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Abstract. A simple analytic method of estimating the error involved in using an approximate boundary condition for
diffuse radiation in two adjoining scattering media with differing refractive indices is presented. The method is
based on asymptotic planar fluences and enables the relative error to be readily evaluated without recourse to
Monte Carlo simulation. Three examples of its application are considered: (1) evaluating the error in calculating
the diffuse fluences at a boundary between two media with differing refractive index and dissimilar scattering prop-
erties, (2) the dependence of the relative error in a multilayer medium with discontinuous refractive index on the
ratio of the reduced scattering coefficient to the absorption coefficient μ 0

s∕μa, and (3) the parametric dependence of
the error in the radiant flux Js at the surface of a three-layer medium. The error is significant for strongly forward-
biased scattering media with non-negligible absorption and is cumulative in multilayered media with refractive
index increments between layers. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.3.035001]
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1 Introduction
The transport of light in strongly scattering turbid media, such as
biological tissue, is generally modeled as a diffusion process,
which is described by the diffusion equation for the fluence
φ.1,2 In condensed scattering media, φ is dependent on the refrac-
tive index n, such that φ∕n2 is conserved, enabling modeling of
the diffusion of light in media with a spatially varying refractive
index.3 However, a finite discontinuity in the refractive index,
such as that which occurs at the boundary between two scattering
media of differing refractive indices, gives rise to Fresnel reflec-
tion, such that φ∕n2 is discontinuous, with a discontinuity Δφ
proportional to the diffuse radiant flux J at the boundary:4–7

Δφ ¼ ðn2∕n1Þ2φ1 − φ2 ¼ Cðn2∕n1ÞJ; (1)

where Cðn2∕n1Þ is a smoothly varying function of the index
ratio n2∕n1 tabulated as described previously.4

The discontinuity in φ∕n2 depends on the ratio of refractive
indices at the boundary and is small for modest index ratios.
Monte Carlo simulation of diffuse light transport across bound-
aries between turbid media with different refractive indices has
shown that the error introduced when this correction is ignored
is generally less than 10% for weakly absorbing scattering
media, e.g., biological tissue illuminated with infrared radia-
tion.6 An analytical solution for time-dependent diffusion
between adjacent half-spaces presented previously8 supports
this conclusion. However, the error is cumulative in multilayer
scattering media and increases significantly for strongly for-
ward-biased scattering and non-negligible absorption. A simple
analytic method of assessing the error incurred in these circum-
stances when the discontinuity in φ∕n2 is not taken into account

would therefore be useful and is discussed below. Errors in mod-
eling the diffuse fluence φ in turbid media can lead to systematic
errors in diffuse transmittance and reflectance. They also intro-
duce errors in scattering and absorption coefficients inferred
from reflectance measurements and thus to errors in quantitative
image reconstruction via diffuse optical tomography. Errors in
estimating internal diffuse fluence may also impact on photody-
namic therapy.

2 Theory

2.1 Interface Error

Using the definitions previously published,9

φ ¼ 1∕2
Z

IðξÞdξ ξ ∈ j − 1; 1j; (2a)

J ¼ 1∕2
Z

IðξÞdξ ξ ∈ j − 1; 1j; (2b)

where IðξÞ is the angular intensity distribution and ξ is the
direction cosine with respect to the positive z-axis, we find
the mean cosine of the radiant intensity distribution
hξi ¼ ∫ IðξÞξdξ∕∫ IðξÞdξ ¼ J∕φ. Upon dividing Eq. (1) by
φ1, we find the relative error

Δφ∕φ1 ¼ ðn2∕n1Þ2 − φ2∕φ1 ¼ Cðn2∕n1ÞJ1∕φ1

¼ Cðn2∕n1Þhξ1i: (3a)

Similarly,

Δφ∕φ2 ¼ ðn2∕n1Þ2 − φ1∕φ2 ¼ Cðn2∕n1ÞJ2∕φ2

¼ Cðn2∕n1Þhξ2i: (3b)*Work initiated when the author was a Visiting Professor in the Department of
Physics, University of Harare, Mount Pleasant, MP 167, Harare, Zimbabwe.
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Thus the error in applying the approximate boundary condi-
tion is directly proportional to the mean cosine hξi of the
angular intensity distribution at the boundary. This is illu-
strated in Fig. 1, where the ratio J∕φ versus refractive
index ratio n for a given relative error Δφ∕φ (left-hand
axis) and the relative error Δφ∕φ versus n for a given
ratio J∕φ (right-hand axis) are plotted. Thus the larger the
index ratio n, the smaller the ratio J∕φ required for a
given relative error Δφ∕φ and the larger the relative error
Δφ∕φ for a given ratio J∕φ i.e., for a given angular radiance
distribution IðξÞ with mean cosine hξi.

