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Abstract. Three-dimensional (3D) imaging with structured light is crucial in diverse scenarios, ranging from
intelligent manufacturing and medicine to entertainment. However, current structured light methods rely on
projector–camera synchronization, limiting the use of affordable imaging devices and their consumer
applications. In this work, we introduce an asynchronous structured light imaging approach based on
generative deep neural networks to relax the synchronization constraint, accomplishing the challenges of
fringe pattern aliasing, without relying on any a priori constraint of the projection system. To overcome
this need, we propose a generative deep neural network with U-Net-like encoder–decoder architecture to
learn the underlying fringe features directly by exploring the intrinsic prior principles in the fringe pattern
aliasing. We train within an adversarial learning framework and supervise the network training via a statistics-
informed loss function. We demonstrate that by evaluating the performance on fields of intensity, phase, and
3D reconstruction. It is shown that the trained network can separate aliased fringe patterns for producing
comparable results with the synchronous one: the absolute error is no greater than 8 μm, and the standard
deviation does not exceed 3 μm. Evaluation results on multiple objects and pattern types show it could be
generalized for any asynchronous structured light scene.
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1 Introduction
Structured light imaging is a key technology for acquiring three-
dimensional (3D) information because of its advantages, such
as nondestructiveness and high efficiency.1–3 Fringe pattern
profilometry (FPP) is one of the most popular techniques imple-
menting the structured light methods,4,5 showing powerful
capabilities on the 3D sensing end in fields such as advanced
manufacturing, medical inspection, and entertainment. A typical

FPP system consists of a projector and a camera,6,7 where the
former projects a set of fringe patterns onto the object surface
and then the latter captures the reflected fringe patterns from
another view angle synchronously,8 as presented in Fig. 1(a).
The captured fringe patterns are distorted due to the object
height modulation, allowing for retrieving the 3D geometry
by analyzing the distortion information encoded by phase values
or binary coding.9,10 This sync-mechanism in existing FPP meth-
ods requires the camera to capture the image instantaneously
after the projector projects the fringe pattern for avoiding fringe
switching in the camera exposure time.*Address all correspondence to Zhilong Su, szloong@shu.edu.cn

Research Article

Advanced Photonics 046004-1 Jul∕Aug 2024 • Vol. 6(4)

https://orcid.org/0000-0002-7389-6333
https://orcid.org/0000-0003-2123-0182
https://doi.org/10.1117/1.AP.6.4.046004
https://doi.org/10.1117/1.AP.6.4.046004
https://doi.org/10.1117/1.AP.6.4.046004
https://doi.org/10.1117/1.AP.6.4.046004
https://doi.org/10.1117/1.AP.6.4.046004
https://doi.org/10.1117/1.AP.6.4.046004
mailto:szloong@shu.edu.cn
mailto:szloong@shu.edu.cn
mailto:szloong@shu.edu.cn


When the synchronization is violated, the projector switches
the fringe pattern in an unexpected way within the camera ex-
posure period, leading to fringe pattern aliasing, as shown in
Fig. 1(b), followed by reconstruction errors. To this end,
several issues relevant to the synchronization of FPP systems
should be paid attention to. Among them, the disadvantage
of the high system complexity is the most notable one, since
the dependence on the synchronization system highly relies
on additional hardware or software coding.11 In addition, it is
challenging to synchronize the whole system with high accu-
racy, not least for the structured light array composed by multi-
ple cameras and projectors.12 On top of that, the limitations
include its restricted applicability in specific scenarios, notably
when the distance between the camera and projector exceeds
certain thresholds, thereby hindering the proper functioning
of the synchronous signal wire. Additionally, the system shows
a susceptibility to electromagnetic interference, undermining its
anti-interference capacity. Furthermore, equipment selection is
constrained, as the employed camera and projector necessitate
supplementary synchronization circuitry to accommodate the
synchronous signal, which poses a challenge because many
widely used consumer products lack this synchronization
functionality.11 In light of advancements in opto-electronic de-
vices and imaging techniques, there has been a significant
reduction in both the cost and dimensions of digital cameras.
Consequently, imaging devices have become omnipresent in
our daily lives. Notably, consumer products, including smart-
phones, tablets, and laptops, have attained remarkable levels of
image resolution and frame rate, leading to a heightened poten-
tial demand for handy consumer-grade 3D reconstruction tech-
niques, particularly those employing asynchronous FPP (async-
FPP for short).

Almost all existing research employing FPP techniques is built
upon the assumption of synchronization, resulting in the syn-
chronization constraints being overlooked in the literature.13–15

Reference 16 classified the relationship between the camera
and projector as hardware synchronization, soft synchroniza-
tion, and no synchronization. The hardware synchronization
utilizes a hardware circuit to transmit a trigger signal to achieve
synchronization.17,18 When the projector completes a fringe pat-
tern projection, the synchronization trigger signal is generated
simultaneously and emitted to the camera side to invoke the
instant image acquisition. The projector begins to project the
next fringe pattern after the camera captures the current image.

