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Abstract. Articular cartilage (AC) is mainly composed of collagen, proteoglycans, chondrocytes, and water.
These constituents are inhomogeneously distributed to provide unique biomechanical properties to the tissue.
Characterization of the spatial distribution of these components in AC is important for understanding the function
of the tissue and progress of osteoarthritis. Fourier transform infrared (FT-IR) absorption spectra exhibit detailed
information about the biochemical composition of AC. However, highly specific FT-IR analysis for collagen and
proteoglycans is challenging. In this study, a chemometric approach to predict the biochemical composition of
AC from the FT-IR spectra was investigated. Partial least squares (PLS) regression was used to predict the
proteoglycan content (n ¼ 32) and collagen content (n ¼ 28) of bovine cartilage samples from their average
FT-IR spectra. The optimal variables for the PLS regression models were selected by using backward interval
partial least squares and genetic algorithm. The linear correlation coefficients between the biochemical refer-
ence and predicted values of proteoglycan and collagen contents were r ¼ 0.923 (p < 0.001) and r ¼ 0.896
(p < 0.001), respectively. The results of the study show that variable selection algorithms can significantly
improve the PLS regression models when the biochemical composition of AC is predicted. © 2014 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.19.2.027003]
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1 Introduction
Biochemical composition,1–3 biomechanical properties,4 and
grade of osteoarthritis5,6 of articular cartilage (AC) have been
evaluated with Fourier transform infrared (FT-IR) spectroscopic
methods. There has been increasing interest toward multivariate
analysis methods in FT-IR spectroscopic studies of AC. These
methods include, e.g., principal component regression,2,7 partial
least squares (PLS) regression,8,9 and cluster analysis.10–14

Multivariate regression methods are attractive because they
can utilize overlapping data, i.e., it is not necessary to find a
characteristic absorption peak for each compound in the sample.
Instead, multivariate models can be built using the whole
acquired wavenumber range. However, some of the variables
may be irrelevant, noisy, or otherwise unreliable in the situation
of interest.15 Therefore, the model may benefit, if unnecessary
variables are removed from the data before conduction of multi-
variate regression analysis.

In a recent study, genetic algorithm (GA) was applied for
variable selection when compressive stiffness of AC was pre-
dicted from FT-IR spectra.4 Direct application of GA is prob-
lematic if the data contains lots of variables because the
probability of finding chance correlation and overfitting
increases. Therefore, in that study, the variables were averaged
using a 10-cm−1 spectral window to decrease the number of

variables. Averaging effectively reduces the possibility of over-
fitting. Unfortunately, some narrow peaks can be lost as a result
of averaging, which can decrease the prediction accuracy.
Alternative means to reduce the number of variables are needed
to obtain best results with GA.

Backward interval PLS (biPLS) is an algorithm that can be
used to remove unnecessary spectral windows from the spectra
before PLS regression.15 In biPLS, the spectral data is divided
into equal-sized spectral windows. The effect of removal of each
spectral window to the model prediction is calculated. After
finding the best PLS regression model, the corresponding win-
dow is removed. The process can be repeated until there is only
one window left or until enough windows have been removed.
The PLS regression model could then be built using the best
combination of spectral windows found from biPLS.
Alternatively, variable selection can be further continued by
applying GA to the variables that are left after biPLS. Thus
far, the biPLS method has not yet been applied to FT-IR studies
of AC.

The aim of this study was to predict the collagen and pro-
teoglycan contents in bovine AC using FT-IR spectroscopy
and PLS regression. Biochemical analysis of collagen and pro-
teoglycan contents served as reference. As a second aim, it was
evaluated whether the variable selection algorithms biPLS and
GA can further improve the prediction results.
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2 Materials and Methods

2.1 Sample Preparation

The samples used in this study were originally collected in ear-
lier studies.16,17 Briefly, osteochondral samples (d ¼ 19 mm)
were drilled from healthy and osteoarthritic bovine patellae
(n ¼ 32). The samples were split into two halves. A smaller
cylindrical (d ¼ 3.7 mm) sample was taken from the other
half for other analyses, while the remaining cartilage was
used for biochemical reference measurements. The other half
was fixed with 10% formalin, decalcified with EDTA, dehy-
drated, and embedded in paraffin.

