted linear superposition of
the scattering from individual cells. A strategy is also presented for
choosing the minimum number of cells in cases with significant mul-
tiple scattering interactions between cells. © 2010 Society of Photo-Optical
Instrumentation Engineers. �DOI: 10.1117/1.3491124�
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Introduction
nderstanding the nature of light interaction with tissue is

undamental in aiding the development of optical diagnostic
echniques capable of fast, noninvasive evaluation of tissue
athology. A number of these modalities, such as diffuse op-
ical spectroscopy1 and elastic scattering spectroscopy,2 de-
end on correlating the scattering properties of tissue to its
hysiological state. Scattering spectroscopy techniques have
een developed that can determine the degree of tissue dys-
lasia in an effort to diagnose various forms of cancer.3–5

any of these techniques would benefit greatly from a large
et of training data that spans a large parameter space of cell
ariation. While such a data set may be difficult to generate
xperimentally, a computational method would enable the
ser to independently control all physical parameters of the
issue, such as cell size, nuclear size, or organelle density.

A direct analytical solution to optical scattering problems
nvolving cells with any realistic level of complexity is virtu-
lly impossible. Analytical solutions to scattering problems
uch as Mie theory6 and variations of it involving coated
pheres7 are available, but they are often very limited in the
ituations they may be appropriately applied to. While spec-
roscopic techniques based on Mie theory have demonstrated
ome ability to determine scatterer sizes from elastic scatter-
ng data,4,8 all such approximations require a significant sim-

ddress all correspondence to: Matthew S. Starosta, The University of Texas at
ustin, Department of Electrical Engineering, Austin, Texas 78712. Tel: 512-
71-2071. E-mail: starosta@mail.utexas.edu
ournal of Biomedical Optics 055006-
plification of the cell geometry and refractive indices of cell
components.

With the ever-increasing capabilities of high-performance
computing resources, it is possible to solve complex scatter-
ing problems by treating Maxwell’s equations numerically us-
ing computational techniques such as the finite-difference
time-domain �FDTD� method. The FDTD method has been
used extensively to investigate optical scattering from single
heterogeneous cells9–18 as well as scattering from multiple
homogeneous cells.19–21 It has recently been demonstrated
that optical scattering problems involving up to 27 complex
cells are feasible by running a parallelized FDTD code on
high-performance computing clusters.22

Such a large problem requires access to significant compu-
tational hardware and a high number of CPU hours. With the
increasing number of open scientific computing resources,
such as the National Science Foundation’s Teragrid,23 access
to such computing power is available, but resources are still
limited. Therefore, it is of interest to reduce the number of
clock cycles required to run a simulation without significantly
degrading the simulation results.

A linear superposition method that is a modified version of
the near-to-far-field transform is presented in this paper. It is
evaluated for its effectiveness in estimating a large multicell
far-field scattering pattern from the superimposed far-field
patterns of single cells or small numbers of complex cells.
While it has previously been demonstrated as a method to

1083-3668/2010/15�5�/055006/9/$25.00 © 2010 SPIE
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stimate scattering of small numbers of red blood cells from
hat of a single cell,19 it is unclear whether such a technique
ill be as effective on a complex group of scatterers such as
eterogeneous cells. The objective of this paper is to clarify
he requirements and limitations of the superposition method
n estimating the simulated farfield scattering from multiple
iological cells from simulations of a reduced number of
ells.

FDTD Method
he FDTD method developed by Yee24 is a direct numerical
olution of Maxwell’s curl equations in the time domain.

axwell’s curl equations are discretized in space and time,
esulting in six update equations for each Cartesian compo-
ent of the electric and magnetic fields. These equations are
pdated in a leapfrogging manner as the simulation steps
hrough time. The problem space is discretized into cubic
oxels, each about � /20 in size, to ensure the stability of the
omputational results. As a result, the computational com-
lexity of a 3-D problem rapidly increases with problem size
elative to wavelength. Satisfying memory requirements to
imulate a scattering problem of realistic size quickly be-
omes impossible using typical desktop resources. However,
ue to the regular structure of the simulation grid, the problem
s easily parallelized across many compute nodes to make
arge problems tractable when using a parallel computing
luster.