It can achieve a high measurement rate of up to 5000 fps by the
hardware-based synchronization.6 However, hardware circuits
are only available in expensive industrial equipment, and afford-
able consumer products with popular applications often do not
have modules or interfaces that can be used to achieve hardware
synchronization. For the soft synchronization, a predefined
waiting period is employed between the projection and acquis-
ition processes.16 The projector projects one fringe pattern and
then waits for a period for allowing the camera to capture the
projected fringe pattern; the next fringe pattern is projected
when the waiting period ends. To ensure the synchronization,
the waiting period is always longer than the camera exposure
time, leading to low frame rate and additional energy cost,
which is advantageous for battery-powered or portable con-
sumer devices.19 In addition, the synchronization controlled
by coding does not work stably and accurately, leading to a po-
tential risk of not being strictly synchronized. In asynchronous
systems, the camera and projector do not have any synchroni-
zation mechanism but work independently to capture and
project the fringe patterns, respectively, at a certain speed.
Consequently, the projector can switch the projected fringe pat-
tern within the exposure time of the camera. According to the
frame rate relationship between the camera and projector, the
asynchronous system can introduce duplicated captures, missed
captures, and the toughest aliasing of multiple fringe patterns
during the exposure time.

Though async-FPP-based 3D imaging has been a challenge,
few works focus on this problem. Fujiyoshi et al. built a stereo
vision system with a pair of asynchronous cameras,20 where the
two cameras captured images independently, to track the 3D po-
sitions of the object based on the Kalman filter and the most
recent image in any of the cameras. Hasler et al. utilized multiple
unsynchronized moving cameras to capture the motion of ar-
ticulated objects.21 The static background and the positions of
each camera are reconstructed based on structure-from-motion
first; and then, the cameras are registered to each other using
the background geometry. The audio signal is employed to
achieve camera synchronization. Bradley et al.12 proposed two
approaches for solving the synchronization problem between
camera arrays. The first approach is based on strobe illumina-
tion. It performs the exposure in each camera by first starting the
cameras and then exciting the strobe lighting, thereby identify-
ing the first synchronized frame. The second is based on optical
flow vectors but is less accurate than the former. Moreno et al.11

CaremaProjector

Synchronous signal

Object

Projector

Camera

Sync timing diagram

Projector

Camera

Async timing leads to aliasing(a) (b)

Source Aliasing

Fig. 1 Diagrams for (a) synchronous FPP and (b) asynchronous FPP systems.
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reported that the object shape can be reconstructed with asyn-
chronous structured light system-based FPP. In the work, the
binary fringe patterns were projected and captured independ-
ently at a constant speed, and an asynchronous decoding
algorithm was introduced to generate a new image sequence
equivalent to that obtained by the synchronized system,
allowing for reconstructing the 3D model by adopting the
existing binary code reconstruction algorithm. El Asmi et al.22

proposed an asynchronous scan method based on structured
light by considering the captured image as a new reference
pattern aliased from two consecutive projected patterns instead
of regarding it as a partial exposure of them; with the local sen-
sitive hashing algorithm, the first of the image sequences can be
found to build the matching correspondence by utilizing the
quadratic codes. In 2019, the same group proposed a subpixel
asynchronous unstructured light algorithm to increase the
reconstruction accuracy.23 It is evident that all existing methods
address other aspects of asynchrony or use simple binary pat-
terns containing only two intensity values, 0 and 1.

Therefore, to the best of our knowledge, a notable gap in the
field of structured light imaging is the lack of studies on async-
FPP using widely adopted sinusoidal fringe patterns due to the
challenges posed by complex fringe aliasing. This presents a
significant practical limitation, as constructing a flexible struc-
tured light system for low-cost consumer-grade applications is
difficult. Consequently, the development of flexible, accurate,
and compatible methods for async-FPP measurement represents
an important area for further research and advancement in struc-
tured light imaging. To this end, we model the asynchronous
fringe imaging formation and thus, propose a novel aliased
fringe pattern (AFP) separation network, which is referred to
as APSNet for short, based on U-Net-like architecture to build
an easy-to-use async-FPP imaging system. The a priori princi-
ples embedded in the async-FPP imaging underpin the APSNet
to learn the intrinsic inductive bias of AFPs within a generative
adversarial framework, which is supervised by a global similar-
ity-informed loss function and guided with fringe pattern
information. With the trained network, the synchronization
constraint of the FPP is relaxed for allowing the camera and
projector to work individually at a constant speed. Thereby,
the well-established reconstruction model is still valid for an
async-FPP to produce comparable results with the synchronous
one. We experimentally show that our method heralds a vision
that reconstructs the 3D shapes and geometries from sinusoidal
and/or binary fringe patterns without relying on projector and
camera synchronization.

2 Materials and Methods

2.1 Asynchronous Fringe Pattern Imaging

In the async-FPP system, the projector is allowed to switch the
fringe pattern during the exposure time of camera, leading to
AFPs. To describe the AFPs accurately, we first analyze the
image formation of the camera component, which converts the
light into the intensity responses of image pixels. Assume p and
p are the pixels in the camera and the projector, respectively.
Let Pp ∈ ½0,255� be the intensity value of p at time t and Ip
be the obtained intensity value of p within the exposure time te.
According to the complementary metal-oxide-semiconductor
transistor imaging principle, Ip is the integration of the intensity
contribution from all perceptive pixels p in the exposure time.11

As not all the p contribute to Ip, Rðp; pÞ ∈ ½0,1� is introduced to
represent whether p has contribution to p as shown in the fol-
lowing equation:

Ip ¼
Z

te

0

BpBr

X
p

Rðp; pÞPpðtÞdtþ
Z

te

0

CpðtÞdt

þ
Z

te

0

BrC0
pðtÞdt: (1)

Equation (1) formulates the intensity response of the pixel p
as three parts, including (1) the background light going to the
camera directly CpðtÞ, (2) the background light reflected by the
object surface C0

pðtÞ, and (3) the projected fringe patterns
reflected by the object surface PpðtÞ, where Bp is the relation-
ship between the projector illumination and camera intensity
response; Br is the object surface reflectivity. The image forma-
tion model shows that the intensity of the captured image is
related to the exposure time and the exposure light amount.

