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Abstract. We determined the optical properties of turbid media from simulated spatially resolved reflectance (SRR)
curves using an artificial neural network (ANN). In order to improve the performance of our method, multiple ANNs
were applied for this problem. First, Monte Carlo (MC) simulations were performed using random optical properties
which are relevant for biological tissue. For a better performance of the ANN in respect of SRR measurements, the
exact setup geometry was taken into account for the MC simulations. Second, the performed simulations were
classified into different categories according to their shape. Third, multiple ANNs which were adjusted to
these categories, were used to solve the inverse problem, i.e., the determination of the optical properties from
SRR curves. Finally, these ANNs were applied to determine the optical properties of simulated SRR curves out
of the range 0.5 mm−1 < μ 0

s < 5 mm−1 and 0.0001 mm−1 < μa < 1 mm−1. The average relative error was 2.9%
and 6.1% for the reduced scattering coefficient μ 0

s and for the absorption coefficient μa, respectively. © 2013
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1 Introduction
The noninvasive determination of the optical properties of tissue
is an important research area.1–7 To the authors’ knowledge,
Farrell et al.8 reported, for the first time, the determination of
the optical properties of simulated experimental data applying
an artificial neural network (ANN) that was trained using the
diffusion theory (DT). In addition, phantom and in vivo evalu-
ation studies were performed by Farrell et al.9 Subsequently, due
to the shortcomings of DT, Kienle et al.10 used an ANN that was
trained with Monte Carlo (MC) simulations for the determina-
tion of the optical properties from reflectance measurements.
Root mean square (RMS) errors of 2.6% for μ 0

s and 14% for
μa from absolute measurements of tissue-simulating phantoms
were received. The ANN was trained with optical properties out
of the range 0.002 to 0.1 mm−1 for μa and 0.5 to 2.0 mm−1 for
μ 0
s. Warncke et al.11 also used MC simulations for the training of

the ANN. They determined the optical properties out of the
range 0.02 to 1 mm−1 for μa and 0.6 to 2.5 mm−1 for μ 0

s
with an RMS error of 28% for μa and 9% for μ 0

s for simulated
spatially resolved reflectance (SRR) curves. Zhang et al.12 used
MC simulations, as well as measurements of tissue-simulating
phantoms, to train an ANN. They reported that the ANN trained
with MC simulations cannot properly estimate the optical prop-
erties of measurement data collected with their measurement
setup. Thus, an ANN trained with measurement data was used
to determine the optical properties. An ANN approach for the
determination of the optical properties of two-layered media
was presented by Wang et al.13 using a fibre-optic based reflec-
tance system. Wang et al.13 used MATLAB for the training of

the ANN with reflectance data from MC simulations.
Additionally, they showed an experimental evaluation of SRR
measurement of layered tissue optical properties in the UV-Vis
at three wavelengths. Later, Wang et al.14 showed an ANN
model that determined the optical properties in two stages. If the
absorption coefficient calculated by the first ANN was below a
certain value, a second ANN was applied for the determination
of the optical properties. Yaqin et al.15 presented another
approach which included an ANN in combination with a pre-
processing technique, the principal component analysis, for the
determination of the optical properties. Their method simplifies
the ANN structure and reduces the time for training the ANN.
Their optical property range for μ 0

s was between 0.1 mm−1 and
2.0 mm−1 and for μa between 0.01 mm−1 and 0.1 mm−1 and
RMS errors of 4.6% for μ 0

s and 9.2% for μa were received.
In a previous publication, we showed the noninvasive deter-

mination of the brain absorption in a five-layered model of the
human head.16 Furthermore, an ANN was used for the determi-
nation of the optical properties of scalp and skull in a four-lay-
ered model of the human head as well as for the determination of
the optical properties of two-layered media.17 In this study, for
the first time, multiple ANNs were applied for the solution of the
inverse problem of simulated SRR curves. We show that multi-
ple ANNs improve the results significantly. We used MC sim-
ulations, considering the setup geometry, for the training of the
ANN. Therefore, our ANN can be applied for the precise deter-
mination of the optical properties of measurement data.