2.2 FT-IR Spectroscopic Imaging

New 5-μm-thick sections were cut from the paraffin blocks for
the FT-IR spectroscopic measurements. The sections were dew-
axed prior to placing them onto 2-mm-thick ZnSe windows.
Measurements were conducted with the Perkin Elmer
Spotlight 300 FT-IR imaging system (Perkin Elmer, Shelton,
Connecticut) in transmission mode using spectral and pixel res-
olutions of 4 cm−1 and 25 μm, respectively. A dry air purge
(Parker Balston, Haverhill, Massachusetts) was used to mini-
mize the variation in the measurement conditions. A 400-μm-
wide area was imaged from cartilage surface to cartilage-
bone junction from each section. The spectra of each section
were first averaged to obtain one mean spectrum.
Subsequently, extended multiplicative signal correction was
used to remove the scattering-related baseline variations from
the spectra.18

2.3 PLS Regression

Spectral region of 800 to 1800 cm−1 was used in the analysis.
Optimal number of PLS components for the models was chosen
by performing a leave-one-out cross-validation and calculating
the root-mean-square error of cross-validation (RMSECV).
Minimum RMSECV value indicated the best model. Leave-
one-out cross-validation was used for validation of all PLS
regression models.

2.4 biPLS Regression

The spectra were divided into 20 equal-sized spectral windows.
The effect of removal of each spectral window to the model pre-
diction was evaluated by calculating the RMSECV for each PLS
regression model built using the combination of remaining 19
spectral windows. The window whose removal resulted in the
lowest RMSECV was removed. The procedure was repeated
until 12 out of 20 spectral windows were removed. GA was
applied to the remaining eight windows. The biPLS procedure
was continued until there was only one window remaining.
Thereafter, the combination of spectral windows that resulted
in the best model achievable by biPLS was searched and com-
pared with other models in the study.

2.5 GA for Wavenumber Selection after biPLS

GAs are optimization methods based on the principles of natural
evolution.19 GA is described in more detail in our previous
article.4 It has been reported that the variables-to-objects ratio
should be less than 5 to obtain the best performance when
GAs are used.15 To obtain a reasonable variables-to-object

ratio for GA, the eight remaining spectral windows after
biPLS were averaged using a 4-cm−1 spectral window.
Consequently, the number of variables was 100 and the varia-
bles-to-objects ratio was less than 4. The parameters used in the
GA were as follows. The population size: 100, gene initializa-
tion probability: 5%, cross-over method: one-point, cross-over
probability: 80%, mutation probability: 1%, number of genera-
tions: 100, response (to be minimized): RMSECVof the predic-
tion. The number of PLS components for proteoglycans and
collagen were chosen based on the full-spectrum model. GA
was run 100 times, and the frequency with which each variable
was selected in the best chromosome was calculated. When the
final model was built, variables were added to the model accord-
ing to the frequency of selections. The variable combination that
resulted in minimal prediction error was chosen as the
final model.

2.6 Biochemical Analysis

Uronic acid20 and hydroxyproline21 contents were determined to
serve as reference information for proteoglycan and collagen
contents, respectively. Uronic acid content was determined
for all samples (n ¼ 32), whereas hydroxyproline content
could be determined for 28 samples.16,17

2.7 Statistical Analysis

Linear correlation coefficients between the biochemically deter-
mined proteoglycan or collagen content and the content pre-
dicted from the FT-IR spectra by different multivariate
regression models were calculated. The statistical significance
of the difference between the correlation coefficients was tested
by using Steiger’s Z-test.22 The test utilizes Fisher’s r-to-z
transformation for comparing two dependent correlation
coefficients.22

3 Results

3.1 Models Using Full Spectrum

Three and four PLS components were found to be optimal for
proteoglycan and collagen contents, respectively. The correla-
tion coefficient between the uronic acid (proteoglycan) content
and the content predicted by the full-spectrum PLS regression
model was r ¼ 0.862 (p < 0.01). The correlation coefficient
between the hydroxyproline (collagen) content and the content
predicted by the full-spectrum PLS regression model was
r ¼ 0.793 (p < 0.01).