For the synchronous FPP, one fringe pattern is projected and
captured by the camera in the exposure time, as shown in
Fig. 2(a), extending Eq. (1) to the whole image to capture a
fringe pattern expressed as

In :¼
Z

tn

tn−1
PnðtÞdt; (2)

where n ¼ 1;…; N, PnðtÞ is the nth projected fringe pattern,
and In is the captured fringe pattern correspondingly in the ex-
posure time range ½tn−1; tn�. It is worth noting that in synchro-
nous FPP systems, the background is assumed to be constant
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Fig. 2 Illumination and response relation between the projector and camera in (a) synchronous
FPP and (b) async-FPP systems, respectively.
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and thus the constant terms are omitted in Eq. (2) to focus on the
projected fringe patterns.

However, for the async-FPP, as shown in Fig. 2(b), the pro-
jected fringe pattern can be switched during the exposure time
and multiple fringe patterns are captured by the camera, leading
to aliasing of the neighboring fringe patterns. To identify the
projected patterns from the aliased observations, it is necessary
to explore the aliasing formation in asynchronous projection
mathematically.

Assume M fringe patterns are projected at a constant speed
Sp and the camera captures N fringe patterns at a constant speed
Sc. To capture all projected fringe patterns, Sc is required to be
faster than Sp, and the captured frames should be able to cover
the projected ones, i.e., N > M. It is obvious that, during the
exposure time of the camera, the projected fringe pattern is
switched in the async-FPP, leading to aliasing of the captured
fringe patterns, which can be formulated as follows:

In ¼
Z

tn

tn−1

XM
m¼1

rmðtÞPmðtÞdt; (3)

rmðtÞ ¼
�
1 if tm−1 ≤ t ≤ tm
0 otherwise

; (4)

where tn ðn ¼ 0;…; NÞ and tm ðm ¼ 0;…;MÞ are the starting
time for each captured and projected fringe pattern, respectively,
and rmðtÞ indicates whether the projected fringe pattern PmðtÞ is
within the camera exposure time or not. According to Eq. (3),
the captured AFP is given as

In ¼
Z

tn

tn−1

XM
m¼1

rmðtÞPmðtÞdt ¼
Z

tswn

tn−1
PmðtÞdtþ

Z
tn

tswn

Pmþ1ðtÞdt;

(5)

where tswn is the moment when the projection is switched during
the capture of In.

Equation (5) shows that, in async-FPP, the captured AFP In is
the integral of all projected fringe patterns during the exposure
time, as shown in Fig. 2(b), leading to a significant aliasing ef-
fect in the observed In and further reconstruction errors if the
phase data are directly estimated from In. Because the starting
time (tn) and the fringe switching time (tswn ) are unknown and
very difficult to measure, the individual contributions of time-
dependent components PmðtÞ and Pmþ1ðtÞ are not easily disen-
tangled using conventional methods, especially for the complex
sinusoidal fringe patterns. Despite this, the integral in Eq. (5)
implies that aliasing has a global additive yet separable feature
in the perspective of intensity, raising some graceful priors in
geometry and statistics (to be discussed briefly in the next sec-
tion). This allows us to learn a latent function with the help of
the powerful feature representation capacity of deep neural net-
works to link the observed AFP with its nonaliased counterparts,
which can be used to compute the phase map accurately. We
formulate the process as a deep image generation problem by
separating a pair of adjacent non-AFPs from an observed AFP.

2.2 Fringe Pattern Separation with Generative Deep
Networks

Although the AFP In in Eq. (5) measures the intensity of
the projected fringes at two neighboring instantaneous times,

Pm and Pmþ1, in a global additive formation, the unknown-scale
intensity aliasing poses an ill-posed “one-to-many (two)” in-
verse image generation problem that is still difficult to solve
in traditional frameworks. However, the global additive aliasing
potentially enables the couple of priors from geometry and
statistics, as we mentioned before, inspiring us to propose an
effective generative model for addressing the problem by align-
ing with recent advances in the line of generative deep-learning
research, such as variational autoencoders,24 autoregressive
models,25 and generative adversarial nets (GANs).26 To this end,
we present an APSNet with the geometry prior for separating
AFPs and show how to train it within the framework of GANs
supervised by the statistical prior.