2 Forward Problem
The forward problem, which is the calculation of theoretical
SRR curves from the given optical properties, can be solved
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is, in some cases, a good approximation of the radiative transfer
equation (RTE). The analytical solution is e.g., described by
Kienle and Patterson.18 We note that, recently, exact analytical
solutions of the RTE were derived for a semi-infinite medium.19

An exact solution of the RTE can also be achieved using
a numerical solution, for example, a MC simulation.20

However, an infinitely large number of photons is needed for
an exact solution of a MC simulation without noise. In addition,
MC simulations allow the consideration of an arbitrary setup
geometry for a better description of SRR measurements.21

We used our self-written MC simulations considering the meas-
urement geometry as explained below.

2.1 Principles of the MC Simulation

The principles of the used MC simulations are similar as those
described by Wang et al.20 For liquid phantoms consisting of
buffer, Intralipid and ink, we assumed a refractive index of
n ¼ 1.33. Furthermore, for a more exact description of our sam-
ple, we measured the phase function for Intralipid using a home-
build goniometer (not shown). A similar phase function, as pub-
lished by Michels et al.,22 was obtained and applied in the MC
simulation.

In order to achieve optimal results, we adjusted our MC
simulations that they reflect our measurement setup. Per-
forming measurements, the SRR of a semi-infinite medium was
measured using a charge-coupled device (CCD)-camera as
described by Foschum et al.21 The light from a xenon lamp
was coupled into an optical fibre and the sample was illuminated
with an angle of 11 deg relative to the surface normal. Thereby,
the sample-sided end of the optical fibre was imaged on the sur-
face of the semi-infinite medium. A 400 μm top hat was
obtained at the surface of the sample. As described by Kienle
and Foschum,23 the angular distribution of the emitted photons
from the semi-infinite medium do not have a cosine dependence.
Using a variance reductions method, the probability of the pho-
ton to hit the CCD-chip is calculated and all the photons that
pass through the aperture are collected.24 That means that the
reflected light from one position on the sample only reaches
the CCD-chip when it is radiated in a certain solid angle.
Foschum et al.21 used this measurement setup and transferred
those characteristics into the MC simulations.

2.2 MC Simulation for the Training of the ANN

MC simulations were used for the training, validating, and test-
ing of the ANN (see Sec. 3). The optical properties, covering
those usually found in biological tissue, were randomly chosen
out of the range 0.0001 mm−1 < μa < 1 mm−1 for the absorp-
tion coefficient and out of the range 0.5 mm−1 < μ 0

s < 5 mm−1

for the reduced scattering coefficient and SRR curves were
simulated.

Three data sets, each consisting of 2,000 theoretical SRR
curves, were simulated. The first data set was used for the train-
ing of the ANN, the second for the validation, and the third for
the testing of the ANN (see Sec. 3.1). In case of the validation
and testing datasets, the optical properties for the reduced scat-
tering coefficient

μ 0
s ¼ 0.5þ ξ · ð5 − 0.5Þ mm−1 (1)

and for the absorption coefficient

μa ¼ 10−fξ½−log10ð0.0001Þþlog10ð1Þ�−log10ð1Þg mm−1; (2)

are randomly chosen out of the given range with ξ being a ran-
dom number between 0 and 1. For the training data set, the range
was 5% larger. We used 106 photons for μa < 0.1 mm−1 and
7 · 106 photons for μa > 0.1 mm−1 in the MC simulations.
Therewith, the noise range in the MC simulations is equivalent
to the experimental data.

3 Inverse Problem
The opposite approach to the forward problem is the inverse
problem. That is, the determination of the optical properties
from SRR curves. These reflectance curves can be obtained
from
measurements as well as from simulations of the SRR. There are
multiple methods to calculate the optical properties for
a given SRR curve. One method is a nonlinear regression
and another method is the application of an ANN as explained
below.

3.1 ANN

The theoretical principles of the used ANN are explained by
Boone et al.25 We applied an ANN consisting of an input layer,
a hidden layer, and an output layer. Each layer has multiple neu-
rons. The 11 neurons of the input layer contain certain informa-
tion of the SRR curve and the 11 neurons of the hidden layer are
located between the input and the output layer. The 2 neurons of
the output layer represent by means of the ANN calculated
absorption coefficient μANN;ia and reduced scattering coefficient
μ 0ANN;i
s of the i’th SRR curve. Weights that connect the neurons

of the input layer with the neurons of the hidden layer and the
neurons of the hidden layer with the neurons of the output layer
define the strength of the connections.

