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Abstract. This work analytically examines some dependences of the differential pathlength factor (DPF) for
steady-state photon diffusion in a homogeneous medium on the shape, dimension, and absorption and reduced
scattering coefficients of the medium. The medium geometries considered include a semi-infinite geometry, an
infinite-length cylinder evaluated along the azimuthal direction, and a sphere. Steady-state photon fluence rate in
the cylinder and sphere geometries is represented by a form involving the physical source, its image with respect
to the associated extrapolated half-plane, and a radius-dependent term, leading to simplified formula for esti-
mating the DPFs. With the source-detector distance and medium optical properties held fixed across all three
geometries, and equal radii for the cylinder and sphere, the DPF is the greatest in the semi-infinite and the
smallest in the sphere geometry. When compared to the results from finite-element method, the DPFs analyti-
cally estimated for 10 to 25 mm source–detector separations on a sphere of 50 mm radius with μa ¼ 0.01 mm−1

and μ 0
s ¼ 1.0 mm−1 are on average less than 5% different. The approximation for sphere, generally valid for

a diameter ≥20 times of the effective attenuation pathlength, may be useful for rapid estimation of DPFs in
near-infrared spectroscopy of an infant head and for short source–detector separation. © The Authors. Published

by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution

of the original publication, including its DOI. [DOI: 10.1117/1.JBO.20.10.105005]
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1 Introduction
Near-infrared spectroscopy (NIRS)1 is becoming an increas-
ingly important modality for a number of investigational and
clinical needs, including noninvasive functional study of neuro-
physiological connectivity,2 bedside monitoring of cerebral
hemodynamics,3 and evaluating responses to cancer treatment.4

Most NIRS systems for long duration monitoring operate
under the continuous-wave (CW) or steady-state condition.5

Quantitation of the changes of chromophores, most importantly
oxyhemoglobin and deoxyhemoglobin, within the highly diffus-
ing tissue typically relies upon a priori estimates of the effective
pathlength of the photons that propagate from a source to a
detector. Delpy et al.6 first suggested utilizing the ratio of the
effective pathlength of the photon trajectory over fixed separa-
tions of source–detector pairs as the differential pathlength
factor (DPF) in the routine for quantitative NIRS. A DPF
value of 5.3� 0.3 across a rat head was experimentally obtained
by using time-of-flight techniques. Although the DPF was
observed to be approximately constant for source–detector spac-
ings greater than 2.5 cm, frequency-domain NIRS studies by
Duncan et al.7 at source–detector spacings >4 cm yielded DPFs
of 6.26 (�14.1%) for an adult head, 5.51 (�18%) for an adult
leg, 4.99 (�9%) for the head of a newborn infant, and 4.16

(�18.8%) for an adult arm. These experimentally obtained val-
ues indicate that the DPF may depend on the dimensions and
shape of the tissue structure under investigation, providing
the same source–detector separations (fixed physical configura-
tion) and tissue optical properties (likely subject condition).

In terms of the analytical form of DPF, Delpy et al.6 sug-
gested a wavelength-, medium-, and geometry-dependent con-
stant8 in addition to the term straightforwardly derived from the
solution to photon diffusion in an unbounded homogeneous
medium. In the case of a homogeneous semi-infinite medium,
explicit analytical formation of the DPF was given by reports
including Fantini et al.9 and Boas et al.10 A semi-infinite geom-
etry is a reasonable representation of the measurement geometry
for a set of optodes separated by a few centimeters when exter-
nally placed on large tissue areas. However, in cases involving
measurement of the brain, different head sizes (infant to adult),
different global shapes of the head (Caucasian to Asian), differ-
ent regions of the head11 (e.g., prefrontal or parietal), and even
different ages12 may result in different DPFs. Therefore, an ana-
lytical form of DPF that indicates the effect of the size and shape
of the nonsemi-infinite geometry, even at the simplest case of a
homogeneous medium that is the basis for analysis of more real-
istic geometries, may be informative for the development of bet-
ter strategies to the quantitation of the chromophore changes
when the wavelength dependency of DPF is also taken into
account.13 In addition, the more accurate a priori estimation
of the DPF for the subsets of optode configurations with shorter
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source–detector separations, the more reliable the determination
of the shallow-layer contamination to the deeper-layer signal.14

Whereas estimates of DPFs from complex geometries are
readily available with the use of discrete numerical methods
[e.g., finite-element method (FEM)15–17], access to analytical
estimators of DPFs that can be quickly implemented with rea-
sonable tolerance can hold considerable practical and clinical
value, especially in situations where near immediate or real-
time quantitates of DPFs are required (e.g., acute care environ-
ments) to allow timely diagnosis and intervention. Mainly lack-
ing in support of this, an analytically rendered understanding of
the DPF in geometries more complex than the semi-infinite case,
specifically how the shape and dimension of a spherically
curved geometry resembling an infant head affect the DPF, is
relevant to NIRS applications for better clinical care.

Mathematical treatments of analytical solutions to the photon
diffusion equation (DE) in a medium bounded externally by a
circular cylindrical applicator or a spherical applicator have been
investigated over a course of nearly two decades in many com-
prehensive studies.18–22 A particularly complete set of solutions
in time domain and frequency domain in a number of geometries
were presented by Arridge et al.18 in 1992; the DPFs could be
obtained from the explicit solutions derived for the mean time of
flight in a variety of geometries using the zero boundary con-
dition. In 2001, Sassaroli et al.22 developed the corresponding
solutions of time-resolved DE using the more widely used
extrapolated boundary condition (EBC)21,23,24 for curved geom-
etries including infinite cylinder and sphere; the DPFs for infin-
ite cylinder and sphere can also be derived or computed from the
results that were in excellent agreement with Monte Carlo (MC)
simulations. While these studies as represented by Refs. 18 and
22 have theorized the computational availability of accurate
time-domain DPFs for curved geometries of interest, the com-
putational complexity arising from applying high-precision
arithmetic library on infinite-series-summations involving vari-
ous special functions renders them out of reach for most mem-
bers of the NIRS community. Solutions for the CW reflectance
and subsequently the DPF that preferably involve only the
regular functions and do not impose lengthy summations,
while perhaps less accurate, may be much more convenient
for most clinically oriented CW NIRS applications in rapidly
estimating the DPF for timely physiological assessment. This
present study aims to develop the first steps toward this
unmet need.

In our recent approach to a new routine of solutions of DE for
an infinite-length cylinder domain as demonstrated in a series
of work applicable to CW,25 frequency domain26 and time
domain,27 the solutions for DE were presented using a pair of
the modified Bessel functions of the first and the second kinds.
The basic form of the DE solution for the unbounded homo-
geneous medium geometry shown in Refs. 25–27 may be sim-
ilar to the one used by Ref. 28; however, our method of utilizing
the EBC in the case of the medium bounded within an infinite-
length cylinder was new in terms of leading to a more intuitive
interpretation of the solution. The solution obtained for the
infinite-length cylinder domain is presented to consist of two
parts: the first part is associated with the “real” isotropic source
that is the common approach of treating the light normally inci-
dent to the medium from the source fiber or channel, and the
second part accounts for the contribution of the “image” source
as a result of the medium boundary that is represented by the
“real” source term scaled by a factor determined by the radius

of the cylinder. This solution is subsequently formatted to a
form similar to that for the semi-infinite geometry except a
shape-curvature-associated term that makes the solution for
the cylinder domain approaching the one for semi-infinite geom-
etry as the radius of the cylinder domain increases without
bound. Such treatment allowed obtaining approximating solu-
tions of CW DE in cylinder geometries of relatively large radius
using functions more convenient to evaluate than special
functions and without involving the infinite series of summa-
tions. Additionally, the analytical methodology explored in
Refs. 25–27 applies to two opposite medium geometries, one
for the medium enclosed by the optode applicator as with the
arm or leg, and the other for the medium enclosing the optode
applicator as with the prostate via transrectal probing.