The discontinuity in diffuse fluence φ quantified by Eq. (1)
also implies a discontinuity in the mean cosine hξi of the radi-
ance distribution IðξÞ at the boundary, viz., hξ1i ≠ hξ2i. To find
the magnitude of the error in φ for a specific case requires
numerical evaluation of the boundary fluxes.6 However, an esti-
mate (lower-bound) can be made in terms of the mean cosine of
the asymptotic angular radiance hξias given by the following
equation published previously:10

hξias ¼ ð1 − aÞ∕μas (4)

for scattering albedo a ¼ μs∕ðμs þ μsÞ ¼ μs∕μe, where μs is
the scattering coefficient, μa is the absorption coefficient,
μe ¼ μs þ μa is the extinction coefficient, and μas is the
asymptotic attenuation coefficient. In the δ-P1 approxima-
tion,2 μas is replaced by μeff, the effective attenuation coeffi-
cient. μeff and the mean cosine hξ 0ias are determined by the
reduced scattering coefficient μ 0

s and the absorption coeffi-
cient μa, as follows:

μeff ¼ ½μa∕D 0�1∕2 ¼ ½3μaðμa þ μ 0
sÞ�1∕2 ¼ ð3μaμtrÞ1∕2 (5a)

hξ 0ias ¼ μeffD 0 ¼ ½μa∕3ðμa þ μ 0
sÞ�1∕2 ¼ ðμa∕3μtrÞ1∕2; (5b)

where μ 0
s ¼ μsð1 − gÞ, g is the scattering asymmetry, the

transport coefficient μtr ¼ μa þ μ 0
s and D ¼ 1∕3μtr is the dif-

fusion coefficient.1 Thus μeff ⇒ 0, hξ 0ias (isotropic radiance)
when μa ⇒ 0 (zero absorption). More precise evaluation of
the effective attenuation coefficient μeff (and of hξ 0ias, which
is required for forward-biased scattering in absorbing media,
involves higher moments of the phase function.11 In the δ-P3

approximation, the effective attenuation coefficient is as
follows:

μð3Þeff ¼ ½ðβ − ðβ2 − 36γÞ1∕2Þ∕18�1∕2; (6a)

where β ¼ 27μaμ
0
t
ð1Þ þ 28μaμ

0
t
ð3Þ þ 35μ 0

t
ð2Þμ 0

t
ð3Þ, γ ¼

105μaμ
0
t
ð1Þμ 0

t
ð2Þμ 0

t
ð3Þ, μ 0

t
ðmÞ ¼ μa þ μsð1 − gmÞ, m ¼ 1,

2, 312,13 and the mean cosine of the asymptotic radiance

hξ 0ið3Þeff ¼ ð1 − a 0Þ∕μð3Þeff . (6b)

The dependence of the relative error Δφ∕φ on scattering asym-
metry g is shown in Fig. 2 for scattering albedoes in the range
a ∈ j0; 0.99j for accurate values of μeff .

11 It can be seen that
Δφ∕φ is only weakly dependent on scattering asymmetry for
g < 0 (backward-biased scattering), even for strong absorption
(a ¼ 0.2, i.e., μa ¼ 4μs), while increasing rapidly for forward-
biased scattering (g > 0), approaching 10% for g ≥ 0.99 when
a ¼ 0.9. In the δ-P1 approximation, the scattering asymmetry is
reduced: g 0 ∈ j0; 0.5j for g ∈ j0; 1j, but so is the scattering
albedo: a 0 ¼ μ 0

s∕ðμ 0
s þ μaÞ via the reduced scattering coefficient

μ 0
s ¼ μsð1 − gÞ, potentially offsetting a reduced error in φ. The

error in diffuse fluence increases for interfaces with higher index
ratios, Δφ∕φ exceeding 20% for g ¼ 0.95 when n ¼ 1.25.

2.2 Diffusion Equation

The diffuse fluence φ obeys the steady-state diffusion equation1

∂2φ∕∂z2 þ SðzÞ∕D ¼ μ2effφ; (7)

where SðzÞ is the source distribution, D is the diffusion coef-
ficient, and μeff is the effective attenuation coefficient. The
radiant flux (net energy flow) J is given by Fick’s law:1

J ¼ −D∂φ∕∂z. (8)

Solutions of the diffusion equation, Eq. (7), subject to the
boundary conditions, define the distribution of the diffuse
fluence φ and radiant flux J in scattering media with discon-
tinuous refractive index.