In the first step, the ANN is trained with a training dataset
consisting of N SRR curves. At the beginning of the training
process, the weights are randomly chosen out of the range
−0.3 and þ0.3 as described by Boone et al.25 Using the gra-
dient descent method, the weights are modified iteratively in
order to adjust the optical properties, in other words, the result
in the output layer. This result is compared with the true opti-
cal properties known from the MC simulations in order to
verify the performance of the ANN. Therefore, the relative
RMS error

σrel¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2 ·N

XN
i¼1

��
μANN;ia −μMC;i

a

μMC;i
a

�2

þ
�
μ0ANN;i
s −μ0MC;i

s

μ0MC;i
s

�2�vuut
(3)

between by means of the ANN calculated optical properties
and the true optical properties known from the MC simula-
tions is minimized.

After the training process, the optimal weights for the train-
ing dataset are determined. During the following executing
phase, these weights can be used to calculate the optical proper-
ties of an unknown SRR curve. In order to avoid overfitting,
we used a second dataset consisting of N SRR curves (called
validation dataset) during the training process. Still, the ANN
is trained with the above mentioned training dataset and the
weights that yield a minimal error σrel for the training dataset
are used during the training process. Additionally, the weights
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that give a minimal error σrel for the validation dataset are stored
after every iteration. These weights are used to solve the inverse
problem in the executing phase of the ANN.

Since the MC simulations already consider the used setup
geometry, our trained ANN is suitable for the determination
of the optical properties of measured SRR curves. Only relative
SRR curves can be measured with the measurement setup
explained by Foschum et al.21 That is why we have to process
all reflectance curves (measured as well as simulated SRR
curves) to relative curves. It is important to treat all curves the
same way in order to obtain suitable input data for the ANN.
Relative curves were obtained using the below explained nor-
malization of the logarithm of the SRR curve. To achieve
this the function

log½RðρÞfit� ¼ aþ b · ρþ c · ρ2 þ d ·
ffiffiffi
ρ

p
; (4)

that was found empirically, is fitted to every logarithmic SRR
curve in order to smooth the noise. The fitted, logarithmic reflec-
tance is log½RðρÞfit�, the radial distance is denoted with ρ and a,
b, c, d specify the coefficients of the function. The area A under
the curve, between the reflectance value at ρ ¼ 1 mm and the
reflectance value at the position where the reflectance decreased
by 2.2 orders of magnitude in relation to the reflectance value at
ρ ¼ 1 mm, was calculated using Eq. (4). Additionally, the radial
distance ρ̄where the reflectance decreased by 2.2 orders of mag-
nitude relative to the reflectance value at ρ ¼ 1 mm was stored.
Thereafter, the average height of the curve h ¼ A∕ðρ̄ − 1Þ was
calculated and shifted to 0 of the y-axis in order to achieve rel-
ative SRR curves. We note that achieving relative SRR curves
by dividing every curve through a certain reflectance value is
problematic because one reflectance value can contain some
errors as noise or systematic errors. For the analysis of the SRR
curves, we have to take into account the limitation given by our
measurement setup. It is only possible to measure the SRR up to
the radial distance ρ ¼ 23 mm and over a range of 3 orders of
magnitude relative to the reflectance value at about ρ ¼ 1 mm.
The smallest radial distance is ρ ¼ 1 mm because of the errors
caused by the illumination profile that is not an exact top hat.

In the following, we first explain the performance of one
ANN (see Sec. 3.2) and, thereafter, the performance of multiple
ANNs (see Sec. 3.3).

3.2 One ANN

First, one ANN was used to solve the inverse problem. After we
have achieved relative SRR curves, the above mentioned func-
tion [see Eq. (4)] was again fitted to the resulting logarithmic
SRR curves. Some results can be seen in Fig. 1. The minimum
and maximum reflectance value, of every curve, was determined
under consideration of the limitation given by our measurement
setup. After that, the minimum of all maximum values and the
maximum of all minimum values (depicted in Fig. 1) was cal-
culated in order to define the possible range of all SRR curves.
(Using the reflectance values at fixed radial distances as input
values would limit the applicable radial distances between 1 mm
and 3 mm due to the strong decrease of reflectance curves with
high absorption coefficients and the maximal 3 orders of mag-
nitude relative to the reflectance value at ρ ¼ 1 mm that can be
measured with our measurement setup). For that reason, 11
reflectance values RðjÞ (j ¼ 1: : : 11), with an equidistant
decrease in the logarithm of the reflectance, have been chosen
out of the measurable range as depicted in Fig. 2. The

corresponding radial distance values ρ½RðjÞ� serve as input val-
ues for the ANN (see Fig. 2). The input values, as well as the
output values, of each neuron were scaled in the range 0.1 to 0.9.
This range was found empirically. It follows for the scaled radial
distance value of neuron nðjÞ