The same FDTD code used for a previous study22 was used
or the superposition study. It uses the scattered-field-only
ormulation25,26 to minimize memory requirements for storage
f electric and magnetic field components. Due to this formu-
ation, the incident x-polarized plane wave is computed ana-
ytically and does not propagate via the FDTD update equa-
ions. The incident field is therefore immune from phase
rrors that may occur due to numerical dispersion often
ssociated26 with FDTD. The FDTD grid is terminated using
erenger’s split-field perfectly matched layer �PML� absorb-

ng boundary condition.27 The PML condition has been used
xtensively in FDTD simulations of optical scattering.

Superposition Technique
he FDTD method computes only the electromagnetic field
alues in the near field of the problem space. To obtain the
ar-field scattering pattern, a near-to-far-field transform must
e employed.26,28 Using the discrete Fourier transform with
he origin being the center of the problem space, the time-
omain field values from the FDTD simulations over a sur-
ace S were converted to frequency-domain surface current
ensities. The surface S was chosen to be a cube, 20 grid
oxels smaller than the total problem space size on all sides.
he entire scattering geometry was still contained within this

educed volume. The far-field electric and magnetic vector
otentials A and F are calculated from these surface current
ensities and then used to determine the electromagnetic far-
eld values. The far-field scattering pattern is then determined
rom these electric and magnetic field values.

The superposition method presented here is a modified ver-
ion of the near-to-far-field transform. Smaller simulations
hat require fewer computational resources may be linearly
uperimposed in the same transform to estimate the far-field
ournal of Biomedical Optics 055006-
scattering from a larger scattering problem. In the case of
optical scattering by tissue, the subgeometry can be chosen to
be a single cell, but multicell subproblems can also be used.
Scattering information from several subgeometries can be su-
perimposed in a manner so as to approximate the scattering
from many cells arranged in a tissue. The generalized formu-
lation for the far-field vector potentials is

A =
�o exp�− jkr�

4�r �
n=1

N ��
Sn

Js
n exp�jkrn� cos �n�dsn�� , �1�

F =
�o exp�− jkr�

4�r �
n=1

N ��
Sn

Ms
n exp�jkrn� cos �n�dsn�� , �2�

where rn is a point in the far field, and �n is the angle between
rn and rn�. A number N of subproblems are simulated and their
equivalent surface current densities Js

n and Ms
n are determined

and recorded into data files. The superposition algorithm per-
forms the same integrals as the conventional near-to-far-field
algorithm to determine A and F, but changes the location of
the center point of the geometry to reflect the location of the
surface Sn with respect to the center of the larger problem
space being estimated. The estimate effectively becomes the
coherent sum of the far-field potentials of the subgeometries
with the same overall phase center to allow for placement
relative to one another. The far-field electric and magnetic
field components are given by

E� = − j��A� + �oF	� , �3�

E	 = − j��A	 − �oF�� , �4�

H� =
j�

�
�A	 − �oF�� , �5�

H	 = −
j�

�
�A� + �oF	� , �6�

where �=�� /�. The far-field scattering intensity is then de-
fined by

Fs��,	� =
1

2
R�E�H

	
*� +

1

2
R�− E	H

�
*� . �7�

The accuracy of the superposition estimate is determined
by comparing the far-field scattering pattern predicted by the
superposition method with the scattered far-field of the large
problem. Because of the large variations with respect to scat-
tering angle in the amplitude of the scattered field signal, a
correlation factor �
� of the superposition pattern is computed
with respect to the true scattering pattern from the large prob-
lem geometry29:


 =

�� � Fs
superposFs

true d� d	�2

�� � 	Fs
true	2d� d	�2 . �8�
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Because a perfect replication of the true signal would re-
ult in 
=1, the error of the superposition far field estimate
an be defined as

error = 	1 − 
	 . �9�

The accuracy of the superposition algorithm in estimating
he true far-field scattering from a larger scattering geometry
uch as a tissue is dependent on the degree of multiple scat-
ering between each of the component geometries, such as
ingle cells. This is because the superposition estimation as-
umes no mutual scattering interaction between the individual
ubgeometries being superimposed on one another. In the
roblems investigated, the incident plane wave travels in the
z direction. Because biological cells are individually very
eak scatterers at optical wavelengths, arranging cells parallel

o the z axis can result in significant scattering interaction.
his will make a superposition case using single cells less
ccurate in approximating the far-field scattering from such an
rrangement. A multicell structure arranged perpendicular to
he direction of plane wave propagation, however, should
ave very small multiple scattering occur between adjacent
ells, making a superposition approximation using single cells
s the component geometry much more accurate relative to
he parallel configuration.

For larger multicell scattering problems with multiple cells
long each Cartesian axis, it is necessary to determine the
inimum number of cells that must be included in each sub-

roblem to achieve a desired level of accuracy in far-field
stimation. This will depend greatly on the level of multiple
cattering occurring between various parts of the geometry. At
minimum, the subgeometries should likely consist of groups
f scatterers arranged along the axis of the plane wave propa-
ation to include some information about scattering in that
irection.

Cell Construction Parameters
cell construction script used in another paper22 was adapted

or the creation of problem spaces containing multiple ran-
omized complex cellular scatterers. For more accurate mod-
ling of scattering by cells embedded in tissue, the back-
round is matched to that of cytoplasm 
n=1.36 �Ref. 30��.
he refractive index values used for the nuclei and mitochon-
ria were n=1.40 �Ref. 30� and n=1.38 �Ref. 31�, respec-
ively. The cuboidal cells shown in Fig. 1 have major diam-
ters of 15 �m and minor diameters of 13 �m. However, due
o computational constraints, the simulation was unable to
ccurately resolve a cell membrane, so no boundary exists at
hese diameters. Because other investigations using FDTD to
nvestigate cell scattering have found that the membrane has a
elatively small contribution to far-field scattering,15 this was
onsidered a reasonable decision. The major and minor diam-
ters of the heterogeneous ellipsoidal nuclei are 6 and 5 �m,
espectively. The overlapping spatial inhomogeneities within
ach nucleus are 1 �m in diameter, and have randomly as-
igned refractive index values uniformly distributed in the
ange of 1.40�0.03. The refractive index in the overlapping
egions is assigned in sequential order of sphere placement.
he number of spherical inhomogeneities was chosen to equal

oughly 10 times the volume of each nucleus to ensure het-
ournal of Biomedical Optics 055006-
erogeneity throughout each nucleus. The organelles within
each cell are divided evenly by volume into two groups: one
ellipsoidal group with major and minor diameters of 1.5 and
0.5 �m and another spherical group with diameters of
0.5 �m. The location and orientation of cellular components
are chosen via random number generation and organelle
placement is constrained so they are nonoverlapping �see Fig.
2�. The numeric seed for the random number generator can be
fixed to enable a particular geometry to be repeated, or it may
be set to change to enable original cell construction and to test
for sensitivity of results to particular cellular configurations.