In continuation of our demonstrated approaches to the homo-
geneous infinite cylinder domain, we develop in this present
work the solution of steady-state DE in a homogeneous spheri-
cal domain (limited to the external applicator case although the
approach is extendable to the internal applicator case) to a form
that is also composed of two parts: the first part is associated
with the “real” isotropic source, and the second part is the con-
tribution of the “image” source term that is represented by the
“real” source term scaled by a factor depending upon the radius
of the sphere. The format of the solution for the spherical
domain, or the subsequent approximation, shall also be similar
to that for the semi-infinite geometry except for a shape-curva-
ture-associated term, which nonetheless must be different from
its counterpart for the infinite cylinder, to make the solution for
the sphere domain approaching the one for semi-infinite geom-
etry, as the radius of the sphere increases without bound.

With the solutions of steady-state DE associated with the
geometries of interest becoming available, the DPF can then
be evaluated by calculating the partial derivative of the attenu-
ation of the photon fluence with respect to the absorption and
dividing that by the source–detector separation. The usefulness
of the quantitative patterns of analytically approximated DPF
associated with curved geometries can then be examined by
using numerical simulation, which in this work is limited to
FEM method.

2 Geometries Considered and Analytic
Preparations for Steady-State Photon
Diffusion in Infinite and Semi-Infinite
Geometries

We consider a scattering domain with an absorption coefficient
of μa and a diffusion coefficient of D ¼ 1∕ð3μ 0

sÞ where μ 0
s is

the reduced scattering coefficient. It must be noted that it is yet
to reach a consensus regarding whether the diffusion coefficient
in steady-state measurement shall include the absorption coef-
ficient.29–33 We argue that, as the DPF is unbiasedly defined by
the use of mean time of flight through time-dependent DE, the
definition of DPF in steady-state may agree with the one in the
time-resolved condition only if the diffusion coefficient is not
dependent upon the absorption coefficient. Therefore, this
study uses the diffusion coefficient as D ¼ 1∕ð3μ 0

sÞ.
This study intends to analytically compare the DPF in three

geometries of the bounded medium that include a semi-infinite
geometry, an infinite-length cylinder geometry, and a spherical
geometry. Since the solutions for bounded geometries originate
from the solution for the infinite medium geometry, it becomes
imperative to establish a general analytical routine to the studied
geometries as are shown in Fig. 1, and from which to evaluate
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the DPF of steady-state measurement. For obvious conven-
iences, the infinite and semi-infinite domains will be represented
using the Cartesian coordinates, where we are concerned about
photon pathlength from a source at ~χ 0 ¼ ðx 0; y 0; z 0Þ to a detector
at ~χ ¼ ðx; y; zÞ. The infinite-length cylinder domain will be
represented with the polar cylindrical coordinates, where we
are concerned about photon pathlength from a source at
~χ 0 ¼ ðρ 0;φ 0; z 0Þ to a detector at ~χ ¼ ðρ;φ; zÞ. The sphere
domain will be modeled in the spherical coordinates, where
we are concerned about photon pathlength from a source at ~χ 0 ¼
ðr 0; θ 0;φ 0Þ to a detector at ~χ ¼ ðr; θ;φÞ.

2.1 Infinite Geometry and Semi-Infinite Geometry

A homogeneous medium of infinite geometry is illustrated in
Fig. 1(a), wherein the source is regarded as being isotropic.
In the infinite geometry, it is convenient to set the source at
~χ 0 ¼ ð0;0; 0Þ, and the detector at ~χ ¼ ð0; d; 0Þ, where d is the
source–detector separation.

A homogeneous medium of semi-infinite geometry with the
physical source and the detector located on the medium boun-
dary is depicted in Fig. 1(b). In the semi-infinite geometry, it

becomes convenient to set the physical source at ~χ 0 ¼ ð0;0; 0Þ,
and the detector at ~χ ¼ ð0; d; 0Þ. The physical source at
~χ 0 ¼ ð0;0; 0Þ launches photon into the medium at an initial
direction orthogonal to the medium-applicator interface, and
the resulted photon diffusion is treated as being excited by
an equivalent “real” isotropic source located at one step of
reduced scattering, represented by Ra ¼ 1∕μ 0

s, into the medium.
The “real” isotropic source ~χ 0

real thus has the coordinates of
ð0;0;−RaÞ. The effect of the medium-applicator interface on
photon diffusion as modeled by the EBC21,23,24 sets zero the
photon fluence rate on an imaginary boundary located at a dis-
tance of Rb ¼ 2AD away from the physical boundary, where A
is a coefficient23 related to the refractive index differences across
the physical boundary. This EBC is conventionally accommo-
dated by setting a sink or a negative “image” of the “real” iso-
tropic source, with respect to the extrapolated boundary. The
“image” source for the semi-infinite geometry has the opposite
strength of the “real” isotropic source and locates at ~χ 0

imag, which
has the coordinates of ð0;0; Ra þ 2RbÞ. The distances from the
detector to the “real” isotropic source ~χ 0

real and the “image”
source ~χ 0

imag are denoted by lr and li, respectively. The notations
of lr ¼ j~χ − ~χ 0

realj and li ¼ j~χ − ~χ 0
imagj also apply to other

Fig. 1 Four cases of medium geometry. (a) Infinite geometry, where an isotropic source is at
~χ 0 ¼ ð0;0; 0Þ and a detector is at ~χ ¼ ð0; d ;0Þ. (b) Semi-infinite geometry wherein the source and the
detector locate at ~χ 0 ¼ ð0;0;0Þ and ~χ ¼ ð0; d ;0Þ, respectively. The equivalent isotropic source locates
inwardly with respect to the interface at ð0;0;−RaÞ, and the image of it with respect to the boundary
locates at (0;0; Ra þ 2Rb). (c) Infinite-length cylindrical geometry, where the source and the detector
locate at ðR0;φ 0; z 0Þ and ðR0;φ; zÞ, respectively. The equivalent isotropic source locates inwardly
with respect to the curvature of the interface at ðR0 − Ra;φ 0; z 0Þ, and the image of it with respect
to the boundary locates at a to-be-determined radial position of ðρ?;φ 0; z 0Þ, which will reach
ðR0 þ Ra þ 2Rb;φ 0; z 0Þ as the radius of the cylinder increases toward infinity. (d) Spherical geometry,
where the source and the detector locate at ðR0; θ 0;φ 0Þ and ðR0; θ;φÞ, respectively. The equivalent iso-
tropic source locates inwardly with respect to the curvature of the interface at ðR0 − Ra; θ 0;φ 0Þ, and the
image of it with respect to the boundary locates at a to-be-determined radial position of ðr ?; θ 0;φ 0Þ, which
will reach ðR0 þ Ra þ 2Rb; θ 0;φ 0Þ as the radius of the cylinder increases toward infinity.
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medium geometries studied in this work when involving a boun-
dary. In all studied geometries, the straight distance between the
physical source and the detector d ¼ j~χ − ~χ 0j is referred to as the
“line-of-sight” source–detector distance, and hereafter specified
as source–detector distance. It is with respect to this d, which is
to remain identical across different medium geometries consid-
ered in this work, that the DPF is to be expressed, facilitating the
evaluation of the effect of shape and dimension of the nonsemi-
infinite-domains on DPF in comparison to the semi-infinite
geometry on DPF.

2.2 Infinite-Length Cylindrical Geometry

The homogeneous medium bounded in an infinite-length cylin-
drical geometry is illustrated in Fig. 1(c). The radius of the cyl-
inder is R0, then a detector ~χ on the medium-applicator interface
locates at ðR0;φ; zÞ, and a directional source ~χ 0 on the medium-
applicator interface locates at ðR0;φ 0; z 0Þ. The geometric sym-
metry requires that the directional source ~χ 0 be modeled by a
“real” isotropic source ~χ 0

real positioned along the radial direction
of ~χ 0 and inwardly at a radial distance of Ra ¼ 1∕μ 0

s, at
ðR0 − Ra;φ 0; z 0Þ. The extrapolated zero-boundary is concentric
with and at a radial distance of Rb ¼ 2AD outward from the
physical boundary. Apparently, as the radius R0 of the infin-
ite-length cylinder reaches infinity, the photon fluence rate
associated with a source–detector pair on the infinite-length
cylindrical medium-applicator interface shall reach that on
the semi-infinite medium interface for the same source–detector
distance. This characteristic has served for “checking” the
results developed for infinite-length cylindrical geometry.25

If one considers reaching the curved geometry from a semi-
infinite geometry that extends to infinities at two orthogonal
dimensions of the direction, bending on one dimension of
the direction will make the effect of an infinite-length cylinder,
and concurrent bending on both dimensions of the direction will
reach the effect of a sphere. From such an intuitive perspective,
we could expect that the effect of the one-dimensional (1-D)
bending of the semi-infinite domain on photon diffusion will
be seen when evaluating the photon diffusion along the azimu-
thal direction of the resulted infinite-length cylinder geometry,
and that effect on photon diffusion when compared to semi-
infinite geometry will be less than the double-dimensional bend-
ing of the semi-infinite domain to reaching the sphere for the
same source–detector distances. Consequently, we evaluate
the infinite-cylinder domain in the azimuthal direction only.