ρscnðjÞ ¼
ρ½RðjÞ� − ρmin

nðjÞ
ρmax
nðjÞ − ρmin

nðjÞ
· ð0.9 − 0.1Þ þ 0.1; (5)

with ρmin
nðjÞ being the smallest radial distance of neuron nðjÞ of all

N reflectance curves of the training dataset and ρmax
nðjÞ being the

largest radial distance.
Equally, the scaling for the reduced scattering coefficient

and the absorption coefficient was performed. It follows for
the scaled reduced scattering coefficient
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Fig. 1 Some relative SRR curves from the MC simulations and the cor-
responding fitted SRR curve.
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Fig. 2 One relative SRR curve from Fig. 1 and the chosen 11 reflectance
values RðjÞ as well as the corresponding radial distance values ρ½RðjÞ�.
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μ 0sc
s ¼ μ 0

s − μ 0min
s

μ 0max
s − μ 0min

s
· ð0.9 − 0.1Þ þ 0.1 (6)

and for the scaled absorption coefficient

fμsca ¼ log10ðμaÞ − log10ðμmin
a Þ

log10ðμmax
a Þ − log10ðμmin

a Þ · ð0.9 − 0.1Þ þ 0.1; (7)

with μ 0min
s being the smallest reduced scattering coefficient μ 0

s
found in the N SRR curves of the training dataset, and μ 0max

s
being the largest reduced scattering coefficient. Much better
results are achieved if we use the logarithm of the absorption
coefficient as output value for the performance of the ANN.
The smallest absorption coefficient μa, in the N SRR curves
of the training dataset, is described by μmin

a and μmax
a is the larg-

est absorption coefficient.

The ANN was trained with 100 SRR curves from the training
dataset and validated with another 100 SRR curves from the
validation dataset. The weights that have a minimal relative
RMS error σrel for the validation dataset were stored. Using
those weights, the error of an unknown testing dataset was
calculated. In Sec. 4, the average relative error, for this testing
dataset, is shown. We remark that we used 100 SRR curves for
the training since, with this amount of SRR curves, good results
were achieved. Using 200, 500 and 2,000 SRR curves, for the
training of the ANN, do not improve the results but need more
computation time. We found that too many SRR curves used for
the training even lead to larger errors since the ANN is not able
to adjust the weights for all curves. For the testing, we used
2,000 curves in order to have good statistics and to directly com-
pare the results to multiple ANNs (see Sec. 4).

Table 1 Summary of the categorization into 23 ANNs using presorting, the last measurable radial distance value ρlast, the first and second derivative of
the fitted function log½RðρÞfit�. Additionally, the smallest and largest optical properties for the particular ANNs are shown.

ANN
no.

presorting ρlast [mm] R 0 0 R 0 μ 0min
s [mm−1] μ 0max

s [mm−1] μmin
a [mm−1] μmax

a [mm−1]

