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Abstract. Fourier transform infrared (FTIR) spectroscopy technique can detect the abnormality of a cervical cell
that occurs before the morphological change could be observed under the light microscope as employed in
conventional techniques. This paper presents developed features extraction for an automated screening system
for cervical precancerous cell based on the FTIR spectroscopy as a second opinion to pathologists. The auto-
mated system generally consists of the developed features extraction and classification stages. Signal process-
ing techniques are used in the features extraction stage. Then, discriminant analysis and principal component
analysis are employed to select dominant features for the classification process. The datasets of the cervical
precancerous cells obtained from the feature selection process are classified using a hybrid multilayered per-
ceptron network. The proposed system achieved 92% accuracy. © 2017 Society of Photo-Optical Instrumentation Engineers

(SPIE) [DOI: 10.1117/1.JBO.21.7.075005]
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1 Introduction
Cervical cancer is a leading cause of mortality and morbidity,
which comprises ∼12% of all cancers in women worldwide.1

Pap smear and liquid-based cytology (LBC) are the main screen-
ing tools for early cervical precancerous detection. These tests
involve examination of a cervical smear under a light micro-
scope, which is a tedious, laborious, and time-consuming
laboratory procedure. Drawbacks of the Pap smear test are
not only that it is insensitive, giving rise to a high percentage
of false-negative results, from the literature ranging from
15% to 70%,2 but also that highly skilled personnel are required
as the reliability of the test depends upon human judgment. The
implementations of both methods are time-consuming and
highly dependent on the skill of the cytopathologist, which
will lead to subjective perception.3,4

Recently, Fourier transform infrared (FTIR) spectroscopy
technology, which is usually used to measure and detect chemi-
cal compounds in many industrial fields, has been used to study
the structural changes of cells at the molecular level in various
human cancers. These structural changes result from carcino-
genesis, which is caused by different modes of vibration in
the molecules of the cells and tissues when it is induced by
the infrared (IR) light. Major functional groups of the cells
and tissues will provide unique vibrational frequencies. These
frequencies can be characterized by the changes in the FTIR
spectra. Thus, the normal or malignant cells can be recognized
based on their FTIR spectral characteristic appearance.5

Over the past decades, there have been a number of studies
conducted to investigate the possibility of the FTIR technique as

a screening tool for cervical cancer.5–7 Since then, many
researchers have investigated and applied FTIR spectroscopy
as a diagnostic tool to differentiate between normal and
malignant tissues and cells of several human cancers, including
lung,8 esophagus,9 colon,10,11 skin,12 gastric,13 gliomas,14,15 and
cervical.16–20

Studies conducted by Sindhuphak et al.21 and El-Tawil
et al.19 further proved that FTIR could overcome the limitations
that exist either in the standard Pap smear or the LBC images.
Those studies have made a notable discovery that the FTIR tech-
nique has detected cell abnormalities at molecular levels, which
occur before changes in morphology can be observed under a
light microscope as used in the Pap smear and the LBC tests.
The FTIR technique can possibly detect not only normal and
abnormal stages but also inflammatory and precancerous stages
(dysplasia). An advantage of the FTIR is the fact that it is less
time-consuming. The measuring process of the spectrum on the
FTIR equipment is completed within ∼1 min for one sample. In
addition, the cervical scrapings require no fixation or staining.
Therefore, this technique is simpler, cheaper, more rapid, and
more accurate than the Pap smear and the LBC techniques.19

Although the limitations of the cervical cancer manual
screening of the Pap smear and the LBC techniques have
been solved by the FTIR,19,21 the measured spectra still contain
noise and need some variables to be adjusted for each
spectrum.19,21–27 These noises usually appear as dinky curves
and short peaks. The noises that exist in real peak absorbance
and slope of cervical cell FTIR spectra could disturb the features
extraction process. As a result, many researchers still rely
on manual features extraction process, where high of peak
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absorbance and high of slope features of FTIR spectra are
affected with noises. This manual features extraction process
is usually done after the smoothing process for each spectrum
using tools in FTIR spectroscopy software. Problems with
manual features extraction process worsen when a large number
of cervical sample screening needs to be examined. Since the
FTIR spectroscopy is a computer-operated system, an auto-
mated classification system could be developed to further
improve the screening of cervical cancer, where the screening
of a large number of cervical samples is feasible.28 The auto-
mated classification systems were developed to classify the
cervical cells and produce more rapid and accurate screening.29

Advances in this automated classification system may not only
reduce time but also reduce human errors.29,30

Therefore, this study aims at developing an automated cer-
vical precancerous screening system that could solve the afore-
mentioned problems and provide better diagnosis of cervical
cancer. The automated system provides more accurate diagnosis
since the FTIR spectra will be preprocessed with a signal
smoothing technique, and dominant features will be automati-
cally selected for classification. Better input signal could be
obtained, and optimum features will be classified to ensure
that the accuracy of cervical cancer diagnosis is increased.
The cervical cell will be classified into three classes: normal,
low-grade squamous intraepithelial lesion (LSIL), and high-
grade squamous intraepithelial lesion (HSIL). This paper is
organized as follows. The proposed system will be elaborated
in Sec. 2. Section 3 will discuss the obtained results, where a
comparison with other systems is presented. Finally, the conclu-
sion is presented in Sec. 4.