Fig. 1 The ratio J∕φ versus refractive index ratio n for a given relative
error in diffuse fluence Δφ∕φ(left-hand axis) and the relative error Δφ∕φ
versus n for a given ratio J∕φ (right-hand axis).

Fig. 2 Relative error in diffuse fluence Δφ∕φ versus scattering asymme-
try g for a range of scattering albedoes a, with the error increasing
rapidly for g > 0.9. The limiting case for zero scattering (a ¼ 0) is indi-
cated by the horizontal dashed line. The vertical dotted line marks the
maximum asymmetry in the δ-P1 approximation (g 0 ¼ 0.5). Index ratio
n ¼ 1.06.
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2.3 Boundary Conditions

The boundary conditions at an interface between two diffusive
scattering media with differing refractive indices n1, n2 are as
follows:

ðn2∕n1Þ2φ1 − φ2 ¼ Cðn2∕n1ÞJ (9a)

for diffuse fluence φ, where n ¼ n2∕n1 > 1 and Cðn2∕n1Þ ∝
ðn2∕n1 − 1Þ3∕2 for n2∕n1 − 1 ≪ 1 (Ref. 4) and

−D1∂φ1∕∂z ¼ −D2∂φ2∕∂z (9b)

for conservation of radiant flux J ¼ −D∂φ∕∂z across the
interface. These are applied to specific cases in Sec. 3
below. The error Δφ in diffuse fluence resulting from appli-
cation of the approximate boundary condition14

ðn2∕n1Þ2φ1 − φ2≍0 (10)

is proportional to J [Eq. (1)].

2.4 Diffuse Fluence Equations

To proceed further, solutions of the diffusion equation for two
adjoining layers satisfying the boundary conditions [Eqs. (9a)
and (9b)] are required. To simplify the analysis, consider planar
asymptotic solutions for φ1 and φ2 in the respective scattering
media:15

φ1ðzÞ ¼ a1 expðμeff-1zÞ þ b1 expð−μeff-1zÞz < 0 (11a)

φ2ðzÞ ¼ a2 expðμeff-2zÞ þ b2 expð−μeff-2zÞz > 0; (11b)

with effective attenuation coefficients μeff-1, μeff-2; the z-axis
is taken perpendicular to the interface at z ¼ 0. Upon insert-
ing these solutions into Eqs. (9a) and (9b), we find

φ1ð0Þ ¼ 2K∕ð1þ KÞ (12a)

φ2ð0Þ ¼ 2D1μeff-1∕½D2μeff-2ð1þ KÞ�; (12b)

where

K ¼ ½1þ Cðn2∕n1ÞD2μeff-2�K 0 n2 > n1 (12c)

K ¼ ½1þ Cðn1∕n2ÞD2μeff-2∕ðn1∕n2Þ2�K 0 n2 < n1
(12c0Þ

and

K 0 ¼ ½D1μeff-1∕ðn2∕n1Þ2D2μeff-2�; (12d)

assuming a semi-infinite medium (half-space) for z > 0, i.e.,
a2 ¼ 0 for φ2ðzÞ ⇒ 0 as z ⇒ ∞.

Equations (12a), (12b), (12c), (12c′), (12d) enable compar-
ison of the diffuse boundary fluences φ1ð0Þ, φ2ð0Þ with those
satisfying the approximate boundary condition Eq. (10), which
follow on setting Cðn2∕n1Þ ¼ 0 in Eq. (12c), i.e., for K ⇒ K 0.
Analytic evaluation of the fractional flux error in terms of the
refractive index ratio n ¼ n2∕n1 and the diffusion parameters
D1μeff-1, D2μeff-2 via the scattering asymmetry g and scattering
albedo a can then be made. Accurate values of D1μeff-1 and