1 I — — — 0.5 1.1 9.600e−5 1.155e−2

2 II A a 1 0.5 2.3 6.644e−2 9.743e−1

3 II A a 2 0.5 2.2 2.266e−2 3.127e−1

4 II A a 3 0.5 2.1 8.496e−3 1.495e−1

5 II A a 4 0.5 2.1 2.425e−3 6.562e−2

6 II A a 5 0.5 2.0 2.404e−4 2.405e−2

7 II A a 6 0.5 2.0 9.563e−5 1.814e−2

8 II A b 1 1.8 3.9 2.928e−2 3.757e−1

9 II A b 2 2.1 3.8 9.088e−3 7.178e−2

10 II A b 3 2.0 3.7 2.936e−3 2.018e−2

11 II A b 4 2.0 3.5 5.725e−4 7.370e−3

12 II A b 5 2.0 3.5 9.768e−5 2.777e−3

13 II A b 6 1.9 3.5 9.533e−5 1.208e−3

14 II A c 1 3.4 5.2 2.530e−2 1.759e−1

15 II A c 2 3.5 5.2 7.944e−3 4.704e−2

16 II A c 3 3.4 5.2 3.118e−3 1.439e−2

17 II A c 4 3.4 5.2 1.093e−3 6.593e−3

18 II A c 5 3.4 5.2 3.008e−4 3.006e−3

19 II A c 6 3.4 5.2 1.004e−4 1.076e−3

20 II A c 7 3.2 5.2 9.628e−5 5.744e−4

21 II B — 1 1.7 5.2 3.367e−1 1.047

22 II B — 2 1.0 5.2 2.059e−1 1.016

23 II B — 3 0.7 5.2 1.046e−1 1.016
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3.3 Multiple ANNs

In order to achieve better results, multiple ANNs were applied to
solve the inverse problem. Using 6,000 SRR curves, 23 ANNs
were trained, validated, and tested. First of all, the SRR curves
have to be classified according to their shape. These classifica-
tions divide the SRR curves in different groups, in other words
the different ANNs. This restricts the limits of the optical prop-
erty range to certain ranges. It can be seen, in Table 1, that each
ANN was responsible for a certain range of the absorption coef-
ficient and the reduced scattering coefficient, respectively. We
remark that some overlapping of the ANNs was considered.
Apart from that classification, the approach of multiple ANNs
(in other words the calculation of the input values, output values
etc.) is analogue to the approach of one ANN.

3.3.1 Classification of the curves

Since we have a quite large range for the absorption coefficient
(0.0001 mm−1 < μa < 1 mm−1) and for the reduced scattering
coefficient (0.5 mm−1 < μ 0

s < 5 mm−1), it it useful to group the
SRR curves, according to their shape, into different categories in
order to obtain a better performance of the ANNs. We found
relationships between the shape of the curve and the optical
properties that made it possible to divide the optical property
range in many smaller categories. For each category, a special
adjusted ANN was applied. The classification of the SRR curves
is shown below.

3.3.2 Presorting of the curves

Before the categorization of the curves was performed, 2,000
SRR curves of the training dataset were presorted in group I
and II. As stated in Sec. 3.1, with the CCD-camera, it is possible
to measure the SRR up to the radial distance ρ ¼ 23 mm and
over a range of 3 orders of magnitude relative to the reflectance
value at the radial distance of about ρ ¼ 1 mm. Some SRR
curves, with lower absorption and reduced scattering coeffi-
cients, already reach at the maximal measurable radial distance
of ρ ¼ 23 mm a decrease between 2.2 and 3 orders of magni-
tude relative to the reflectance value at ρ ¼ 1 mm. These curves
make up group I. All the other curves make up group II and, for
each curve, the last measurable radial distance value ρlast,
according to the decrease of 3 orders of magnitude relative to
the reflectance value at ρ ¼ 1 mm, was stored. In Fig. 3, the
correlation between the last measurable radial distance value
ρlast and the absorption coefficient μa of all SRR curves of
the training dataset from group II is shown. This correlation
is important in the further categorization.

3.3.3 Correlation with the reduced scattering coefficient

A more precise observation of the fitted, logarithmic SRR
curves of the training dataset showed an interesting
correlation between the second derivative R 0 0ðρOÞ ¼
d2 flog ½RðρÞfit�g∕dðρÞ2jρ¼ρo of the fitted, logarithmic SRR
curve and the reduced scattering coefficient. For the second
derivative, we used Eq. (4) since the derivative of a noisy SRR
curve at one particular distance does not provide useable data.
The second derivative, for all ρlast > 4.25 · ð1 − 0.005Þ mm
(group IIA) against the reduced scattering coefficient, is plotted
in Fig. 4. The second derivative was calculated at the radial dis-
tance ρO where the SRR curve had a decrease of 0.7 orders of
magnitude relative to the reflectance value at ρ ¼ 1 mm. The

value ρ ¼ 4.25 mmwas found empirically and some overlapping
was considered. It can be seen in Fig. 4 that it is possible to cat-
egorize these SRR curves according to their reduced scattering
coefficient. We have chosen 3 reduced scattering coefficient cat-
egories (IIAa, IIAb and IIAc) as shown in Fig. 4.