2.3 Spherical Geometry

A spherical geometry is illustrated in Fig. 1(d). The radius of the
spherical applicator is R0, then a detector ~χ on the medium-
applicator interface locates at ðR0; θ;φÞ, and a directional source
~χ 0 on the medium-applicator interface locates at ðR0; θ 0;φ 0Þ.
The geometric symmetry requires that the directional source
~χ 0 be modeled by a “real” isotropic source ~r 0real positioned
along the radial direction of ~χ 0 and inwardly at a radial distance
of Ra ¼ 1∕μ 0

s, [i.e., at ðR0 − Ra; θ 0;φ 0Þ]. The extrapolated zero
boundary is concentric with and at a radial distance of
Rb ¼ 2AD outward from the physical boundary. Apparently,
as the radius R0 of the spherical geometry reaches infinity,
the photon fluence rate associated with a source–detector pair on
the spherical medium-applicator interface shall reach that on the
semi-infinite medium interface for the same source–detector dis-
tance. It shall be noted, however, that the rate at which the

photon fluence approaches the value of the semi-infinite
geometry will be different in spherical geometry comparing
to the infinite-length cylindrical geometry, given the same
radius.

2.4 Steady-State Photon Diffusion in an Infinite
Homogeneous Domain

The equation of steady-state photon diffusion in a homogeneous
medium is expressed by

EQ-TARGET;temp:intralink-;e001;326;627∇2Ψð~χÞ − μa
D

Ψð~χÞ ¼ −
Sð~χÞ
D

; (1)

where Ψ is the photon fluence rate and S is the source term. For
an infinite medium and a point source at ~χ 0 with an intensity S as
represented by S · δð~χ 0Þ, Eq. (1) has the well-known closed-
form solution of Ref. 25

EQ-TARGET;temp:intralink-;e002;326;541Ψðχ⇀; ~χ 0Þ ¼ S
4πD

1

j~χ − ~χ 0j e
−μeff j~χ−~χ 0 j; (2)

where μeff ¼
ffiffiffiffiffiffiffiffiffiffiffi
μa∕D

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3μ 0

sμa
p

is the effective attenuation
coefficient. The solution to Eq. (1) also can be written in the
form of the following eigenfunction expansion (for derivation,
see Appendix A):

EQ-TARGET;temp:intralink-;e003;326;453Ψðχ⇀; ~χ 0Þ

¼ S
D
ðμeffÞ

X∞
l¼0

ilðμeffr<Þklðμeffr>Þ
Xl

m¼−l
Y�
lmðθ 0;φ 0ÞYlmðθ;φÞ;

(3)

where il and kl are respectively the l’th order modified spherical
Bessel function of the first and the second kinds, r< and r> are
respectively the smaller and greater radial coordinates of the
source and detector, and Ylm is the spherical harmonics function.
The numerical identity between Eq. (3) and the well-known
form of Eq. (2) is justified in Appendix B.

2.5 Steady-State Photon Diffusion in
a Homogeneous Semi-Infinite Medium

We follow the notations summarized by Fantini et al.34 for the
semi-infinite geometry having a directional source and an iso-
tropic detector located on a planar boundary, as illustrated in
Fig. 1(b). As stated in Sec. 2.1, the directional source is modeled
as an isotropic source placed one reduced scattering distance into
the medium. Then, based on the extrapolated boundary and the
“image” source approach, the steady-state photon fluence rate
reaching the detector located on the physical boundary is deter-
mined by the equivalent “real” isotropic source and the “image”
of it with respect to the extrapolated boundary. That gives

EQ-TARGET;temp:intralink-;e004;326;153Ψ ¼ Ψreal − Ψimag ¼
S

4πDlr
e−μeff lr −

S
4πDli

e−μeff li ; (4)

where

EQ-TARGET;temp:intralink-;e005;326;98lr ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðRa∕dÞ2

q
; Ra ¼ 1∕μ 0

s; (5)
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EQ-TARGET;temp:intralink-;e006;63;734li ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½ðRa þ 2RbÞ∕d�2

q
; Rb ¼ 2AD: (6)

3 Steady-State Photon Diffusion in
a Homogeneous Medium Bounded in
a Spherical Geometry

The principles to find the solutions to steady-state photon dif-
fusion associated with a homogeneous infinite-length cylinder25

will not be duplicated here. The solutions associated with infin-
ite-cylinder geometry will however be presented when needed
for the comparison with the solutions obtained for other
geometries.

3.1 Solution of Steady-State Photon Diffusion
Associated with a Homogeneous Medium of
Spherical Geometry

In surface imaging of a medium of spherical geometry with a
radius of R0, the physical source is located at ðR0; θ 0;φ 0Þ and
the detector is located at ðR0; θ;φÞ, both on the physical boun-
dary. The equivalent “real” isotropic source locates at ðR0 −
Ra; θ 0;φ 0Þ, and the extrapolated boundary locates at a radial posi-
tion of ρr> ¼ R0 þ 2AD outside the physical boundary. The geo-
metric symmetry determines that the image of the “real” isotropic
source with respect to the extrapolated boundary must locate
along the radial direction of the “real” isotropic or the physical
source. This image source and the “real” isotropic source collec-
tively set zero the photon fluence rate on the extrapolated
boundary.

Based on Eq. (3), the photon fluence rate associated with the
“real” isotropic source and evaluating on the extrapolated boun-
dary, for which the source locates at r< ¼ R0 − Ra and the
detector locates at r> ¼ R0 þ Rb, is
EQ-TARGET;temp:intralink-;e007;63;363

Ψrealjextr ¼
1

D
ðμeffÞ

X∞
l¼0

S · il½μeffðR0 − RaÞ�kl½μeff

× ðR0 þ RbÞ�
Xl

m¼−l
Y�
lmðθ 0;φ 0ÞYlmðθ;φÞ; (7)

where the notation “leftjright” indicates evaluating the “left” as a
source on the “right” as a boundary. Note that the source term
“S” is placed inside the summation. This basically indicates that
any “l”’th order of the “real” source has the same intensity of
“S,”,as compared to different intensity for each order of the
“image” source as will be shown in the following equation.
Similarly, the photon fluence rate associated with the image
source and evaluating on the extrapolated boundary, for which
the source locates at radial position of a to-be-determined r> and
the detector locates at r< ¼ R0 þ Rb, is
EQ-TARGET;temp:intralink-;e008;63;170

Ψimagjextr¼
1

D
ðμeffÞ

X∞
l¼0

S�l il½μeff

×ðR0þRbÞ�kl½μeffr>�
Xl

m¼−l
Y�
lmðθ0;φ0ÞYlmðθ;φÞ; (8)

where the S�l terms associated with each “l”’th order are not the
same. Based on the essence of “image-source,”35,36 the two
unknown terms S�l and r> associated with the l’th order
“image” source (the kl component) can be expressed by a single

unknown term Sl associated with the same order “real” source
(the il component), that is

EQ-TARGET;temp:intralink-;e009;326;712S�l klðμeffr>Þ ¼ Slil½μeffðR0 − RaÞ�: (9)

Applying Eq. (9) to the EBC of Ψrealjextr −Ψimagjextr ¼ 0, we
have

EQ-TARGET;temp:intralink-;e010;326;659Sl ¼ S
kl½μeffðR0 þ RbÞ�
il½μeffðR0 þ RbÞ�

l ¼ 0;1; 2; : : : (10)

Now for the “real” source but evaluating at the physical boun-
dary, the source still locates at r< ¼ R0 − Ra but the detector
locates at r> ¼ R0. For the “image” source also evaluating at the
physical boundary, the detector locates at r< ¼ R0 and the source
terms are now known through Eqs. (9) and (10). Collectively, the
photon fluence rate sensed by a detector at the physical boundary
becomes
EQ-TARGET;temp:intralink-;e011;326;537