Consider the two projected adjacent fringe images Pm and
Pmþ1, and the corresponding aliasing pattern measure
In ∈ RH×W , where H and W, the height and width of the mea-
sured image, respectively, define the aliased domain. Our goal is
to learn an inverse mapping of Eq. (5) by constructing the
APSNet, denoted by G, to retrieve the pair of projected fringe
patterns, i.e., ½Pm; Pmþ1� ¼ GðInÞ. A fundamental observation
in Eq. (5) is that the aliasing is independent of spatial location
but is only the global addition of pixel intensity of Pm and Pmþ1.
From a geometric point of view, the underlying grid structure of
the fringe image is not deformed in the aliasing procedure and
the APSNet for In defined on the aliased grid domain (RH×W) is
no longer required to account for pixel permutation invariance,
providing a strong geometric prior that is translational sym-
metry. It turns out to be a graceful inductive bias of translation
equivariance (or loosely referred to as shift-invariance) in geomet-
ric learning, assuming the aliased pattern separation should not be
affected by the pixel location to improve the learning efficiency to
those deep models that satisfy this prior. This geometric prior gives
a global invariant support that can be proved by Fourier transfor-
mation to intimately connect the APSNet operations with convo-
lutions, thus forwarding our model into a convolutional neural
network. Though the convolutional APSNet is substantially
strengthened by the global translational symmetry prior, it is not
sufficient to overcome the curse of dimensionality posed in high-
dimensional pixel space of fringe patterns. Our insight into solving
this problem is to learn the multiscale representation by introduc-
ing maximum pooling operation in the encoding phase, as it
provides efficient local invariance in cooperating with the global
one that underpins the convolution.

Responding to the underlying inductive biases and opera-
tions in both global and local geometric invariances, we propose
implementing the APSNet as a convolutional encoder–decoder
architecture based on the existing U-Net model,27 as shown in
Fig. 3. This architecture serves as the backbone of the generator
in our GAN framework in Fig. 4. The encoder of G is exper-
imentally determined to build with four consecutive blocks.
Each block has an identical structure consisting of a convolution
block (CB for short) followed by a max-pooling (MP) layer with
a stride of 2 to reduce the spatial dimension while preserving the
salient response. The CB is built up by stacking a Conv2D
layer twice, and each followed by batch normalization28 and
in-place ReLU activation.29 When the pixel data flow through
every encoding block in the forward pass, the fringe information
aliased in the observed image is extracted and encoded in
a latent space, abstracting out as a latent representation
Z ∈ R512×ðH∕dÞ×ðW∕dÞ. For the decoder path, the source fringe
pattern information is progressively disentangled by upsampling
(US) and convolving the learned latent feature map 3 times,
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allowing us to generate the separated fringe patterns fPm; Pmþ1g
with a 1 × 1 convolution layer at the end. As the decoding is
started in a deep layer, the skip connection is necessarily
adopted to reintroduce the learned features from the correspond-
ing encoder layer to avoid the deep network forgetting the
detailed features for making the learning stronger. For details
on the skip connection we refer to, see citation of ResNet.30

The convolution and pooling operations in the architecture
embed the geometric prior implicitly shown in Eq. (5), imposing
an intrinsic inductive bias to APSNet. As a result, it presents a
powerful generative capacity for any similar classes by encoding
the aliased pattern In as the latent variable Z and then
decoding alternately to reconstruct the source patterns Pm and
Pmþ1 with the help of the corresponding encoder-passed skip
connection. Notably, the encoding part can be interpreted as
a conditional autoencoder that allows our model to focus on
the important pattern bits of fringe data in a low-dimensional
latent space by giving a fringe pattern guidance. Compared
to the original pixel space, this latent space representation is
more suitable for likelihood-based generative networks, imply-
ing that we can supervise the APSNet learning by integrating a
mean-squared loss term, as given in Eq. (7) later. Additionally,
the symmetric structure and operations of APSNet align well
with the strong geometric prior of translational symmetry,
which, all combined, contribute to making our method more ef-
ficient in terms of computing and data resources, both of which
are well-known important factors affecting the development of
generative models. In Sec. 3, we show this architecture exactly
learns the additive yet complex aliasing relationship in the high-
dimensional pattern data with an affordable computational cost,

but also recovers high quality source patterns in the original
space as a generative network does but requires few training
data.

To train the APSNet G for separating the AFPs, we adopt a
supervised adversarial learning by following the GAN strategy
guided by an aliased fringe measure, as shown in Fig. 4.
An additional network, known as the discriminator D, is
introduced here to evaluate the generation quality of the
model G in the training loop by taking the output of G as
input, given the real data correspondences, i.e., DðGðzjInÞÞ ¼
DðfPm; Pmþ1gjfP̂m; P̂mþ1gÞ, where z is any of the measured
fringe patterns. (We note the real data samples with ˆ operator
from now on.) The architecture of discriminator D is a multiple
layer perception (MLP) with three convolution layers followed
by a sigmoid activation to output the probability of the generated
fringe patterns. With the discriminatorD, the fundamental train-
ing loss of the model G is governed as

LCGANðG;DÞ ¼ EP∼pdataðPÞðlog DðfPm; Pmþ1gjfP̂m; P̂mþ1gÞÞ
þ Ez∼pzðzÞðlogð1 −DðGðzjInÞÞÞÞ: (6)

The loss function above frames the fringe pattern separation
as an adversarial learning problem with two submodels: the
generator G, i.e., APSNet, that we train to generate nonaliasing
fringe patterns, and the MLP-based discriminator D that tries to
classify fringes as either real (from the domain) or fake (gener-
ated). The two models are trained together in a zero-sum game
until the discriminator model is fooled about half the time,
meaning our APSNet is generating plausible fringe patterns
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fPm; Pmþ1g from the observed ones fIng. It is worth noting
that, in contrast to the original adversarial loss in Ref. 26,
the loss in Eq. (6) is conditioned by the observed AFP In, which
imposes a strong guidance with the same modality and structure,
making the training dynamics stabler and more predictable.
Moreover, this conditioning can help reduce the so-called mode
collapse, which limits the generative capacity of the generator in
traditional GANs. Consequently, these two features of the ad-
versarial loss term contribute to reducing the dependency of
our training framework on the amount of data.