3.3.4 Correlation with the absorption coefficient

Another correlation was found between the first derivative
R 0ðρ�Þ ¼ dflog ½RðρÞfit�g∕dðρÞjρ¼ρ� of the fitted, logarithmic
SRR curve and the absorption coefficient. For the same reason
as above, we used Eq. (4) to calculate the derivative. The radial
distance, where the SRR curve decreased 2.6 orders of magni-
tude relative to the reflectance value at ρ ¼ 1 mm, is ρ�. The
first derivative, at a decrease of 2.6 orders of magnitude relative
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Fig. 3 Correlation between the last measurable radial distance value
ρlast and the absorption coefficient μa for all SRR curves of group II.
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s for all SRR curves of group IIA. The
radial distance ρO is the position where the SRR curve decreased 0.7
orders of magnitude relative to the reflectance value at ρ ¼ 1 mm.
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to the reflectance value at ρ ¼ 1 mm against the absorption
coefficient, is shown in Fig. 5 for all SRR curves of group IIAc.
For the rest of the curves of group II, similar correlations
were found.

3.3.5 Final categorization of the SRR curves of the training
dataset

Applying the above introduced correlations, the categorization
was performed and all the SRR curves of the training dataset
were divided into 23 ANNs. In order to avoid problems in the
edge areas, an overlapping of the ANNs was realized. Therefore,
some SRR curves of the training dataset were sorted into two
ANNs. In Fig. 6, the whole categorization process is summa-
rized. All curves of group I build up the SRR curves for the
training of the first ANN. Group II was first divided into another
two groups, IIA and IIB, using the correlation shown in Fig. 3.
Group IIA contains all SRR curves that fulfill the condition
ρlast > 4.25 · ð1 − 0.005Þ mm and group IIB contains all SRR
curves with ρlast < 4.25 · ð1þ 0.005Þ mm. Since all SRR curves
of group IIA show a good correlation between the second
derivative and the reduced scattering coefficient as plotted in
Fig. 4, it is possible to sort them into further groups. For the
categorization, the ranges R 0 0ðρOÞ < 0.105 · ð1þ 0.01Þ for group
IIAa, R00ðρOÞ>0.105 ·ð1−0.01Þ and R00ðρOÞ<0.184 ·ð1þ0.01Þ
for group IIAb, and R 0 0ðρOÞ > 0.184 · ð1 − 0.01Þ for group IIAc

were considered. Therefore, group IIAa contains all SRR curves
with a reduced scattering coefficient of about 0.5 mm−1 <
μ 0
s < 2 mm−1, group IIAb with a reduced scattering coefficient

of about 2 mm−1 < μ 0
s < 3.5 mm−1, and group IIAc with a re-

duced scattering coefficient of about 3.5 mm−1 < μ 0
s < 5 mm−1.

In the last categorization, all curves of groups IIAa, IIAb, IIAc,
and IIB were separated into different ANNs according to their
correlation between the first derivative and the absorption coef-
ficient as shown in Fig. 5. Therefore, group IIAa is divided into
ANN number 2–7, group IIAb into ANN number 8–13, group
IIAc into ANN number 14–20, and IIB into ANN number 21–
23. The SRR curves of groups IIAa, IIAb, IIAc, and IIB were
sorted according to R 0ðρ�Þ and divided into groups of about 90
curves considering an additional overlapping of 20 curves.
Finally, we obtained 23 ANNs, with between 95 and 115 SRR
curves, for the training of the ANNs. In Table 1, the whole cat-
egorzation process is summarized. Furthermore, the smaller
optical property ranges are shown that allow a more precise
training of a part of all SRR curves.

We remark that the correlations found in Figs. 4 and 5 are
also valid if a solution of the diffusion theory is used for the
calculation of simulated reflectance curves. As a consequence,
the whole categorization process is, in general, applicable and a
trained ANN can be applied for the solution of the inverse prob-
lem using other measurement geometries.

3.3.6 Categorization of the SRR curves of the validation
and testing dataset

The 2,000 SRR curves of the validation, as well as the testing
dataset, were sorted the same way as the training dataset but
without overlapping. Therewith, every SRR curve is sorted pre-
cisely in one group which is evaluated by one ANN.