Ψ¼Ψrealjphys−Ψimagjphys¼
S
D
ðμeffÞ

X∞
l¼0

il½μeff

×ðR0−RaÞ�kl½μeffR0�
Xl

m¼−l
Y�
lmðθ 0;φ 0ÞYlmðθ;φÞ

−
S
D
ðμeffÞ

X∞
l¼0

il½μeff

×ðR0−RaÞ�il½μeffR0�
kl½μeffðR0þRbÞ�
il½μeffðR0þRbÞ�

Xl

m¼−l
Y�
lmðθ 0;φ 0Þ

×Ylmðθ;φÞ¼
S
D
ðμeffÞ

X∞
l¼0

il½μeff

×ðR0−RaÞ�kl½μeffR0�
Xl

m¼−l
Y�
lmðθ 0;φ 0ÞYlmðθ;φÞ

×
�
1−

il½μeffR0�
kl½μeffR0�

kl½μeffðR0þRbÞ�
il½μeffðR0þRbÞ�

�
: (11)

Equation (11) is convertible to the following form that may
be more convenient for numerical evaluation:
EQ-TARGET;temp:intralink-;e012;326;271

Ψ ¼ S
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðR0 − RaÞR0

s X∞
l¼0

Ilþ1∕2½μeff

× ðR0 − RaÞ�Klþ1∕2ðμeffR0Þ
2lþ 1

4π
Plðcos γÞ

×
�
1 −

Ilþ1∕2½μeffR0�
Klþ1∕2½μeffR0�

Klþ1∕2½μeffðR0 þ RbÞ�
Ilþ1∕2½μeffðR0 þ RbÞ�

�
; (12)

where Il and Kl are respectively the l’th order modified Bessel
function of the first and the second kinds, Pl is the l’th order
Legendre polynomial, and γ is the angle formed between the
position vector of the source and that of the detector (see
also Appendix A).

The value determined by Eq. (11) or Eq. (12) is compared
against FEM results (configuration of FEM will be detailed
in subsequent sections), as shown in Fig. 2, for two radii of
25 mm and 50 mm at three sets of optical properties: the top
traces correspond to μa ¼ 0.01 mm−1 and μ 0

s ¼ 0.25 mm−1,
the middle traces μa ¼ 0.01 mm−1 and μ 0

s ¼ 0.50 mm−1, and
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the bottom traces μa ¼ 0.01 mm−1 and μ 0
s ¼ 1.0 mm−1. A total

of 51 detector positions are placed at a source–detector distance
of 1 to 50 mm at a step of 1 mm from a single source. At the
radius of 25 mm, the farthest detector point is positioned at the
opposite to the source point, and at the radius of 50 mm, the
farthest detector point is positioned at 60 deg with respect to
the source point. The results are presented in terms of lnðd2 �
ΨÞ versus d, as it leads to a convenient near-linear relationship
as the source–detector distance becomes longer than approxi-
mately five times of the reduced scattering pathlength. The
oscillation observed of the analytical result corresponding to
μ 0
s ¼ 1.0 mm−1 is due to arithmetic overflow in computing

the modified Bessel functions. It is shown that at source–detec-
tor separations less than approximately five times of the reduced
scattering pathlength (i.e., in the subdiffusion regime) there is a
discrepancy between the analytically evaluated photon fluence
rate and its FEM counterpart. As observed in our previous
study37 dedicated to experimental examination of the analytical
results of photon fluence rate specific to infinite-length cylin-
der,25 the discrepancy between the diffusion-based analytical
quantification and the FEM simulation in the subdiffusion
regime was largely attributed to the difference between a spa-
tially impulsive source treated in the analytical solution and a
spatially distributed Gaussian source profile utilized in the
FEM tool available for this work. The spatially impulsive source
treated in the analytical solution was physically analogous to the
single-point launching of forward directional photons into the
medium, whereas the spatially distributed Gaussian source pro-
file implemented in the FEM had the size effect manifested
increasingly at shorter distances from the source. Additionally,
the treatment to boundary effect (e.g., the probability of a boun-
dary-reaching photon returning to the medium) in the analytical
model was based on EBC, whereas a Robin-type boundary
condition was programmed in the FEM; the subtle difference
in the boundary conditions could have been amplified at the
subdiffusion regime. In the diffusion regime, however, the
analytical computations marked by the solid lines and the
FEM results given in discrete markers clearly match, corrobo-
rating that Eq. (11) is the solution to the steady-state
photon diffusion in a homogeneous medium bounded in a
sphere.

3.2 Large-Diameter Approximation of the Solution
for a Spherical Domain

As shown in Fig. 1(d), if a plane tangential to the sphere at the
physical source position is considered as an imaginary planar
boundary to a semi-infinite geometry of the medium to which
the medium of the spherical geometry will approach as the
radius of the sphere increases without bound, then the “real”
isotropic source in this semi-infinite geometry still locates at
ðR0 − Ra; θ 0;φ 0Þ, but the image of the “real” isotropic source
with respect to this “hypothetical” semi-infinite boundary
will be at ðR0 þ Ra þ 2Rb; θ 0;φ 0Þ. According to Eq. (3), the
photon fluence rate sensed by a detector on the spherical boun-
dary due to the image of the “real” isotropic source associated
with this “hypothetical” semi-infinite boundary is

EQ-TARGET;temp:intralink-;e013;326;573Ψsemi
imagjphys ¼

S
D
ðμeffÞ

X∞
l¼0

il½μeffR0�kl½μeffðR0 þ Ra

þ 2RbÞ�
Xl

m¼−l
Y�
lmðθ 0;φ 0ÞYlmðθ;φÞ: (13)

The photon fluence rate sensed by a detector on the spherical
boundary due to the image of the “real” isotropic source asso-
ciated with the spherical boundary, as seen in Eq. (11), can be
rewritten to
EQ-TARGET;temp:intralink-;e014;326;446

Ψimagjphys ¼
S
D
ðμeffÞ

X∞
l¼0

il½μeffR0�kl½μeffðR0 þ Ra þ 2RbÞ�

· ηl ·
Xl

m¼−l
Y�
lmðθ 0;φ 0ÞYlmðθ;φÞ; (14)

where

EQ-TARGET;temp:intralink-;e015;326;353ηl ¼
kl½μeffðR0 þ RbÞ�
il½μeffðR0 þ RbÞ�

il½μeffðR0 − RaÞ�
kl½μeffðR0 þ Ra þ 2RbÞ�

: (15)

Note that R0 ≫ Ra, Rb and if the argument of the modified
Bessel functions is much greater than 1 (i.e., μeffR0 ≥ 10
that corresponds to R0 ≥ 57.8 mm for μa ¼ 0.01 mm−1 and

Fig. 2 Comparison of the value determined by Eq. (11) or (12) against finite-element method
(FEM) results. The parameters are chosen as: radii of 25 mm and 50 mm, optical properties of
μa ¼ 0.01 mm−1 with μ 0

s ¼ 0.25 mm−1 (top traces), μ 0
s ¼ 0.5 mm−1 (middle traces), and μ 0

s ¼ 1.0 mm−1

(bottom traces). A total of 51 detector positions are placed at a source–detector distance of 1 to 50 mm at
a step of 1 mm from the single source position. The results given by FEM are relatively smooth for all sets
of parameters considered in contrast to the variation of the numerical computation based on Eq. (12) for
the 50 mm radius at μ 0

s ¼ 1.0 mm−1, but nevertheless the numerical computations marked by the solid
lines clearly follow the traces indicated by the FEM results.
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μ 0
s ¼ 1.0 mm−1) the modified spherical Bessel functions in

Eq. (15) can be simplified by their asymptotic expressions,38

then Eq. (15) becomes

EQ-TARGET;temp:intralink-;e016;63;701ηl ¼
R0 þ Ra þ 2Rb

R0 − Ra
: (16)

Comparing to its counterpart for infinite cylinder [Eq. (3.1.9)
in Ref. 25], Eq. (16) for sphere geometry is different only in the
power of the entire fraction, that is, one or one-half—an intuitive
analogy of the double-sided bending or single-sided bending
from a semi-infinite geometry. Substituting Eq. (16) into
Eq. (14) and comparing to Eq. (13) we have