5 Results
5.1 Eight Cells
Eight different randomly generated cells with heterogeneous
nuclei and 6% organelle density by volume were arranged

35 μm

Fig. 1 Rendering of eight-cell cube with randomly placed homoge-
neous nuclei and organelles.
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Fig. 2 Refractive index map of a 2-D slice of a 3-D 27-cell problem
geometry with heterogeneous nuclei. The overlapping spherical het-
erogeneities are seen within the nuclei and the organelles within the
cell are constrained to be nonoverlapping.
September/October 2010 � Vol. 15�5�3
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nto a 2�2�2 cube �see Fig. 1 for the arrangement of cells�.
n FDTD simulation was performed to calculate the scatter-

ng of a +z traveling plane wave by this geometry. A near-to-
ar-field transform28 was used to obtain the far-field scattering
rom a simulation of all eight cells. The geometry was then
plit into two subgroups, each having four cells arranged in a
�2 square in the yz plane �or 1�2�2 geometry�. A simi-

ar subgrouping was made using two 2�2 squares each ar-
anged in the xy plane �or 2�2�1 geometry�. Smaller sub-
ivisions of the geometry were also made by grouping the
ells in four subgroups of size 2�1 arranged in either the y
r z direction, and finally each of the eight cells was treated as
subgroup on its own. Each of these subgroups was simu-

ated separately using FDTD and near-field scattering data
ere recorded. The scattering data from each subgroup case
ere then assembled by the superposition algorithm into a

cattering approximation of the original 2�2�2 cube of
ells.

Figure 3 shows the far-field scattering pattern Fs��� aver-
ged over all 	 angles for the original eight cell geometry
long with several results of the superposition method using
arious different subgeometries. While the scattering was cal-
ulated for all �, only 0
�
30 is shown here for easier
ifferentiation between traces. The legend entry 2�2�2 in-
icates the original eight cell geometry results, while, for ex-
mple, the entry 1�1�2 indicates the results of the super-
osition of the far-field scattering of four separate groups of
wo cells each arranged along the z axis. Additionally, Fig. 3
hows the calculated scattering cross section and anisotropy
esulting from the far-field pattern in each case.
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ig. 3 Average scattering Fs��� over all 	 angles along with scatterin
uperposition results for various subgeometries.
ournal of Biomedical Optics 055006-
The superpositions using subgroups 1�2�2 and 1�1
�2 show the greatest agreement with the scattering from the
original geometry, with errors of 0.005 and 0.145, respec-
tively. The remaining superposition estimates have error fig-
ures that are almost exactly 1, which indicates that there is
barely any correlation between those superposition estimates
and the true scattered field. This should not be surprising as
the incident plane wave is traveling in the +z direction and the
cellular components are all relatively weak scatterers com-
pared to the cytoplasm background. This will cause most mul-
tiple scattering between cells to occur roughly along the z
axis. Those subgroups of cells whose configurations are along
the z axis will preserve most effects of this multiple scatter-
ing, while those that are arranged only along the x the or y
axis will effectively ignore them.

The results shown in Fig. 4 demonstrate the effectiveness
of the superposition method in predicting scattering for mul-
tiple cells arranged in a plane perpendicular to the direction of
incident light. Because the cellular geometry is 2�2�1,
there is no multiple scattering between cells along the z axis.
The superposition of 1�2�1 geometries is actually slightly
less accurate with an error of 0.059 compared with an error of
0.002 of the superposition of single cells �1�1�1�, their
differences in error are relatively small. Because there is
much less scattering interaction between the cells in this case,
it can be seen as an example of the type of problem that
would greatly benefit from the superposition of many small
scattering simulations, such as single cell simulations.

While the problem geometry and superposition results
shown in Figs. 1 and 3 show the eight cell problem using
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ight differently constructed cells, similar results were seen in
he case where the exact same cell is replicated eight times
nto a 2�2�2 cube. This demonstrates that the superposi-
ion technique can work equally well for replicating the same
ell into a larger geometry or assembling different subgroups
nto a larger arrangement.