4 Results

4.1 ANN

4.1.1 One ANN

Applying one ANN, 107 iterations were performed during the
training process in order to determine the weights. Thereafter, in
the executing phase, a testing dataset was used consisting of
2,000 unknown SRR curves and the relative error for the absorp-
tion and reduced scattering coefficients was calculated. An aver-
age relative error of 9.5% for the absorption coefficient and
4.1% for the reduced scattering coefficient was achieved.

A fourth dataset, consisting of 123 SRR curves, was gener-
ated using MC simulations for a systematic test of the ANN.
We have chosen 3 reduced scattering coefficients μ 0

s ¼ 1 mm−1,
μ 0
s ¼ 2 mm−1, and μ 0

s ¼ 4 mm−1 and 41 absorption coefficients
out of the range 10−4 mm−1 < μa < 100 mm−1 with equal step
size in the logarithmic scale. The results for these SRR curves
are shown in Fig. 7(a) for the relative error of the reduced scat-
tering coefficient and in Fig. 7(b) for the relative error of the
absorption coefficient. It can be seen that the ANN is able to
determine the reduced scattering coefficient more precisely
than the absorption coefficient. The relative error for the reduced
scattering coefficient is higher for larger absorption coefficients
[see Fig. 7(a)]. As shown in Fig. 7(b), the relative error for the
absorption coefficient oscillates around the y-axis.
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4.1.2 Multiple ANNs

For the training of each of the 23 ANNs, 105 iterations were
used. Applying 100 times more iterations does not significantly
improve the results for the testing dataset. During the executing
phase, the same testing dataset as for one ANN was used to
verify the performance of the ANNs. We calculated the average
relative error for the optical properties over all 23 ANNs. An
average relative error of 6.1% for the absorption coefficient and
2.9% for the reduced scattering coefficient was achieved using
105 iterations. Especially for the absorption coefficient, much
better results were achieved using multiple ANNs for the
same problem.

The results using 23 ANNs are shown in Fig. 8(a) and 8(b)
for the 123 systematic SRR curves. In Fig. 8(a), it can be seen
that the relative error for the reduced scattering coefficient is

higher for larger absorption coefficients but overall lower as
in Fig. 7(a). Figure 8(b) shows the relative error for the absorp-
tion coefficient that is obviously lower than in Fig. 7(b).

4.2 Explanation of the Results of the ANN

We used a solution of the DT in order to explain the errors of
the ANN. Regarding the light propagation in turbid media, the
DT is an often used approximation of the radiative transfer
theory. We used a solution of the diffusion equation for semi-
infinite media as described by Kienle and Patterson.18

Estimating the minimum errors to be expected for the ANN,
we fit a solution of the DT to a solution of the DT with noise
comparable to SRR measurements. This gives us a hint for the
minimum error that can be achieved using an ANN for the sol-
ution of the inverse problem. Therefore, 123 SRR curves with 3
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Fig. 7 Relative error of the a) reduced scattering coefficient and b) absorption coefficient is plotted against the absorption coefficient for μ 0
s ¼ 1 mm−1

(+), μ 0
s ¼ 2 mm−1 (O) and μ 0

s ¼ 4 mm−1 (*). During the training process one ANN was used.
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Fig. 8 Relative error of the a) reduced scattering coefficient and b) absorption coefficient is plotted against the absorption coefficient for μ 0
s ¼ 1 mm−1

(+), μ 0
s ¼ 2 mm−1 (O) and μ 0

s ¼ 4 mm−1 (*). During the training process 23 ANNs were used.
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chosen reduced scattering coefficients μ 0
s ¼ 1 mm−1, μ 0

s ¼
2 mm−1 and μ 0

s ¼ 4 mm−1 and 41 absorption coefficients out
of the range 10−4 mm−1 < μa < 100 mm−1 with equal step
size in the logarithmic scale were calculated with noise compa-
rable to the MC simulations or measurement data. After the DT
was fitted to the DTwith noise, the relative error for the reduced
scattering coefficient and absorption coefficient was determined
[see Fig. 9(a) and 9(b)]. The results for the reduced scattering
coefficient, shown in Fig. 9(a) have similar errors than the
results of the ANNs [see Fig. 8(a)]. Also, the results for the
absorption coefficient calculated with the DT [see Fig. 9(b)]
and with the ANNs [see Fig. 8(b)] are comparable. The errors
using the DT are marginally smaller because, using ANNs for
the solution of the inverse problem, we have to take into account
not only the noise of the measurements but also the error of
the ANN.