EQ-TARGET;temp:intralink-;e017;63;592Ψimagjphys ¼ Ψsemi
imagjphys ·

R0 þ Ra þ 2Rb

R0 − Ra
: (17)

Hence, for a sphere of large diameter, Eq. (12) approximates
to

EQ-TARGET;temp:intralink-;e018;63;527Ψ ¼ Ψrealjphys − Ψimagjphys ¼ Ψrealjphys − Ψsemi
imagjphys

·
R0 þ Ra þ 2Rb

R0 − Ra
: (18)

The Ψrealjphys of Eq. (18) is essentially the same as the
Ψreal in Eq. (4). As the radius of the sphere reaches infinity with-
out bound, we have ðR0 þ Ra þ 2RbÞ∕ðR0 − RaÞ → 1, and the
Ψsemi

imagjphys of Eq. (18) will become the Ψimag in Eq. (4) because
the detector point locating at ðR0; θ;φÞ will reach the “hypo-
thetical” semi-infinite boundary. By using the expression of
the photon fluence rate given in Eq. (2), we can rewrite
Eq. (18) as

EQ-TARGET;temp:intralink-;e019;63;373Ψ ¼ S
4πD

e−μeff lr

lr
−

S
4πD

e−μeff li

li

R0 þ Ra þ 2Rb

R0 − Ra
: (19)

For the purpose of assessing the general patterns of the
steady-state photon fluence rate versus the source–detector
distance, the following expressions of the involved distances
will be implemented in Eq. (19):

EQ-TARGET;temp:intralink-;e020;63;284lr ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δr

p
; where Δr ¼

R2
a

d2
−
Ra

R0

; (20)

EQ-TARGET;temp:intralink-;e021;63;238li¼d
ffiffiffiffiffiffiffiffiffiffiffiffi
1þΔi

p
; whereΔi¼

ðRaþ2RbÞ2
d2

þRaþ2Rb

R0

: (21)

The formula for the photon fluence rates associated with the
four geometries of consideration, including infinite medium,
semi-infinite medium or half-plane, large-radius infinite-cylin-
der when evaluated along the azimuthal direction, and large-
radius sphere is tabulated in Table 1. The numerical results
shown in the later sections performed for conditions including
μeffR0 ¼ 8.66 will indicate that the approximate formula for
the infinite cylinder and the sphere is generally valid when
the radius satisfies μeffR0 ≥ 10, that is, the radius (diameter)
is more than 10 (20) times of the effective attenuation pathlength
1∕μeff .

4 Differential Pathlength Factors Associated
with Homogeneous Semi-Infinite,
Infinite-Length Cylinder When Evaluated
along the Azimuthal Direction and
Spherical Geometries

The DPF was originally introduced in Ref. 6 to relate the
changes of the light to the changes of the absorption coefficient,
at a given source–detector pair, by the modified Beer–Lambert
law of Att ¼ exp½−μa · DPF · d�, where “Att” is the ratio of
measured light over the incident light. We use the definition
of DPF provided by Fantini et al.9 or Arridge et al.18 that
becomesDPF ¼ f∂½lnðS∕ΨÞ�∕∂μag∕d using the set of equations
in Table 1. The DPF for infinite medium geometry is obtained
by direct derivation operation, whereas the DPFs for the semi-
infinite, cylindrical when evaluated along the azimuthal direc-
tion, and spherical geometries are obtained by involving Taylor
series expansion. The results are:

• Infinite geometry [identical to Eq. (4) of Ref. 9]

EQ-TARGET;temp:intralink-;e022;326;389DPFinf ¼
1

d
∂
∂μa

�
ln

�
S

Ψinf

��
¼ ∂

∂μa
ðμeffÞ ¼

ffiffiffiffiffiffiffi
3μ 0

s

p
2

ffiffiffiffiffi
μa

p :

(22)

• Semi-infinite geometry [identical to Eq. (9) of Ref. 9]
EQ-TARGET;temp:intralink-;e023;326;320

DPFsemi ¼
1

d
∂
∂μa

�
ln

�
S

Ψsemi

��

¼ 1

d

expð−μeff lrÞ − expð−μeffliÞ
expð−μeff lrÞ

lr
− expð−μeff liÞ

li

∂
∂μa

ðμeffÞ

≈
ffiffiffiffiffiffiffi
3μ 0

s

p
2

ffiffiffiffiffi
μa

p d
ffiffiffiffiffiffiffiffiffiffiffiffi
3μ 0

sμa
p

d
ffiffiffiffiffiffiffiffiffiffiffiffi
3μ 0

sμa
p

þ 1
: (23)

Table 1 Analytical (large-radius approximation) representations of the photon diffusion.

Geometry Fluence rate Distance parameters

Infinite Ψinf ¼ S
4πD

e−μeffd

d d

Semi-infinite Ψsemi ¼ S
4πD

e−μeff lr

l r
− S

4πD
e−μeff l i

l i
l r ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δr

p
@ R0 → ∞ l i ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δi

p
@ R0 → ∞

Large infinite cylinder, azimuthal direction Ψazi ¼ S
4πD

e−μeff l r

l r
− S

4πD
e−μeff l i

l i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0þRaþ2Rb

R0−Ra

q
l r ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δr

p
l i ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δi

p

Large sphere Ψsph ¼ S
4πD

e−μeff l r

l r
− S

4πD
e−μeff l i

l i
R0þRaþ2Rb

R0−Ra
l r ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δr

p
l i ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δi

p
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• Infinite-length cylindrical geometry, evaluated along the
azimuthal direction
EQ-TARGET;temp:intralink-;e024;63;711

DPFazi ¼
1

d
∂
∂μa

�
ln

�
S

Ψazi

��

¼ 1

d

expð−μeff lrÞ− ½expð−μeffliÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0þRaþ2Rb

R0−Ra

q
expð−μeff lrÞ

lr
− expð−μeff liÞ

li

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0þRaþ2Rb

R0−Ra

q ∂
∂μa

ðμeffÞ

¼
ffiffiffiffiffiffiffi
3μ 0

s

p
2

ffiffiffiffiffi
μa

p d
ffiffiffiffiffiffiffiffiffiffiffiffi
3μ 0

sμa
p

½ηaziΔi −Δr�− ½ηazi − 1�
ðd

ffiffiffiffiffiffiffiffiffiffiffiffi
3μ 0

sμa
p

þ 1Þ½ηaziΔi −Δr�− ½ηazi − 1� ;

(24)

EQ-TARGET;temp:intralink-;e025;63;571where ηazi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 þ Ra þ 2Rb

R0 − Ra

s
: (25)

• Spherical geometry
EQ-TARGET;temp:intralink-;e026;63;510

DPFsph ¼
1

d
∂
∂μa

�
ln

�
S

Ψsph

��

¼ 1

d

expð−μefflrÞ − ½expð−μeff liÞ� R0þRaþ2Rb
R0−Ra

expð−μeff lrÞ
lr

− expð−μeff liÞ
li

R0þRaþ2Rb
R0−Ra

∂
∂μa

ðμeffÞ

¼
ffiffiffiffiffiffiffi
3μ 0

s

p
2

ffiffiffiffiffi
μa

p d
ffiffiffiffiffiffiffiffiffiffiffiffi
3μ 0

sμa
p

½ηsphΔi − Δr� − ½ηsph − 1�
ðd

ffiffiffiffiffiffiffiffiffiffiffiffi
3μ 0

sμa
p

þ 1Þ½ηsphΔi − Δr� − ½ηsph − 1� ;

(26)

EQ-TARGET;temp:intralink-;e027;63;375where ηsph ¼
R0 þ Ra þ 2Rb

R0 − Ra
: (27)

Note that Eq. (23) is the same DPF for semi-infinite medium
as was used by Fantini et al.,9 and both Eqs. (24) and (26) will
reach Eq. (23) as the radius R0 becomes infinity.