In addition, the principles across the global geometric prior in
Eq. (5) also shed light on the statistical property of the fringe
pattern aliasing; that is, the intensity distributions of the pro-
jected source patterns hold globally in the aliased pattern range.
We found that it provides a strong statistical prior for model
training: the separated fringe patterns fPm; Pmþ1g we recon-
structed from the aliased measures should maintain a statistical
similarity with the projected source patterns fP̂m; P̂mþ1g in the
original spatial domain. In cooperating with the statistical prior
and the feature of aforementioned latent space representation,
we propose to use the mean-squared error (MSE)31 as a loss term
to measure the low-level intensity distribution correlation in
original pixel space and then, generate a likelihood-controlled
gradient flow that can be backpropagated to the latent space
for learning the latent variable Z implicitly in the backward
pass. Additionally, we also respond to this prior by evaluating
the loss of structural similarity error (SSE)32 at a higher level
than the pixel intensity. The MSE and SSE loss terms are given
in Eqs. (7) and (8), respectively,

LMSE ¼ 1

n

Xn
i¼1

ðPi − P̂iÞ2; (7)

LSSE ¼ ð2μP̂μP þ cÞð2σP̂P þ cÞ
ðμ2

P̂
þ μ2P þ cÞðσ2

P̂
þ σ2P þ cÞ ; (8)

where P̂ and P are, respectively, the real projected fringes and
the generated fringes; μP̂ and σ2

P̂
are mean and variance of the

sampled real fringes; μP and σ2P are mean and variance of the
corresponding generated fringes; σP̂P is the covariance of
the sampled and generated fringes; and c is a small but nonzero
constant to prevent the numeric instability potentially caused by
near-zero μ2

P̂
þ μ2P and/or σ2

P̂
þ σ2P.

We, finally, propose a loss function in Eq. (9) by summing
the loss terms in Eqs. (6) and (7) together to train the generator
G and the discriminator D alternatively, as follows:

LðG;DÞ ¼ λ1LCGANðG;DÞ þ λ2LMSEðGÞ þ λ3LSSEðGÞ; (9)

where λi; i ¼ 1; 2; 3 are three hyperparameters for controlling
the contribution of each loss term. We experimentally found that
λ1 ¼ λ2 ¼ λ3 is the optimal configuration of the loss term con-
tributions in this work; details are given in Sec. 3.1.

As the loss terms LMSE and LSSE impose a supervision from
the intensity and structural similarity, the learning schematic
shown in Fig. 4 could be regarded as a statistical prior-informed
adversarial learning framework on the basis of the data-driven
training loss LCGAN, enforcing the generator G, i.e., APSNet, to
learn the underlying information of the projected source fringe
patterns in considering both geometric and statistical priors
uniformly. This helps to significantly improve the quality of the
generated fringe patterns from the model training perspective
while reducing the size of the training data set. The parameters
wG and wD related to APSNet and the discriminator, respec-
tively, are updated by the AdamW optimizer33 through autodif-
ferentiation-powered dual-stream gradient backpropagation,

�
wG ← wG − ηG

∂
∂wG

ðλ1LCGAN þ λ2LMSE þ λ3LSSEÞ;
wD ← wD − ηD

∂LCGAN∂wD
;

(10)

where ηG and ηD are learning rates; their adjustment policy is
given in Sec. 3.1.

2.3 3D Imaging Pipeline with the Trained APSNet

With our trained APSNet, we now have access to the wrapped
phase information in the generated nonaliasing fringe patterns
and then reconstruct the final 3D geometries of the objects being
measured. Figure 5 shows the overall pipeline that accepts three
AFPs that are observed from an object surface and outputs the
3D shape of the object.

The pipeline consists of three independent phases. The first
one is AFP separation, which is done by the APSNet trained in
Sec. 2.2. After this phase, we have four successive non-AFPs
with different phases. To this end, we propose to estimate the
phase information via the well-established four-step phase-shift-
ing algorithm in Ref. 3. Consider that the four phase-shifting
patterns generated by our trained APSNet are Pmþi with
i ¼ 0; 1; 2; 3. The wrapped phase can then be estimated as

ϕwðuÞ ¼ − arctan

�P
3

i¼0
PmþiðuÞ sin π

2
iP

3

i¼0
PmþiðuÞ cos π

2
i

�
, where u is the pixel coor-

dinates in the observed fringe domain. By introducing the fringe
order kðuÞ at u, we obtain the continuous phase map by map-
ping ϕwðuÞ to its unwrapped counterpart as ϕðuÞ ¼ ϕwðuÞþ
2πkðuÞ.

Finally, with the phase estimate ϕðuÞ, we can reconstruct
the 3D shape of the object according to Eqs. (16) and (7) in
the work.3

APSNetObserved AFPs Inferred non-

aliased patterns

4-step phase-

shiftinggggggggggggg

Fig. 5 Pipeline of 3D imaging with the trained APSNet.
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3 Results

3.1 Data Set and Training Details

To train APSNet with high generalization capability, the data set
is built with a real FPP system consisting of an industrial camera
(S2 Camera TJ1300UM) with a resolution of 2048 × 1536,
a DLP projector with a resolution of 1280 × 1024, and a self-
developed microcontroller (MC), as shown in Fig. 6. In the MC,
a trigger control circuit is designed according to the asynchro-
nous imaging principle in Sec. 2.1 to control the camera and
projector to generate sufficient and diverse AFPs for deep model
training and testing.