4.3 Comparison with the Results of the Diffusion
Theory

It is not possible to implement the exact setup geometry into the
diffusion equation and, thus, the DT cannot be used to determine
precisely the optical properties of our SRR measurements.
However, an ANN can be trained with MC simulations repre-
senting the exact setup geometry and, therefore, is suitable for
the determination of the optical properties of arbitrary measure-
ment geometries (see Sec. 3.1).

If we, nevertheless, fit a solution of the diffusion equation to
the simulated SRR curves, systematic errors occur. The DTwas
fitted to the 123 systematic SRR curves calculated with MC sim-
ulations. The relative error for μ 0

s and μa is shown in Fig. 10(a)
and 10(b), respectively. The reduced scattering coefficient is
determined to be approximately 5% too low and, especially
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Fig. 9 Relative error of the a) reduced scattering coefficient and b) absorption coefficient is plotted against the absorption coefficient for μ 0
s ¼ 1 mm−1

(+), μ 0
s ¼ 2 mm−1 (O) and μ 0

s ¼ 4 mm−1 (*). These results were achieved fitting the DT to the DT with noise.
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Fig. 10 Relative error of the a) reduced scattering coefficient and b) absorption coefficient is plotted against the absorption coefficient for μ 0
s ¼ 1 mm−1

(+), μ 0
s ¼ 2 mm−1 (O) and μ 0

s ¼ 4 mm−1 (*). These results were achieved fitting the DT to simulated SRR curves calculated with MC simulations.
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for higher μa, large systematic errors can be seen. In contrast, the
absorption coefficient is, on average, calculated too large.
Especially for smaller and higher μa, large relative errors occur.

5 Conclusion
For the determination of the optical properties, we used one and
multiple ANNs trained with MC simulations, considering the
measurement geometry. We have shown that applying more
ANNs, for the determination of the optical properties of
semi-infinite scattering media, improved the results significantly,
especially, for the determination of the absorption coefficient.
With the application of multiple ANNs for the determination of
the optical properties, it is possible to determine the reduced scat-
tering coefficient with an average relative error of 2.9% and the
absorption coefficient with an average relative error of 6.1%.
Whereas, one ANN leads to higher errors. The average relative
errorwas 4.1% for the reduced scattering coefficient and the aver-
age relative error was 9.5% for the absorption coefficient.

For the performance of multiple ANNs, an important condi-
tion is the categorization of the SRR curves before the training
of the ANNs. This categorization must be unique and transfer-
able to every validation and testing SRR curve as well as to mea-
sured SRR curves. We found correlations between the first and
second derivative of the SRR curve at a certain radial distance
and the optical properties. For this reason, it was possible to
divide different SRR curves in particular categories. A limitation
of the optical property ranges into smaller categories for the
absorption and reduced scattering coefficients also leads to a
faster learning process of the ANN. Furthermore, we used scaled
input and output values to improve the performance of the ANN.
After the input and output values for the testing dataset were
prepared, it took 734 ms to determine the optical properties
of 2,000 SRR curves, therewith, about 0.37 ms per SRR
curve using a single processor of a state of the art computer.

Using the DT, a theoretical curve was fitted to a theoretical
curve with noise and the results were compared with the results
of the multiple ANNs. This comparison showed similar errors for
the optical properties as shown in Figs. 8(a), 8(b), 9(a), and 9(b).
Thus, using the multiple ANNs, we almost reached the same
errors as using the DT that was fitted to the DT with noise,
i.e., the performance of the multiple ANNs is close to the
theoretical optimum. We remark that the multiple ANNs were
trained with MC simulations considering the measurement geom-
etry of our measurement setup and, therefore, can be used to
determine the optical properties of measured SRR curves. We
would like to point out that the determination of the optical prop-
erties from measured reflectance data is also possible using other
particular measurement systems since the correlations found in
Figs. 4 and 5 are also valid if a solution of the diffusion theory
is used for the calculation of simulated reflectance curves.
Therefore, the ANNs have to be trained with simulated measure-
ment curves considering the actual measurement geometry.

In addition, we determined the optical properties, using the DT,
that was fitted to the simulated SRR curves calculated with MC
simulations. The results for the optical properties show large sys-
tematic errors. As a consequence, the DT cannot be used to deter-
mine precisely the optical properties from measurement data
where the setup geometry has to be taken into account.
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