5 Numerical Evaluation of the Differential
Pathlength Factors Associated with
Homogeneous Semi-Infinite, Infinite
Cylinder Evaluated along the Azimuthal
Direction and Spherical Geometries

The patterns of DPF among the three specific configurations
associated respectively with semi-infinite geometry, infinite-
length cylinder geometry when evaluated along the azimuthal
direction, and sphere were examined by using near-infrared
frequency-domain absorption and scattering tomography
(NIRFAST),39,40 an FEM platform for solving photon diffusion
problems. A half-plane for semi-infinite geometry and an infin-
ite-length cylinder cannot be produced by FEM, but could be
reasonably represented in FEM if the length dimension
remained substantially greater than the source–detector spac-
ings. The cylinder and the sphere domains were examined at
two relatively small radii of R0 ¼ 25 mm and R0 ¼ 50 mm
with consistent node density of 1 mm that was comparable
to the reduced scattering pathlength ð1∕μ 0

sÞ. The mesh for the
semi-infinite geometry was generated for a 100 mm × 100 mm
surface area and 50 mm depth, the mesh for the infinite-length

cylinder geometry at a 100 mm length with the aforementioned
25 mm or 50 mm radius, and the mesh for the sphere at the same
set of radius. Figure 3 displays the meshes (cylindrical and
spherical meshes at 25 mm radius only).

In the configuration for the semi-infinite geometry, one
source point was set in the middle-sagittal plane and at
30 mm away from one edge of the domain. A total of 50 detector
points at an interval of 1 mm were placed in the middle-sagittal
plane to cover a source–detector range from 1 mm to 50 mm. In
the configurations for the sphere geometry and the cylinder
geometry but evaluating along the azimuthal direction, one
source point was set at the middle azimuthal plane, and a
total of 50 detector points were placed in the middle azimuthal
plane to have a range of the source–detector distance (“line-of-
sight” distance or the chord distance) from 1 mm to 50 mm at
an interval of 1 mm.

The DPFs were calculated using the forward solver of
NIRFAST by the following steps: (1) the first set of the photon
fluence data Ψ1 measured at the 50 detector positions were for-
ward calculated at the following setting of the optical properties:
μa ¼ 0.01 mm−1, μ 0

s ¼ 1.0 mm−1. (2) The second set of the
photon fluence data Ψ2 measured at the same set of 50 detector
positions were forward calculated with the μa at 0.011 mm−1

and other parameters remaining unchanged from the values
of the previous step. (3) The DPF was calculated as
f½lnðΨ1∕Ψ2Þ�∕Δμag∕d. Note that NIRFAST by default includes
μa in the calculation of the diffusion coefficient. To make the
FEM evaluation as consistent with the analytical approaches
as would be available, the μa has been excluded from the cal-
culation of the diffusion coefficient when using NIRFAST
through the workspace open to the users. The DPFs for the
source–detector distances ranging from 1 mm to 50 mm in
the three specified configurations are shown in the left column
of Fig. 4.

The DPFs evaluated according to the set of Eqs. (23), (24), and
(26) are given in the right column of Fig. 4. The equations were
evaluated with the following parameters: μa ¼ 0.01 mm−1,
μ 0
s ¼ 1.0 mm−1, R0 ¼ 25 mm, and R0 ¼ 50 mm over the

source–detector distance from 3 mm to 50 mm. From both col-
umns of Fig. 4, one may observe the following qualitative patterns
of DPF at the same source–detector separation: (1) the DPF evalu-
ated on a semi-infinite medium boundary is greater than the DPF
evaluated along the azimuthal direction of the infinite-length
cylindrical medium boundary; (2) the latter DPF of (1) is greater
than the DPF evaluated on a spherical boundary, given the same
radial dimension for the cylinder and the sphere. It is also obvious
from Eqs. (23), (24), and (26) that as R0 → ∞, Eqs. (24) and (26)
will all reach Eq. (23), whereas at different rates. The inset at the
top row illustrates how the DPF of the sphere calculated using
Eq. (26), which is an approximation, fairs with the one calculated
with FEM. The analytically approximated DPF for the spherical
geometry of 50 mm radius at the given set of optical properties
(resulting in μeff R0 ¼ 8.66) reached an average error of not more
than 5% over the 10 mm to 25 mm source–detector distances
when compared with the FEM results performed for the same
spherical geometry. If the analytic DPF of the semi-infinite geom-
etry were to be compared to, the DPF approximated for the
spherical geometry of 50mm radius at the set of optical properties
as used for Fig. 4 has shown a maximum difference of about 9%
at a source–detector distance of 9 mm as shown in Fig. 5. The
relative difference of the DPF approximated for the spherical
geometry with respect to the analytic semi-infinite one keeps
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reducing as the radius of the sphere increases—less than 5% at
a radius of 110 mm for the given set of optical properties.

6 Discussions
The dependence of DPF on age has been well documented. In
1996, Duncan et al. showed that the older the subject was the
larger the DPF became.12 At 832 nm, the DPFs measured by
using phase-resolved NIRS from the head of neonates were

4.67� 0.65, while the DPFs of adults were 5.86� 0.98,7 at
the same source–detector separation of 4.3 cm. The increase
of DPF from infant to adult may be attributed to either a change
of the optical properties of the brain, or the change of the size of
the head, or a combination of both. For the appreciation of the
effect of the changes of optical properties on DPF, we evaluated
the DPFs of a semi-infinite geometry and a spherical geometry
of 50 mm radius, using the set of Eqs. (23), (24), and (26), at
three different combinations of optical properties. The first case

Fig. 3 FEM meshes for the configurations to be compared. In the semi-infinite geometry, one source is
set in the middle-sagittal plane and at 3 cm away from one edge, and a total of 50 detector points at an
interval of 1 mm are placed in the middle-sagittal plane to cover a source–detector range from 1 mm to
50 mm. In the sphere geometry and the cylinder geometry evaluating along the azimuthal direction, one
source is at the middle azimuthal plane, and a total of 50 detector points are placed in the middle azi-
muthal plane to have a range of the source–detector distance (“line-of-sight” or the chord distance) from
1 mm to 50 mm with an interval of 1 mm. In these two configurations, the detector with 50 mm distance
from the source is set at the direct opposite of the source point.

Fig. 4 Comparison of the differential pathlength factors (DPFs) for the source–detector separation
between 1 mm and 50 mm at three configurations, evaluated using FEM (left column) and the set of
Eq. (27) (right column). The set properties are μa ¼ 0.01 mm−1, μ 0

s ¼ 1.0 mm−1, refractive index of
the medium is 1.33 (the same for the following figures), and R0 ¼ 25 mm and 50 mm. The inset at
the top row compares the DPF of the sphere calculated using FEM and using Eq. (25).
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is to fix the absorption coefficient at μa ¼ 0.01 mm−1, with the
μ 0
s changing from 0.5 mm−1 to 1.5 mm−1. The results are shown

in Fig. 6, where it is observed that the three folds of increase of
μ 0
s at the specific fixed value of μa nearly doubled the DPFs for

both the semi-infinite geometry (the upper or blue profile) and
the spherical geometry (the lower or green profile). It is also
observed from Fig. 6 that the absolute difference of the DPFs
between the semi-infinite and spherical geometry seems to be
insensitive to the μ 0

s. The second case is to fix the reduced scat-
tering coefficient at μ 0

s ¼ 1.0 mm−1, with the μa changing from
0.01 mm−1 to 0.1 mm−1. The results are shown in Fig. 7, where
it is observed that the 10 folds of increase of μa at the given
specific fixed μ 0

s has a nearly 50% reduction of the DPFs for
both the semi-infinite geometry (the upper or blue profile)
and the spherical geometry (the lower or green profile). It is
also observed from Fig. 7 that the absolute difference of the
DPFs between the semi-infinite and spherical geometry dimin-
ishes as the μa increases. The third case is to fix the ratio of the
absorption coefficient to the reduced scattering coefficient to
1∕100, with the μ 0

s changing from 0.5 mm−1 to 1.5 mm−1.
The results are shown in Fig. 8, where it is observed that if
the absorption-to-reduced scattering ratio is kept the same,
the three folds of increase of μ 0

s has increased the DPFs approx-
imately 20% for both the semi-infinite geometry (the upper or
blue profile) and the spherical geometry. In comparison, the
same change of μ 0

s at a fixed μa resulted in nearly 100% changes
of DPF as shown in Fig. 6.