With the async-FPP imaging system, the AFPs are obtained
as follows. The projector projects a fringe first with an identical
frequency and then sends a high-level signal to the MC. The
built-in timer of the MC executes timing according to the pre-
defined delay Δt, allowing the camera to observe and record
the aliased fringes. (Note that the FPP system will capture
nonaliased fringes once the delay Δt is adjusted to zero.) As
shown in Fig. 7, if the projector shines the fringe patterns in
Figs. 7(a) and 7(b) successively with delay Δt ¼ 0 ms, the cam-
era will synchronously record two normal fringes without any
aliasing, while if the delay is set to Δt ¼ 10 ms, an AFP

containing the information of in both Figs. 7(a) and 7(b) will
be recorded in Fig. 7(c). The adjustable delay mechanism in
the async-FPP allows us to make the best use of the capability
to gradually increase the high-level signal sent to the camera
followed by delayed imaging to build an incredible data set,
avoiding the problem of sparsity for the data sampling from
a real physical system.

For the source patterns to be projected, five sets of 256 × 256
sinusoidal fringes with 50, 60, 70, 80, and 90 periods are prepared;
each of the source patterns has the phases of 0π, 0.5π, π, and 1.5π,
respectively. To generate aliased fringes, the acquisition delay Δt
corresponding to each set of source patterns increases from 1 to
10 ms with 1 ms increments. Following the asynchronous imag-
ing, we finally obtain the data set composed of 1500 AFPs, each
paired with a label containing two source patterns, to feed into the
discriminator and to evaluate the MSE and SSE losses in Fig. 4.
Among them, 1125 samples are used for training the proposed
APSNet model and the remaining 375 are for model testing.

In the training stage, the AdamWoptimizer is adopted to up-
date the parameters of APSNet with batching by following the
training loop in Fig. 4 for 500 epochs within which the learning
rate is controlled by a dynamic decay strategy. The strategy is
that, given an initial value of 1.0−4 for the learning rate, it will be
reduced to 0.7 times the current value if the validation loss does

Object

Projector

Camera
AFPs

Projected Fringes

MC

Fig. 6 Experimental setup of our async-FPP system for generating the data set.

(b)(a) (c)

Fig. 7 (a) and (b) Two successively projected fringe patterns and (c) an observed AFP with 10 ms
delay.
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not decrease in 50 epochs and does not grow in 51 epochs. In
addition, we ensure the learning rate is not lower than 1.0−7 to
prevent slow convergence in the later stages of training. To
avoid potential overfitting, l2 normalization is introduced with
the weight decay set to 0.01. Profiting from both the geometric
prior embedding and the statistical prior supervision, our
APSNet tends to convergence from approximately 100 epochs
with coordinated training and testing losses. It should be noted
that we have a limited learning domain size on our platform
including Intel Xeon E5-2620 CPU (2.10 GHz), 72 GB RAM,
and a GPU GeForce GTX 3060Ti, which, however, can be im-
proved using more powerful computational resources.

To find an optimal configuration of the loss weighting hyper-
parameters in Eq. (9), we investigate the convergence behavior
of the loss function for different combinations of λi by following
the training strategy above. Though the combinations of λi are
not enumerable, for an optimization (learning) problem based
on gradient decent, it is the relative magnitudes of the weights
of the loss terms, rather than their absolute values, that affect the
convergence behavior (or the training dynamics) of the model,
as shown in Eq. (10). Therefore, we first assume that the three
loss terms in Eq. (9) have equal contributions by setting the val-
ues of λi to 1; then we fix one of them and reduce the other two
to 0.1 to emphasize the individual contributions of the different
loss terms. Following this strategy, we have four different com-
binations of λi, resulting in four training loss curves that reflect
the various training behaviors or dynamics of our APSNet,
as shown in Fig. 8.

For the case of equal contributions (λ1 ¼ λ2 ¼ λ3) in
Fig. 8(a), the training loss converges gradually to a small level
close to zero by following an exponential decay pattern, as we
expected in training most deep neural networks. The result
implies that our model shows smooth convergence behavior
and thus stable training dynamics under this combination of
weights λi. For the configuration of λ1 ¼ 1 and λ2 ¼ λ3 ¼ 0.1
in Fig. 8(b), the training is dominated by the conditional adver-
sarial loss LCGANðG;DÞ. In such a case, we observe that the loss
drops to a very low level after a few epochs, approximately
around five epochs, and does not decrease any further, implying
that the model’s parameters are not adequately trained. This

problem aligns with the challenge of training GAN networks,
namely, the difficulty in escaping saddle points. This is because
LCGANðG;DÞ is known to exhibit a saddle-shaped loss surface,
where gradients become zero at saddle points. For the remaining
two cases, the training is dominated by the MSE loss LMSEðGÞ
or the SSE loss LSSEðGÞ; the training loss curves are shown in
Figs. 8(c) and 8(d), respectively. It is obvious that for both MSE
and SSE loss terms, the training of our model is volatile with
noticeable fluctuations, and the loss converges with much
higher values than that in Fig. 8(a). We could attribute this to
the weak adversarial relationship between the generator and dis-
criminator in such cases, resulting in the guidance information
introduced by the adversarial loss term having almost no effect
on the training of the generator. These results suggest that the
configuration of λ1 ¼ λ2 ¼ λ3 is optimal for training our net-
works within the framework in Fig. 4.