D2μeff-2 for forward-biased anisotropic scattering in absorbing
media (a < 1) may be calculated from the phase function
pðξÞ and scattering albedo a.10 Alternatively, the mean cosine
hξias of the asymptotic radiance can be obtained from Eq. (4)
and used in place of Dμeff . Only μeff need be calculated in
this case, either analytically in the P1 or P3 approximations12,13

or numerically for higher accuracy.11

3 Results

3.1 Interface

The boundary condition Eq. (9a) has been evaluated analytically
by Shendeleva for time-dependent diffusion in adjoining media
with isotropic scattering, and it has been validated by Monte
Carlo simulation.3 Validation of the analytic method presented
herein is provided by comparison with the results of Ripoll and
Nieto-Vesperinas, who evaluated the error using numerical
methods.6 Figure 3 shows the relative errors in the diffuse
fluences at the common boundary between two adjoining media
versus the refractive index n2 of a scattering medium adjoining
an aqueous scattering medium (n1 ¼ 1.333), as calculated from
the analytic formulae given above [Eqs. (12a), (12b), (12c),
(12c′), (12d)]. The results show precise agreement with the
numerical data (plotted points) published previously,6 confirm-
ing the validity of the simpler analytic method, which can there-
fore replace the previous numerical methods for rapid evaluation
of the error in similar cases.

Figure 4 shows the dependence of the fractional errors
Δφ∕φ in the diffuse fluences versus scattering albedo a for
two adjoining media with disparate scattering parameters
(g ¼ 0, 0.95), calculated in the P1 and P3 approximations to
the diffusion parameters for Henyey-Greenstein scattering,16

with refractive index ratio n ¼ 1.41∕1.34 ¼ 1.06 (tissue/aq).
Initially, the error increases rapidly with absorption (a < 1)
for g ¼ 0, reaching a broad maximum Δφ∕φ ∼ 6% when
a ∼ 0.6; in contrast, the error for g ¼ 0.95 in the adjoining med-
ium increases quasilinearly to ∼5% when a ¼ 0. The results
show that the P1 approximation seriously underestimates the
error in diffuse fluence (by ∼40%), whereas P3 is ≤10% low
compared with the accurate value and is preferred for analytic
evaluation of Δφ∕φ. Overall, the error increases sharply when
there is non-negligible absorption in a turbid medium with
strongly forward-biased scattering.

Fig. 3 Comparison of analytic results for diffuse fluence error Δφ∕φ
(curves) with numerical results (data points from Fig. 8 in Ref. 6) at
the interface between an aqueous scattering medium (n1 ¼ 1.333) and
a scattering medium with refractive index n2 varied in the range of
1 ≤ n2 ≤ 2. Scattering parameters: μ 0

s1 ¼ 15 cm−1, μa1 ¼ 0.035 cm−1,
μ 0
s2 ¼ 10 cm−1, μa2 ¼ 0.24 cm−1, g ¼ 0.8.

Selden: Analytic evaluation of diffuse fluence error in multilayer scattering media : : :

Journal of Biomedical Optics 035001-3 March 2012 • Vol. 17(3)



3.2 Multilayers

For diffusion of light in multiple layers of finite thickness, the
diffuse fluence φkðzÞ in the kth layer may be expressed as
previously described:15

φkðzÞ ¼ ak expðμeff-kzÞ þ bk expð−μeff-kzÞ (13)

with a similar expression for φkþ1ðzÞ in the (k þ 1)th layer.
The boundary conditions described previously,4,7

ðnkþ1∕nkÞ2φkðzkÞ − φkþ1ðzkÞ ¼ Cðnkþ1∕nkÞJkðzkÞ (14a)

−Dk∇φkðzkÞ ¼ −Dkþ1∇φkþ1ðzkÞ; (14b)

yield the simple recurrence relations (for n ¼ nkþ1∕nk > 1),

akþ1 ¼ 1∕2f½n2 þ 1þ CðnÞDμeff �ak
þ ½n2 − 1 − CðnÞDμeff �bk expð−2μeffhÞg (15a)

bkþ1 ¼ 1∕2f½n2 − 1þ CðnÞDμeff �ak expð2μeffhÞ
þ ½n2 þ 1 − CðnÞDμeff �bkg; (15b)

when Dkþ1μeff-kþ1 ¼ Dkμeff-k ¼ Dμeff , and μeff-kþ1hkþ1 ¼
μeff-khk ¼ μeffh, where hk , hkþ1 are the widths of the kth
and (k þ 1)th layers, enabling the coefficients akþ1, bkþ1

to be related ak , bk . The results for the approximate boundary
condition [Eq. (10)] are obtained upon setting CðnÞ ¼ 0 in
Eqs. (15a), (15b). Successive application of these relations
yields the coefficients ak, bk for all the layers involved,
with appropriate boundary conditions chosen for the first
and last.15 A parallel set of coefficients, a 0

k , b 0
k , for

CðnÞ ¼ 0, enables direct comparison of the accurate and
approximate fluxes φk , φ 0

k in each layer and thus evaluation
of the cumulative error for the multilayer system. This is illu-
strated in Fig. 5, with Δφ∕φ ¼ 1.4% at a single interface (for
a ¼ 0.995, g ¼ 0.95, n ¼ 1.1) and the cumulative error
increasing with the total number of layers, exceeding 30%
for five layers when μ 0

s∕μa ¼ 1. For multilayer media with
higher index ratios, or for a larger number of layers, the
cumulative error can easily exceed 100%.