The age dependence of the DPFs reported by a number of
studies was summarized in Ref. 8. It was shown that DPF
increased an amount of more than 1 from neonatal to 25 years
of age, and an amount of slightly less than 1 from 25 years of
age to 50 years of age.8 Ijichi et al.41 measured DPFs over a
considerably narrow postconceptional range of age from 30
to 42 weeks by phase-resolved measurements. The DPF values
4.31� 0.42 at 835 nm and at source–detector separation of
2.9 cm were in good agreement with those reported by
Duncan et al. at 832 nm. The optical properties of the neonatal
brains had shown significant changes over the narrow range of
the postconceptional ages. The average μ 0

s at 835 nm changed
from 0.43 mm−1 to 0.79 mm−1 for postconceptional age rang-
ing from 30 to 42 weeks. The cerebral blood volume, which
affected the global μa, nearly doubled over the same period

of postconceptional age. However, the DPF values had
shown little if any change with the postconceptional age. The
qualitative evaluations shown in Fig. 8 may provide some
insights to the observations of Ijichi et al.41 on the no-or-little
change of DPF over the range of postconceptional age of the
subjects despite the significant changes of the scattering and
absorption properties of the neonatal brain. If the near doubling
of the reduced scattering coefficient were nearly counterbal-
anced by the near doubling of the absorption coefficient as a
result of the increase of the cerebral hemoglobin content, the
absorption-to-reduced scattering ratio could have remained rel-
atively consistent for the subject. If that were the case, the varia-
tion of the DPFs of the subjects over the range of reduced
scattering change could be small and not easily distinguishable
from the inherent intersubject variations.

This work intends to evaluate how the shape as well as size of
the diffusing medium (bounded in a regular geometry like a
sphere) will affect the DPF. This initial line of evaluation is
based on treating the medium as homogeneous. If one considers
reaching the curved geometry from a semi-infinite geometry that
extends to infinities at two dimensions of the direction, bending
on one dimension of the direction will make the effect of an
infinite-length cylinder, and bending on both dimensions of

Fig. 5 The effect of the radius (in mm) of the spherical geometry on
the DPF evaluated over 3 mm to 50 mm range, when compared to
semi-infinite geometry for the same source-detector distances, are
shown. The horizontal red dashed line marks the 5% error with
respect to the semi-infinite case.

Fig. 6 The dependence of DPF on the absorption coefficient
from 0.01 to 0.1 mm−1 at a fixed reduced scattering coefficient
of 1.0 mm−1. The upper blue profile corresponds to the DPF of a
semi-infinite geometry, and the lower green profile a spherical geom-
etry of 50 mm in radius, for source–detector distances from 1 mm to
50 mm in both geometries.

Fig. 7 The dependence of DPF on the reduced scattering coefficient
from 0.5 to 1.5 mm−1 at a fixed absorption-to-reduced scattering ratio
of 1∕100. The upper blue profile corresponds to the DPF of a semi-
infinite geometry, and the lower green profile a spherical geometry of
50 mm in radius, for source–detector distances from 1mm to 50mm in
both geometries.

Journal of Biomedical Optics 105005-10 October 2015 • Vol. 20(10)

Piao et al.: On the geometry dependence of differential pathlength factor for near-infrared spectroscopy. . .



the direction will reach the effect of a spherical domain. From
such an intuitive perspective, we could expect that the effect to
photon diffusion due to a spherical curvature (as is the result of
double-dimensional bending of the semi-infinite domain) likely
will double that due to the azimuthal direction of an infinite-
length cylinder geometry (as is the result of 1-D bending of
the semi-infinite domain). The expressions of the photon fluence
rate as given in the set of Eqs. (23), (24), and (26), which are
resulted from the approximations of their respective general sol-
utions, do show a quasidoubling effect of the spherical geometry
when compared to the azimuthal direction of the infinite-length
cylinder geometry. Such doubling effect of the spherical geom-
etry compared to the azimuthal direction of the cylinder geom-
etry with respect to the semi-infinite geometry is observable in
Fig. 4, wherein the trend shown by the FEM becomes more pro-
nounced at the radius of 50 mm compared to the radius of
25 mm. It is also evident that, as the radial dimension of either
the spherical or cylindrical geometry increases, the deviation of
the DPFs of the two curved geometries from that of the semi-
infinite geometry diminishes. Therefore, in the cases of adult
head that easily exceeds a local radius of 100 mm, the conven-
tion of using the DPFs estimated for a semi-infinite geometry is
appropriate for source–detector distance greater than 2.5 cm;
whereas for spherical geometries with sizes comparable to infant
head, adoption of the DPFs corresponding to semi-infinite
geometry should be used with caution.

With the development of denser optodes in fNIRS as well as
the attention to neonatal applications, however, the noticeable
changes of the DPF at smaller source–detector distances and
at a spherical geometry comparing to the semi-infinite geometry
may become too significant not to be accounted for when infer-
ring clinical markers for intervention. As shown in Fig. 8, for
example, the DPF corresponding to a 2 cm source–detector sep-
aration in a sphere of 50 mm radius as is comparable to the size
of a neonatal head, can be approximately 5% smaller than that
associated with a semi-infinite geometry at the optical properties
of the medium set at μa ¼ 0.01 mm−1, μ 0

s ¼ 1.0 mm−1. A 5%
reduction of the DPF translates to 5% more changes of absorp-
tion coefficient at the same level of fNIRS signal change. If the
shape dependency of the DPF is not accounted for, there will be
increased probability of underestimating the absorption changes
by assuming the DPFs of semi-infinite medium, and an amount
of 5% underestimation of the change of absorption coefficient
may be a concern if the baseline parameter to be monitored is
close to a clinically important threshold. We note that the DPFs
reported by Ijichi et al.41 were experimentally determined by
using the phase of the intensity modulated light, where the
μa and μ 0

s were estimated by fitting the absolute DPF to a
semi-infinite model. Therefore, when the sets of μa and μ 0

s
were test plotted into a figure similar to Figs. 6–8, unsurpris-
ingly, they always appeared to agree with the semi-infinite
model. Were the phase-resolved measurements fitted using
a model that had accounted for the smaller head size and
shape, the resulted absolute changes of the μa and μ 0

s of the neo-
natal brains could have been different.

This study is limited as only the simplest homogeneous
domain has been considered. Irrespective of the geometry
dependence, the DPF is shown to decrease at short source–
detector separation down to about 5 mm. This pattern of DPF
associated with homogeneous domain is consistent with pre-
vious reports developed using MC calculations42 and the ana-
lytical solution of the diffusion equation incorporating the

zero-boundary condition.18 However, there are experimental
studies of the adult head43 suggesting that the DPF increases
at short source–detector separation (∼2 cm). This trend of DPF
increasing at short source–detector separation obtained from
actual tissue was justified as relating to the inhomogeneity of
tissue domain with which the use of partial differential path-
length factor (PDPF)44 was articulated. An immediate improve-
ment of the modeling of the tissue structure to accommodate
PDPF is a multilayer geometry accounting for the effect of
the blood content of cerebrospinal fluid on the optical properties
of brain as indicated by Robertson et al.45 It, nevertheless, could
be expected that, the qualitative pattern of the geometry depend-
ence of PDPF, specifically how it changes over different geom-
etries at fixed optical properties and source–detector separation,
may remain indifferent from that of DPF. Future works to extend
the presented analytical approach to multilayer geometry are
under planning. Furthering the analytical understanding of
the geometry effect to the DPF and PDPF may eventually
lead to quantitative, rapid, and accurate estimation of the μa
and μ 0

s that would be particularly influential in the clinical evalu-
ation and management of disorders associated with early brain
development and acute-care cerebral monitoring.

7 Conclusion
This work analytically examined the DPF of steady-state photon
diffusion in a homogeneous medium associated with a few regu-
larly shaped geometries, including a half-plane, an infinite-
length cylinder, and a sphere. With the analytical procedures
established for steady-state photon diffusion in an infinite-length
cylinder domain that can be extended to deriving DPF, the sol-
ution to steady-state photon diffusion in a spherical domain is
developed by applying the “image” source method with the
EBC and involving the modified spherical Bessel functions
of the first and the second kinds. The solution is converted
into a format employing the physical source and its image with
respect to its associated semi-infinite geometry and a radius-
dependent term accounting for the dimension of the sphere. The
solutions can be simplified at the general condition of μeff
R0 ≥ 10, that is, the radius (diameter) is more than 10 (20) times
of the effective attenuation pathlength, 1∕μeff , a form that
involve regular functions without lengthy summations. With
these analytical preparations, the DPFs of steady-state photon
diffusion in homogeneous medium associated with the three
bounded geometries, including the semi-infinite geometry,
along the azimuthal direction of the infinite-length cylinder
geometry, and the spherical geometry, are compared for the

Fig. 8 The relative value of the DPF approximated for the spherical
geometry with respect to the analytic DPF of the semi-infinite geom-
etry at μa ¼ 0.01 mm−1 and μ 0

s ¼ 1.0 mm−1.
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same line-of-sight source–detector distance. The patterns of
DPF estimated for the two curved geometries with a radius of
25 mm or 50 mm agree in the global patterns with those given by
FEM. Quantitatively, the DPF approximated for a source–detec-
tor separation range of 10 to 25 mm on a spherical medium
of 50 mm radius with μa ¼ 0.01 mm−1 and μ 0

s ¼ 1.0 mm−1

is on average 5% different compared to the value obtained
from FEM.