3.2 Performance Validation and Results

In this section, we evaluate the performance of our trained
APSNet on the tasks of separating sinusoidal and binary
AFPs for different objects, such as statues, a car model, and
a sphere, which are not seen by the trained network in both train-
ing and validation.

First, we investigate the inference capacity of our network
from fringe pattern separation, phase evaluation, and shape
reconstruction levels on a set of new AFPs, assuming that the
aliasing level is variant along the time dimension. Figure 9 shows
the pipeline of AFP generation [Figs. 9(a)–9(c)] and separation
[Figs. 9(c)–9(e)] via the async-FPP system and the trained
APSNet, respectively, with evaluated discrepancy maps between
the real and generated patterns attached in Figs. 9(f) and 9(g). By
inspecting the inferred pattern pair, we can see a very small
difference between the inferred results of APSNet and the
corresponding source fringe patterns. To quantitatively evaluate
the fringe separation quality, the average errors and associated
standard deviations in both discrepancymaps are computed, with
values of 1.69 and 2.13 for Fig. 9(f), respectively, and 1.94 and
2.88 for Fig. 9(g), respectively.
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Fig. 8 (a)–(d) Convergence behavior of our APSNet model when training with different loss term
contributions.
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Furthermore, adjusting the time delay Δt of the async-FPP
system in Fig. 6 to 1, 5, and 9 ms, respectively, for simulating
the different asynchronous relationship, resulting in three
groups of AFPs with different aliasing spanning slight and
middle to deep levels. By following a similar pipeline above,
the captured AFPs are successfully separated by our APSNet;
the resulting fringe patterns are shown in Fig. 10, together with
the corresponding error maps. On close inspection of the error
maps in both Figs. 9 and 10, we can see that the inference error
is randomly distributed with small values (averages are less than
2.0 with variances below 3.0) in both spatial and delay dimen-
sions, which we attribute to discretization errors. With these
cases, the U-Net-based deep neural architecture with latent
space representation proved to be expressive enough in intensity

field to predict the correct fringe pattern separation for samples
from a class of objects by following our training loop, presented
in Fig. 4.

Beyond the validation-in-intensity field, we then check the
performance of our model by carrying out phase computation
and shape reconstruction. To this end, a set of AFPs is separated
by the trained APSNet to generate four successive fringe pat-
terns without aliasing; meanwhile, four step synchronous fringe
patterns are also captured correspondingly for comparison. By
applying the four-step phase-shifting algorithm, we obtain the
wrapped phase maps for both synchronous and asynchronous
cases as shown in Figs. 11(a) and 11(b), respectively. One
can see that these two phase maps are almost identical from
the appearance view. To compare quantitatively, we sample
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Fig. 9 Pipeline of AFP generation and separation with APSNet: (a) and (b) the source fringe pat-
terns recorded by synchronized FPP, (c) the corresponding AFP recorded by async-FPP system,
(d) and (e) are the separated results of (c), and (f) and (g) show the absolute discrepancy between
the separated and source patterns.
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Fig. 10 Inference performance of APSNet on AFPs with different aliasing levels.
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the wrapped phase values along the line y ¼ 38 pixels from
both maps to obtain two phase curves and plot them together
in Fig. 11(c). As a result, these two phase curves agree with each
other fairly well with a maximum difference of 0.035 rad.

Followed by the phase domain evaluation, we compare the
3D shape reconstruction of the tested statue for the cases of
synchronous, asynchronous, and our APSNet-generated fringe
patterns. Results are shown in Fig. 12. In this test, we treat the
reconstruction result of the synchronous fringe patterns in
Fig. 12(a) as benchmark. It is observed that the 3D shape recon-
structed from the fringe patterns separated by APSNet in
Fig. 12(c) is remarkably close to the benchmark, while that re-
constructed from the AFPs directly in Fig. 12(b) has a signifi-
cant loss of shape information, which is undoubtedly caused by
the fringe pattern aliasing. Moreover, the reconstructions remain
quantitatively comparable. For that, we sampled a depth curve
from each of the reconstructed models along the dashed lines
shown in Fig. 12(a); the results are plotted in Figs. 13(a)–13(c),
respectively. Let the reconstruction error be eðd; d̂Þ ¼ d − d̂
with d the reconstructed depth in Figs. 13(b) or 13(c) and d̂
the corresponding ground truth in Fig. 13(a). We can obtain er-
rors of the reconstructions from AFPs and our APSNet-gener-
ated fringe patterns; results are shown in Figs. 13(d) and 13(e),
respectively. We can see that our method gets an absolute error
that does not exceed 0.008 mm, with a standard deviation (STD)
of 0.003 mm. In contrast, the errors in the reconstruction with
AFPs range from −5.000 to 3.600 mm, with STD 1.713 mm,
which is 3 orders of magnitude higher than our method. These
results and the significant performance in computation accuracy
highlight the APSNet potential for the 3D imaging applications
of AFP-based structured light.