3.2 biPLS

The spectral regions that were selected for the prediction of the
proteoglycan content by biPLS are shown in Fig. 1(a). The cor-
relation coefficient between the uronic acid content and the con-
tent predicted by the biPLS regression model was r ¼ 0.904
(p < 0.01) [Fig. 1(b)]. The correlation coefficient was sta-
tistically significantly higher than that of the full-spectrum
model. The spectral regions that were selected for the prediction
of the collagen content are shown in Fig. 2(a). The correlation
coefficient between the hydroxyproline content and the content
predicted by the biPLS regression model was r ¼ 0.881
(p < 0.01) [Fig. 2(b)]. This correlation coefficient was also sta-
tistically significantly higher than that of the full spectrum
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model. Figure 3 shows the correlation coefficients as a function
of the number of windows used in biPLS.

3.3 GA after biPLS

biPLS was first used to remove 12 out of 20 spectral windows.
The remaining eight spectral windows are shown in light gray
shading in Figs. 4(a) and 5(a) for proteoglycans and collagen,
respectively. GAwas applied to the remaining spectral windows.
The 11 spectral variables that were selected for the prediction of
the proteoglycan content by the GA are shown in Fig. 4(a). The
correlation coefficient between the uronic acid content and the
content predicted by the PLS regression model was r ¼ 0.923
(p < 0.01) [Fig. 4(b)]. The correlation coefficient was sta-
tistically significantly higher than that of the full-spectrum
model. The 21 spectral variables that were selected for the pre-
diction of the collagen content by the GA are shown in Fig. 5(a).
The correlation coefficient between the hydroxyproline content
and the content predicted by the PLS regression model was r ¼
0.896 (p < 0.01) [Fig. 5(b)]. The correlation coefficient was sta-
tistically significantly higher than that of the full-spectrum
model. The results are summarized in Table 1.

Fig. 1 (a) Spectral regions selected by biPLS for the prediction of the uronic acid content in AC are
marked by a gray fill. (b) A scatter plot between the reference values of uronic acid content and the
content predicted by the biPLS regression model.

Fig. 2 (a) Spectral regions selected by biPLS for the prediction of the hydroxyproline content in AC are
marked by a gray fill. (b) A scatter plot between the reference values of hydroxyproline content and the
content predicted by the biPLS regression model.

Fig. 3 Correlation coefficient between the reference values of uronic
acid (white circles) and hydroxyproline (black squares) contents and
biPLS regression models as a function of the number of windows
used in biPLS. Correlation coefficients for the models using only
the last windows are not visible in the plot as they were significantly
smaller (r ¼ 0.40 and 0.30 for uronic acid and hydroxyproline, respec-
tively) than the other values.
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4 Discussion
The aim of this study was to predict the biochemical composi-
tion of AC using FT-IR spectroscopy, PLS regression, and var-
iable selection algorithms. The major components of AC,
proteoglycans, and collagen were successfully determined
from FT-IR spectra using multivariate regression. The results
of the study demonstrate that variable selection algorithms sig-
nificantly improve the multivariate regression models when pre-
dicting uronic acid and hydroxyproline contents in AC. biPLS

with or without GA showed improved correlation with the bio-
chemically determined reference information as compared with
the full-spectrum PLS regression models. GA seemed to
improve the results as compared with biPLS but the difference
did not reach the limit of statistical significance.