3.3 Perturbing Layer

The dependence of the diffuse reflectance of a layered medium
on changes in the optical properties of a subsurface layer is of
special interest.17 To illustrate this, consider a simple three-layer
model comprising two-plane parallel layers supported on a
semi-infinite layer (half-space) and vary the properties of the
middle layer. The arrangement is sketched in Fig. 6. The optical
properties are given in Table 1. The problem is analyzed via the
equations for the diffuse fluences in the three regions:

Half-space φ3ðzÞ ¼ b3 expð−μeff-3zÞ (16a)

Mid-layer φ2ðzÞ¼ a2 expðμeff-2zÞþb2 expð−μeff-2zÞ (16b)

Surface-layer φ1ðzÞ ¼ a1 expðμeff-1zÞ þ b1 expðμeff-1zÞ
− S0∕D expð−μtrzÞ; (16c)

with the diffuse fluence φ3ðzÞ decaying exponentially in the
half-space, the flux φ2ðzÞ in the midlayer having both expo-
nential terms, and the flux φ1ðzÞ in the surface layer includ-
ing the exponential source S0 expð−μtrzÞ for plane parallel
illumination at the surface.2 The boundary conditions
defined in Eqs. (14a) and (14b) are applied successively
at the interfaces to evaluate the coefficients ak, bk for
k ¼ 1, 2, 3. The flux φ1ðzÞ in the surface layer is extrapolated
to zero a finite distance beyond the surface equal to the
linear extrapolation distance zb determined by the refractive

Fig. 4 Relative error in diffuse fluence Δφ∕φ versus scattering albedo a
on either side of the interface between two homogeneous media with
disparate scattering parameters: g ¼ 0 (upper curves), g ¼ 0.95 (lower
curves) for index ratio n ¼ 1.06. The filled squares (▪) are data points
calculated with accurate values of the diffusion parameters D, κ.10,11

Fig. 5 Relative error in diffuse fluence Δφ∕φ versus μ 0
s∕μa in layer 1

(upper points) and layer 5 (lower points) of a five-layer medium on a
half-space (g ¼ 0.95, index ratios n ¼ 1.1): open squares (□) represent
P1 (diffusion) values, filled squares (▪) represent accurate values of diffu-
sion parameters D, κ.

Fig. 6 Schematic of three-layer system comprising two finite layers on a
semi-infinite substrate, subject to plane illumination normally incident
on the first layer.
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index n1.
4 The radiant flux at the surface Js ¼

−D1dφ1∕dzjs ¼ −D1φ1ð0Þ∕zb. A set of coefficients a 0
k, b

0
k

for Cðnkþ1 ∕nk Þ ¼ 0 at each interface yields the uncorrected
surface flux J 0

s , allowing the relative error ΔJs∕Js (and hence
the relative error in diffuse reflectance) to be determined. A
representative set of curves showing the dependence of
ΔJs∕Js on the ratio μ 0

s∕μa for selected values of the refractive
index ratio n ¼ n21 is plotted in Fig. 7, with the relative error
in surface flux ΔJs∕Js increasing with n and μa, reaching
30% for n ¼ 1.5 and μ 0

s∕μa ¼ 1ða 0 ¼ 0.5Þ, i.e., for μs∕μa ¼
20 (a ¼ 0.95, g ¼ 0.95). In general, the error is larger (or
smaller) for higher (or lower) values of scattering asymmetry
g and also increases with absorption.