To show the ability of APSNet to be generalized to asynchro-
nous 3D imaging of different objects, we perform a reconstruc-
tion task where our trained APSNet is used as a forward model
to separate five sets of AFPs captured from objects of three
statues, a standard sphere, and a car model. Results are shown
in Fig. 14, where the leading row shows the test objects with the
AFPs, and APSNet-inferred pattern pairs attached. It is worth
noting that in these cases, we project sinusoidal fringe patterns
onto two statues (see the first two columns) and binary fringe
patterns on the sphere, the car, and the remaining statue (see
the third to fifth columns, respectively). By comparing the
reconstruction results from the asynchronous (third row) and
APSNet-generated (fourth row) fringe patterns with the bench-
mark (second row), respectively, we found that our APSNet,
trained using the proposed method on our data set in Sec. 3.1,
successfully extrapolates to cases involving different objects and
various fringe pattern types. Since these test objects and (binary)
fringe patterns were not seen by the model during training, these
reconstruction examples demonstrate the expected generaliza-
tion capability of our method. We attribute this to the enhance-
ment of image generation ability of the trained generative
model, which is achieved through our appropriate architectural
choice and supervision using the two statistical prior-informed
loss terms in Eqs. (7) and (8).

Importantly, our approach could work by training on one sce-
nario that with few samples (1500) and successfully predicting
various other scenarios, showing the generative APSNet has
a potential capacity to deal with the problem of asynchronous
structured light imaging. To further demonstrate the generaliza-
tion capacity trained on a smaller data set, Fig. 15 shows a dem-
onstration of multi-object reconstruction, where the test objects

Fig. 12 Reconstructed results from (a) synchronous, (b) asynchronous, and (c) APSNet-gener-
ated fringe patterns, respectively.

Fig. 11 Comparison of wrapped phase maps for synchronous and asynchronous cases.
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include a propeller prototype, a 3D printed bolt, and a statue.
As shown in Fig. 15(a), despite the scene containing complex
surface objects with different colors (dark blue, red, and gray)
and varying reflective materials, our method can still well infer
the source patterns (Pm and Pmþ1) from the observed AFP (In).
Similarly, we reconstruct the test objects using synchronous,
asynchronous, and APSNet-generated fringe patterns, respec-
tively. The results are shown in Figs. 15(b)–15(d), where the
dashed lines in Fig. 15(b) indicate the sampling locations for
subsequent quality evaluation.

To investigate the reconstruction quality of our method, we
compare the reconstruction results of our method with that of
the well-established synchronous method by computing the ab-
solute errors of the data points sampled along the dashed line in
Fig. 15(b). Note that our comparison here focuses on the pro-
peller and bolt prototypes because they have large curvature
surfaces that were not present in the previous validations. The
resulting errors can be found in Figs. 16(a) and 16(b), respec-
tively. We can see that the error range for both reconstructed
models is consistent with the results shown in Fig. 13(e): the
absolute errors for the reconstructed propeller and bolt models

are both less than 0.006 mm, with STDs of 0.002 and 0.001 mm,
respectively. This demonstration and error investigation further
evidence that our method could generalize to more complex
scenes. We attribute this to the network’s intrinsic ability to
learn the inductive bias corresponding to the underlying global
translation equivariance in the aliasing pattern formation
through appropriate loss terms, as we explained in Sec. 2.2.

4 Discussion and Conclusion
In summary, we proposed a statistical prior-informed APSNet
that separates the AFPs captured by an async-FPP structured
light system for implementing accurate 3D reconstruction as
the synchronous ones do. Our network learns to respond to
the geometry prior embedded in the fringe aliasing formation
and is trained in a generative adversarial framework by minimiz-
ing a loss function supervised by global intensity and structural
similarity. As a result, the training is allowed to perform directly
on a few experimental data without any constraints of the con-
sidered async-FPP imaging system. Since the trained network
learns the underlying features of fringe patterns from both
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Fig. 15 Demonstration of generalization capability on multi-object asynchronous 3D imaging:
(a) measured objects, with its fringe pattern examples before (In) and after ðPm ;Pmþ1Þ separation
by our APSNet; (b)–(d) reconstructed results using synchronous, asynchronous, and APSNet-
generated fringe patterns, respectively.
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geometry and statistics, it could generate correct non-AFPs from
unseen AFPs before with enough accuracy for phase and 3D
shape reconstruction. We showed that our learning approach
can effectively extrapolate to the imaging cases of objects that
are different from the one used in training. Especially, we found
that our network, even though trained only on few sinusoidal
patterns, could generalize to aliased binary fringe patterns that
are statistically different from the training examples without any
further special tuning. The results of 3D demonstrations show
that our method achieves imaging results consistent with the
synchronous methods and improves the reconstruction accuracy
by 3 orders of magnitude relative to the reconstruction of
directly using aliased fringes. The validation results relevant to
generalization performance highlight that our approach over-
comes the fundamental challenge in async-FPP problem, offer-
ing a pathway for exploiting synchronous structured light in a
wider range of consumer-grade applications and can be poten-
tially extended to other fields, e.g., 3D arrays imaging.

While our trained APSNet is capable of generating nona-
liased source fringe patterns from the aliased images captured
by the camera, the use of the proposed method can be question-
able if there is a significant difference between the frame rates
of the projector and the camera. As shown in Fig. 2, this work
primarily addresses the aliasing problem involving two fringe
patterns. If the projection rate is significantly higher than the
camera’s frame rate, the camera will capture more than two
fringe patterns within the exposure time, leading to a more com-
plex multiple-source aliasing problem, which can become a
bottleneck for the direct use of the proposed method. Therefore,
we assume that our model is somewhat limited in this respect.
Despite this limitation, our method provides a baseline that in-
spires further advancement of generative deep-learning methods
to address asynchronous structured light imaging with more
complex aliasing problems.
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