The spectral regions selected by the biPLS were very similar
for both uronic acid [Fig. 1(a)] and hydroxyproline [Fig. 2(a)].
Both used the carbohydrate region (950 to 1050 cm−1), sulfate
region (1250 to 1300 cm−1), and amide II region (1550 to
1560 cm−1). Hydroxyproline used fraction of amide I region
(1650 to 1700 cm−1), while the spectral region of 1400 to
1450 cm−1 was included in the uronic acid model. The similar-
ities in the spectral regions between these two are not that sur-
prising, considering that the spectra of collagen and
proteoglycans overlap each other.1 Because there are no specific
absorption peaks for either of these components, the multivariate
regression model requires information on both collagen and pro-
teoglycans. There are more significant differences between
uronic acid and hydroxyproline in spectral variables selected
by the GA. The uronic acid model heavily utilizes the carbohy-
drate region [Fig. 4(a)], which is known to be linked to

Fig. 4 (a) The eight spectral regions remaining after biPLS for the prediction of the uronic acid content in
AC are marked by a light gray fill. The spectral variables selected by GA for the prediction of the uronic
acid content in AC aremarked by a black fill. (b) A scatter plot between the reference values of uronic acid
content and the content predicted by the PLS regression model that used the variables selected by GA.

Fig. 5 (a) The eight spectral regions remaining after biPLS for the prediction of the hydroxyproline con-
tent in AC are marked by a light gray fill. The spectral variables selected by GA for the prediction of the
hydroxyproline content in AC are marked by a black fill. (b) A scatter plot between the reference values of
hydroxyproline content and the content predicted by the PLS regression model that used the variables
selected by GA.

Table 1 Linear correlation coefficients (r ) between the different PLS
regression models and biochemical reference information.

Content PLS biPLS biPLS+GA

Uronic acid 0.862 0.904* 0.923*

Hydroxyproline 0.793 0.881* 0.896*

*Significantly higher r compared with that of the full-spectrum PLS
regression model (p < 0.05).
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proteoglycans.1,23,24 In addition to the carbohydrate and the sul-
fate regions, the hydroxyproline model also uses amide I and
amide II regions which are traditionally used for the analysis
of collagen content1 [Fig. 5(a)].

Collagen and proteoglycan contents in AC have earlier been
predicted from FT-IR spectra using multivariate regression mod-
els.2,7–9 These studies used a wide spectral region in the multi-
variate models but still indicated superior performance
compared with traditional univariate methods. Collagen and
proteoglycans form the majority of the dry matrix of AC.
Therefore, it is not that critical to select the optimal spectral
regions when predicting collagen and proteoglycan contents
in AC. Although the earlier results have been good, the variable
selection algorithms can be used to further improve the models.
In this study, it was found that biPLS provides a relatively easy
and objective way to select optimal spectral regions for PLS
regression. The results could still be further optimized by testing
different spectral window sizes in biPLS.15 GA is a more com-
plicated and time-consuming method for variable selection, but
it may improve the prediction accuracy over that of biPLS alone.
Multivariate regression models may be built to predict smaller
molecular components of AC such as collagen cross-links or
different collagen types. Furthermore, these models may also
be useful to predict more complex phenomena such as biome-
chanical function of AC or progress of osteoarthritis. As these
are not expected to be the origins of main features of AC FT-IR
spectra, the variable selection algorithms may become even
more important in the future.

We used 10-year-old formalin-fixed paraffin-embedded
(FFPE) samples in this study. In general, FFPE samples are highly
stable.25 Fixation and storage time of FFPE samples have been
shown to hinder the analysis of ribonucleic acids. On the other
hand, proteomic investigations of abundant proteins in FFPE
samples have been successfully conducted even from older sam-
ples without problems.26 There exists large number of FFPE sam-
ples in different laboratories, and some of these samples are
decades old.25 Therefore, it would be beneficial if the composition
of old FFPE samples could be analyzed accurately. The results of
this study show that the macromolecular composition of AC can
be accurately determined from 10-year-old FFPE samples.
However, we cannot say if the current models work equally
well in case of FFPE samples of different ages. Further studies
comparing FFPE samples of different ages are needed to clarify
this matter.
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