.2 Results from Increasingly Complex Scattering
Geometries

xpanding the size of the previous scattering geometry in the
wo directions perpendicular to the light propagation axis, a
�3�2 cell geometry was created 
see Fig. 5�a��. The cells

n this case are generated in the same manner as those previ-
usly seen. The far-field and superposition scattering pattern
esults for this geometry are seen in Fig. 6. Little qualitative
hanges are seen in the results when compared to the 2�2

2 cell geometry, with the z arranged subgeometries result-
ng in the most accurate far-field scattering predictions. The
rrors for the 1�3�2 and the 1�1�2 superposition cases
re 0.104 and 0.231, respectively.

When a third layer of cells is added in the z dimension 
see
ig. 7�a��, however, some of the trends seen in previous su-
erposition results change. Each cell in this 3�3�3 case is
gain generated with a different random seed and each has a
eterogeneous nucleus. The importance of using z arranged
ubgeometries is still observed in the far-field scattering pat-
ern of this larger problem, as seen in Fig. 8. The patterns
how that the 1�3�3 and 1�1�3 superposition cases re-
ain in the best agreement with the scattering pattern of the

arge problem, with errors of 0.011 and 0.227, respectively.
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ig. 4 Average scattering Fs��� over all 	 angles along with scatterin
uperposition results for various subgeometries.
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Interestingly, the errors of the other superposition cases are no
longer nearly 1, with all values of the remaining cases being
around 0.88. While these estimates still have quite low corre-
lation with the true far-field pattern, the correlation is no
longer close to zero.

The anisotropy and scattering cross section estimates from
any of the multicell superposition cases, however, are in much
closer agreement with those of the 3�3�3 problem than
was true in the 2�2�2 or 3�3�2 cell cases. This appears
to be a result of the choice of cell construction parameters and
cell arrangement in the 3�3�3 problem geometry. Multiple
scattering from the front layers of cells actually has a shading
effect on the rear layers, making those rear layers have a
decreasing impact on the total amount of light scattered by the
volume.32 In certain subdivision cases, however, the superpo-
sition rule assumes that all the superimposed layers are ex-
posed to the same incident light intensity, causing their scat-
tering cross sections to add nearly linearly �discounting

x

y
z

(a) (b)

Fig. 5 �a� Simplified diagram of 3�3�2 cell scattering geometry and
�b� one possible subdivision into 3�3�1 subproblems.
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estructive interference due to phase differences�. In the case
here three 3�3�1 subgroups are superimposed along the z

xis, for example 
see Figs. 5�b� and 7�b��, the resulting pre-
iction for scattering cross section is roughly a sum of the
ross sections of the subgroups. It happens that the cross sec-
ion of each of these subgroups is nearly one third of that of
he full 3�3�3 problem. Similar phenomena are seen for
maller subgroups that are not arranged along the z axis.
hus, in this one specific case the superposition approxima-

ion provides an accurate estimator for cross section and even
nisotropy regardless of the way the problem is subdivided.
his level of accuracy when using any choice of subgroup is
ot necessarily repeatable if different cells are used in the
ame arrangement, or even if the same cells are used but
paced slightly differently. Thus, the agreement between, for
xample, the 3�3�1 subdivision case prediction for scatter-
ng cross section and the 3�3�3 cross section does not
epresent a trend toward any superposition case being a good
redictor of scattering cross section. In addition, the far-field
cattering pattern prediction of the various superposition cases
ollows the same trend as previous cases, with the 1�3�3
nd 1�1�3 predictions being much more accurate than any
ther choice of subgeometry. However, accurate superposition
esults are still obtained in these cases when a suitable z ar-
anged subgeometry is used.

To determine if the observed trends in scattering cross sec-
ion prediction and error measurements continued with in-
reasing tissue thickness, an even larger simulation consisting
f 36 cells in a 3�3�4 configuration was simulated. The
esults are shown in Fig. 9. Once again, the subgroups ar-
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ig. 6 Average scattering over all 	 angles along with scattering cros
osition results for various subgeometries.
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ranged along the z axis resulted in the best agreement with the
large simulation results. The error figures in the 1�3�4 and
1�1�4 cases were 0.044 and 0.239, respectively, while the
remaining error figures were all unity. This suggests that the
optimal method for choosing the superposition subgrouping
will remain the same for larger problems. Looking at the bar
graphs in Fig. 9, one notices that the 3�3�1 and 1�3
�1 superpositions have actually begun to overpredict the
scattering cross section of the true problem.