Appendix A
Considering a source at ~x 0 of ðr 0; θ 0;φ 0Þ and a detector at ~x of
ðr; θ;φÞ in spherical coordinates, the equation for the Green’s
function of Eq. (1) is

EQ-TARGET;temp:intralink-;e028;63;578∇2Gð~χ; ~χ 0Þ − μ2effGð~χ; ~χ 0Þ ¼ −δð~χ − ~χ 0Þ: (28)

The Dirac delta function in Eq. (28) expressed in spherical
coordinates (Ref. 38, pages 120, 427) is

EQ-TARGET;temp:intralink-;e029;63;524δð~χ − ~χ 0Þ ¼ 1

r2
δðr − r 0Þδðcos θ − cos θ 0Þδðφ − φ 0Þ; (29)

where the delta functions involving both θ and φ can be decom-
posed to the spherical harmonics as [Ref. 38, page 108,
Eq. (3.56), or page 120, Eq. (3.117)]

EQ-TARGET;temp:intralink-;e030;63;450δð~χ − ~χ 0Þ ¼ 1

r2
δðr − r 0Þ

X∞
l¼0

Xl

m¼−l
Y�
lmðθ 0;φ 0ÞYlmðθ;φÞ:

(30)

Substituting Eqs. (29) and (30) into Eq. (28) and expanding
∇2 in spherical coordinates lead to

EQ-TARGET;temp:intralink-;e031;63;364

1

r
∂2

∂r2
½rGð~χ; ~χ 0Þ� þ 1

r2 sin θ

∂
∂θ

�
sin θ

∂Gð~χ; ~χ 0Þ
∂θ

�

þ 1

r2 sin2 θ
∂2Gð~χ; ~χ 0Þ

∂φ2
− μ2effGð~χ; ~χ 0Þ

¼ −
1

r2
δðr − r 0Þ

X∞
l¼0

Xl

m¼−l
Y�
lmðθ 0;φ 0ÞYlmðθ;φÞ: (31)

The Green’s function is expanded to a form similar to the
right-hand side of Eq. (30) as [Ref. 38, page 427, Eq. (9.95)]

EQ-TARGET;temp:intralink-;e032;63;234Gðχ⇀; ~χ 0Þ ¼
X∞
l¼0

Xl

m¼−l
glðr; r 0ÞY�

lmðθ 0;φ 0ÞYlmðθ;φÞ; (32)

where glðr; r 0Þ is the radial Green’s function. Substituting
Eq. (32) into Eq. (31) leads to

EQ-TARGET;temp:intralink-;e033;63;162

	
d2

dr2
þ 2

r
d
dr

−
�
μ2eff þ

lðlþ 1Þ
r2

�

gl ¼ −

1

r2
δðr− r 0Þ; (33)

which is the differential equation for the modified spherical
Bessel function. The solution that satisfies the finiteness at
the origin and the infinity and assures the correct discontinuity
in slope of the Dirac delta function is (approach similar to that
shown in Ref. 38 on page 427)

EQ-TARGET;temp:intralink-;e034;326;734gl ¼ ðμeffÞilðμeffr<Þklðμeffr>Þ; (34)

where il and kl are respectively the l’th order modified spherical
Bessel function of the first and the second kinds, and r< and r>
are respectively the smaller and greater radial coordinates of
the source and detector. Thus, the Green’s function is

EQ-TARGET;temp:intralink-;e035;326;668Gðχ⇀; ~χ 0Þ

¼ ðμeffÞ
X∞
l¼0

ilðμeffr<Þklðμeffr>Þ
Xl

m¼−l
Y�
lmðθ 0;φ 0ÞYlmðθ;φÞ:

(35)

Convolving the Green’s function with the source term in
Eq. (1), assuming a point source, renders the solution, expressed
using the modified spherical Bessel functions, to the steady-state
photon diffusion in an infinite homogeneous medium as

EQ-TARGET;temp:intralink-;e036;326;546Ψðχ⇀; ~χ 0Þ

¼ S
D
ðμeffÞ

X∞
l¼0

ilðμeffr<Þklðμeffr>Þ
Xl

m¼−l
Y�
lmðθ 0;φ 0ÞYlmðθ;φÞ:

(36)

Appendix B
The numerical identity between Eq. (3) and the well-known
form of Eq. (2) is worth being justified. With the use of the fol-
lowing definitions and identities:

EQ-TARGET;temp:intralink-;e037;326;402ilðμeffr<Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

2μeffr<

r
Ilþ1∕2ðμeffr<Þ; (37)

EQ-TARGET;temp:intralink-;e038;326;358klðμeffr<Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

πμeffr>

s
Klþ1∕2ðμeffr>Þ; (38)

EQ-TARGET;temp:intralink-;e039;326;312 cos γ ¼ cos θ cos θ 0 þ sin θ sin θ 0 cosðφ − φ 0Þ; (39)

EQ-TARGET;temp:intralink-;e040;326;287Plðcos γÞ ¼
4π

2lþ 1

Xl

m¼−l
Y�
lmðθ 0;φ 0ÞYlmðθ;φÞ; (40)

where Il and Kl are respectively the l’th order modified Bessel
function of the first and the second kinds, γ is the angle formed
between the position vector of the source and that of the detec-
tor, and Pl is the l’th order Legendre polynomial, Eq. (3)
converts into a form that is more convenient for numerical
evaluation:
EQ-TARGET;temp:intralink-;e041;326;176

Ψðχ⇀; ~χ 0Þ ¼ S
4πD

X∞
l¼0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

r< · r>

s
Ilþ1∕2ðμeffr<ÞKlþ1∕2ðμeffr>Þ

× ð2lþ1ÞPlðcos γÞ: (41)

The value determined by Eq. (41) is compared to that by
Eq. (2) for a number of configurations of the source–detector
pair, at common optical properties of μa ¼ 0.01 mm−1 and μ 0

s ¼
1.0 mm−1 and different upper limits of l for the summation. The
results for the case of source–detector pair aligning with the
origin, that is, the source and the detector are respectively at
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ðR0; θ;φÞ and ðR0 þ d; θ;φÞ, are presented in Fig. 9. The results
are presented in terms of lnðd �ΨÞ versus d, as it leads to a con-
venient linear relationship as evident from Eq. (2). At a radial
coordinate of R0 ¼ 50 mm, it takes the summation of 30 terms
with Eq. (41) to reach an error less than 0.1% at source–detector
distance greater than 10 mm, when compared to the value given
by Eq. (2). At a larger radial coordinate of R0 ¼ 200 mm,
it takes summation of 100 terms with Eq. (41) to reach an
error less than 0.1% at source–detector distance greater than
10 mm, when compared to the value given by Eq. (2). In the
cases when the source–detector pair is not aligned with the ori-
gin (i.e., the source and the detector are separated in either azi-
muthal or elevational directions), the values given by Eq. (41) as
a function of the source–detector distance oscillate with respect
to the expected correct values (due to the limit of the numerical
arithmetic in the computational software) with respect to the
accurate value at the summation up to 200 terms. We note
that should Eq. (41) be numerically nonidentical to Eq. (2),
the numerical evaluation based on Eq. (41) for any source–
detector configuration would have systematically deviated
from that based on Eq. (2). With the comparison shown in
Fig. 9, an upper limit of l ¼ 250 is implemented in the numeri-
cal evaluations of the solutions involving Eq. (3) or Eq. (41)
when needed in the rest of the study.
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