4 Discussion
The analytic method of asymptotic planar fluxes enables
straightforward evaluation of the error in diffuse fluence φwith-
out recourse to a Monte Carlo simulation. The magnitude of the
error is readily found from the optical properties of the adjoining
scattering media, namely, the refractive index ratio, the reduced
scattering coefficients, the absorption coefficients, and scatter-
ing asymmetries. It is simply expressed via the product
CðnÞhξi, where CðnÞ is a monotonically increasing function
of the index ratio n ¼ n2∕n1 (Ref. 4) and hξi is the mean cosine
of the boundary radiance, a key result of the above analysis. This
is approximated by the asymptotic mean cosine hξias of the radi-
ance far from the boundary, expressed in terms of scattering
albedo a and diffuse attenuation coefficient μeff . An equivalent
formula for the error is CðnÞDμeff , where D is the diffusion coef-
ficient. The dependence of flux error on scattering asymmetry g
is of some interest, viz., for forward-biased scattering in turbid
media with near-negligible absorption (typical of biological tis-
sue in the near-IR6). The error increases rapidly as g ⇒ 1, but is

virtually independent of scattering asymmetry for negative
values g < 0 (Fig. 2). For forward-biased scattering media
with non-negligible absorption, e.g., biological media in the
visible spectrum, the error becomes progressively less depen-
dent on scattering asymmetry as absorption increases, ultimately
becoming independent of g in the limit of zero scattering
albedo a ⇒ 0.

Having found a simple means of estimating the magnitude of
the flux error at a boundary, accurate formulae for the diffuse
fluence φ in adjoining media incorporating the correction
term CðnÞDμeff are obtained from the boundary condition
Eq. (1). It is noted that the correction applies to the diffuse flu-
ence distribution throughout the turbid medium, not simply at
the boundaries. In the case of multilayer media, repeated appli-
cation of the boundary conditions yields recurrence relations for
the coefficients ak, bk of the formula for the diffuse fluence. A
corresponding set of coefficients a 0

k , b 0
k obtained from the

approximate boundary condition [with CðnÞ ¼ 0] enables
(1) the flux error in successive layers to be obtained and
(2) its parametric dependence on the optical properties of the
layers to be investigated. This is of importance for comparison
with experimental determination of diffuse reflectance, as well
as for the inverse problem of determining optical constants from
reflectance measurements.

The principal aim of the present work is to provide a simple
analytic method for estimating the error incurred in using the
approximate form of the boundary condition [Eq. (10)]. This
has been checked against the computational results reported pre-
viously6 (Sec. 3.1 and Fig. 3) and illustrated with several exam-
ples relevant to biomedical optics. The work presented herein
concerns analysis of the error involved in applying the approx-
imate diffusion boundary condition [Eq. (10)] rather than the
error in using diffusion theory per se. Thus a numerical evalua-
tion would merely quantify the “error within the error,” whereas
the analytic method provides a simple means of estimating its
magnitude. The analytic approach was never intended to replace
accurate radiative transfer computations where these are mer-
ited, e.g., Phillips and Jacques,17 but rather as a simple check
on the diffusion approximation, e.g., the widely used δ-P1

formulation.2

5 Conclusion
A simple analytic method of estimating the error involved in
applying a commonly used approximate boundary condition
for diffuse radiation in two adjoining scattering media with dif-
fering refractive indices has been presented. The method is
based on asymptotic planar fluxes and enables the relative
error to be readily evaluated without recourse to Monte Carlo
simulation. Three examples of its application have been consid-
ered: (1) evaluating the error in calculating the diffuse fluences
at a boundary between two media with differing refractive
indices and dissimilar scattering properties, (2) the dependence
of the relative error in diffuse fluence φ in a multilayer medium
with discontinuous refractive index on the ratio of the reduced
scattering coefficient to the absorption coefficient μ 0

s∕μa, and
(3) the dependence of the relative error in radiant flux Js at
the surface of a three-layer medium on the ratio μ 0

s∕μa in the
middle layer. In addition to its dependence on refractive
index ratio n ¼ n2∕n1 via the function CðnÞ, the fluence error
increases with scattering asymmetry g in forward-biased scatter-
ing media and is cumulative in multilayered media with refrac-
tive index increments between layers. The same methodology

Fig. 7 Relative error in diffuse radiant flux ΔJs∕Js at the surface of a
three-layer system (two finite layers on a semi-infinite substrate) versus
the ratio μ 0

s∕μa in the middle layer (layer 2) with refractive index in the
range n ¼ 1.1 to 1.5 (Table 1).

Table 1 Optical properties of the three-layer system.

Layer μ 0
s/mm−1 μa∕mm−1 d∕mm n

1 1 0.001 3 1.0

2 1 0.001 to 1.0 3 1.1 to 1.5

3 1 0.001 Inf. 1.0
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can be applied to multilayer problems with cylindrical symme-
try, with the system being first converted to planar geometry via
a Hankel transform, to allow 1-D analysis (as here), followed by
reconversion of the solution to cylindrical symmetry via an
inverse Hankel transform.15
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