For this particular choice of cell geometry and arrange-
ment, this 3�3�3 configuration appears to be a crossover
point in scattering cross section prediction when using the 3
�3�1 subdivision as the number of cells along the z direc-
tion of the scattering geometry are increased. In the case
where the scattering geometry is only two cells thick in the z
direction, poor choices in superimposed subgroups, such as
the one seen in Fig. 5�b�, cause an underprediction in scatter-
ing cross section. Because of the diminishing real contribution
to the overall scattering cross section by the third layer of

x

y
z

(a) (b)

Fig. 7 �a� Simplified diagram of 3�3�3 cell scattering geometry and
�b� one possible subdivision into 3�3�1 subproblems.
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ells, that same poor superposition choice, seen in Fig. 7�b�, is
uch more likely to result in an overprediction of the scatter-

ng cross section in the 3�3�3 geometry. Adding an addi-
ional layer of scattering cells to the geometry along the z
irection causes these same superposition arrangements to
urther overpredict the scattering cross section of the large
roblem. Nonetheless, the scattering pattern plots in Figs. 8
nd 9, as well as their corresponding error figures �
� clearly
emonstrate that the rules on choosing an optimal subgeom-
try learned from previous problems remain in effect, even if
ne is only interested in the figures of merit such as scattering
ross section or anisotropy rather that the far-field scattering
attern. Multiple scattering along the propagation axis re-
ains the most important factor in the choice of superposition

eometries.

Discussion
cattering from single cells or a small number of cells has
een extensively investigated9,15,18,20 computationally using
DTD. While these studies remain useful for determining the
ffects of cell morphology on light scattering and propagation,
he scattering from larger tissue structures containing many
ells may be of more practical interest to researchers whose
nstrumentation measures light scattered from relatively large
issue sections. The results of multicell simulations such as
hose shown here suggest that using computational methods
or bulk scattering parameter prediction requires multiple
ells to be included in the problem geometry.22 In addition,
he consistency of the far-field scattering pattern between the
�3�2, 3�3�3, and 3�3�4 geometries suggest that

he number of cells required for an accurate prediction may
ot be much larger than is seen here. The number is also
ikely to be tissue-dependent. Regardless of the exact number
f cells required to obtain an accurate bulk parameter predic-
ion, that number is likely to be sufficiently large to require
ignificant computational resources.

Computational requirements for FDTD simulations of such
arge problems render them intractable using most current re-
ources. Using the near-field scattering results of a single row
r a small number of rows of cells aligned with the direction
f plane wave propagation, the linear superposition method
lready outlined could be used to provide an estimate of far-
eld scattering by a large tissue using practical computational
esources. Using this approach to estimate a larger scattering
roblem effectively reduces the dimensionality of the problem
for example, 3�3�3 cells to 1�1�3 cells�, reducing the
rocessing time and drastically reducing the memory require-
ents to perform the FDTD simulation. In the case of 3�3
3 differently generated cells estimated by nine separate 1
1�3 cell simulations, the computation time would be re-

uced from 5300 to 4500 CPU hours and the maximum
emory requirement would be 12 Gbytes versus 130 Gbytes

or the full 3�3�3 problem.
Some care must be exercised as to how a large scattering

eometry is broken up to maintain a relatively low error in
ar-field scattering predictions by the superposition algorithm.
t a minimum, one should choose a subgeometry that extends

long the full length of the scattering problem in parallel with
he light propagation axis. This accounts for multiple scatter-
ng between cells along the propagation axis, which are the
ournal of Biomedical Optics 055006-
bulk of the light scattering effects in a small tissue. This
choice of subgeometries is valid only for mostly forward-
scattering problems such as biological tissue. For more
densely scattering geometries, or those with higher refractive
indices relative to the background, it may be necessary to
simulate a subsection of the geometry and examine the result-
ing far-field scattering pattern. As an example, a z directed
column, much like a 1�1�3 cell case, could be used as a
test geometry. If the majority of the scattered light is con-
tained near �=0, the geometry is a likely candidate for the
superposition method. The exact choice of an acceptable an-
gular region is dependent on the depth in z of the large prob-
lem being approximated by the superposition method.

Selecting a suitable subgeometry to preserve the majority
of multiple scattering interaction along the z axis is obviously
much simpler when the cells are arranged into a rectangular
grid, as in the preceding geometries. However, this kind of
cellular arrangement may not be ideal for describing certain
tissue types. It was also found that this regular arrangement of
cells was also quite sensitive to small changes in z separation
between successive cell layers. While these changes did not
greatly affect the majority of the far-field scattering pattern,
small changes in separation distances between cells cause sig-
nificant changes to the pattern at very small angles, greatly
affecting the scattering cross section and anisotropy results.
The corresponding superposition results using subgeometries
that extend along the z axis, however, continued to accurately
predict this behavior.

While this method is demonstrated here as a way to reduce
the problem size of a large tissue-like scattering problem, it
can also be seen as a method to use single-cell scattering data
to simulate a periodic structure of individual cells, such as the
single-file queue in a flow cytometer.18 The superposition
method could be used as an alternative to a periodic boundary
condition in the lateral direction of the queue, mitigating the
need for a custom FDTD boundary setting for this kind of
problem.

The use of other cellular arrangements does not necessarily
prove to be an impediment to using the superposition method.
In the preceding problems, a logical choice was to divide the
geometry along the cell boundaries, but there is nothing pre-
venting other subdivision methods. So long as the divisions
do not go through individual scatterers, such as nuclei or or-
ganelles, any subdivision that extends the length of the prob-
lem along the propagation axis could work. This is provided
that this subdivision is still wide enough in the x and y di-
mensions to allow for most of the energy that is scattered at
small angles to propagate to the rear of the subgeometry. This
will maintain the accuracy of the approximation of no scatter-
ing interaction between subgeometries.

If the surface current densities resulting from the FDTD
simulations, Js and Ms, are saved in a data file, they may be
reused by any subsequent superposition calculation to piece
together any number of far-field scattering predictions without
incurring any computational costs save those for the discrete
Fourier transforms in the superposition method. This can al-
low enable scientists to compile a database of FDTD surface
current data from any number of scattering geometries and
use the superposition algorithm to make predictions on scat-
tering by any spatial combination of those geometries. The
September/October 2010 � Vol. 15�5�8
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patial configuration of the geometries will, of course, deter-
ine the accuracy of the superposition prediction, with ar-

angement of the scatterers in a plane perpendicular to the
irection of plane wave propagation being optimal.

Conclusion
coherent linear superposition method for estimating the

lane wave far-field scattering pattern from multiple biologi-
al cells computed by the FDTD method was presented. Us-
ng the FDTD-simulated near-field scattering results from
mall numbers of complex scatterers, an estimate of the far-
eld pattern from a large group of those same scatterers can
e made. This method can be used to reduce the computa-
ional cost of some FDTD simulations by enabling a single
arge scattering problem to be broken into smaller FDTD
roblems with more practical computational requirements.
he results of some example cases demonstrated certain con-
iderations that must be made for choosing the minimum
umber and arrangement of cells to simulate in large multicell
cattering problems. In particular, it was found that the
ethod works best in cases where there is very little multiple

nteraction between adjacent scatterering subgroups, so the
ar-field pattern can be estimated as a superposition of the
cattering from small numbers of cells.
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