2 Proposed Automated Screening System for
Cervical Precancer

The proposed system consists of four sequence stages of spec-
trum acquisition, features extraction, feature selection, and clas-
sification stages.

2.1 Spectrum Acquisition

The cervical cell samples used in this study were obtained from
the Gribbles Pathology Laboratory, Petaling Jaya, Selangor,
Malaysia (a private provider of diagnostic laboratory services
in performing tests for all major disciplines of pathology).
The acquired samples were taken from tissue biopsies of women
undergoing routine cervical cancer screening. The samples col-
lected from ThinPrep® solution (PreservCyt; Cytyc) along with
their cytology diagnostic results were classified according to the
Bethesda System 2001. In this work, we have obtained 650 nor-
mal cases, 160 LSIL cases, and 40 HSIL cases of FTIR spectra
from individual cervical cells.

The cervical cell FTIR spectra were obtained by placing a
small amount, ∼0.005 ml, of liquid ThinPrep samples in a cir-
cular KRS5 window (an IR transparent cell). The liquid samples
were then dried using a dryer for 2 to 3 min before the samples
are induced by IR light.

After preparing the cervical cell in the KRS5 window cells,
the cervical cell spectra were collected using Spectrum BX II
Fourier Transform Spectrometer (Perkin Elmer type 2000)
equipped with a deuterated telluride triglycine sulphate detector
in mid IR region between 400 and 4000 cm−1.

The FTIR spectroscopy software was employed to manipulate
the original spectrum received from the instrument. The purpose
of manipulating a spectrum is to enhance its appearance.31 In this

work, automatic baseline correction, smoothing, and normaliza-
tion were applied. The spectrum was submitted to the automatic
baseline correction process before it was smoothed using the
smoothing package within the FTIR software. According to
Quintero et al.,32 during the acquisition process, noise may affect
the spectrum more than once. Thus, smoothing was required after
the acquisition process to improve the appearance of spectrum.

2.2 Features Extraction

Figure 1 shows various spectrum patterns with different promi-
nent peaks. The prominent peaks represent the absorption bands
of biochemical compounds. Based on the previous study done
by Wong et al.,6 there are seven biochemical compounds
detected in the cervical cell FTIR spectra that could be used
for the classification purpose (Fig. 1).

The biochemical compounds are as follows.

i. Amide I (NH2);
ii. Amide II (NH);
iii. C–H alkyl bending in proteins;
iv. Asymmetric phosphate (PO) stretching in nucleic acids

(NA II);
v. C–O stretching in carbohydrates;

vi. Symmetric phosphate (PO) stretching in nucleic acids
(NA I);

vii. Glycogen.

However, most of the acquired signal suffers from noise,
which further complicates the feature extraction process. Thus,
a smoothing filter is proposed.

The coefficient filter (i.e., bk) must fulfill three
conditions.33,34

1. The sum of the coefficients must be equal to 1.

2. The filter coefficients must be symmetrical with the
central coefficient b0, whereby bk ¼ −bk.

k

m n
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Base point 1

Base point 2

Normal Blue line
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HSIL Red line

Fig. 1 The differences of blue line with small dot, black solid line, and
red line with big dot cervical cell FTIR spectra in prominent bands
using FTIR spectroscopy. Note that A, B, C, D, E, F, and G refer
to Amide I, Amide II, Proteins, NA II, Carbohydrates, NA I, and
Glycogen, respectively.m and n are examples of peak region as tabu-
lated in Table 1. k and l are examples of two base points of the peaks
as tabulated in Table 2.
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3. The sequence of the filter’s coefficients should
be b0 > b1 > : : : > bNp

> 0.

Condition (1) ensures the conservation of the peak area and a
constant background. Meanwhile, conditions (2) and (3) avoid a
phase shift between input and output data and avoid undesired
oscillations at both sides of the peak, known as the wing effects.
The Savitzky–Golay (SG) filter is currently being used widely
among chemists for the smoothing and differentiation of the
spectroscopy spectra.35 Almost all spectroscopic software pack-
ages contain this standard smoothing technique. However, the
last condition of the coefficient filter is not completely obeyed
by the SG filters, as the last coefficients ðNp;−NpÞ are always
negative. These negative coefficients introduce some small
oscillations at the peak sides.33 As a result, the SG smoothing
algorithm can cause false-negative signals at the shoulders of
each vibrating band.35 In addition, the SG smoothing algorithm
can lead to the loss of weak signals and the reduction of spectral
resolution.36

The previous problems can be solved by using binomial
smoothing filters.36 In other work, we used the quadratic of
half ellipse (QHE) filter as a smoothing filter.37 The QHE filter
also fulfills the conditions in which the coefficients of the QHE
filter are obtained by

EQ-TARGET;temp:intralink-;e001;63;492bðkÞ ¼ n

�
1

n
þ n2 − k2

n

�
;

where bðkÞ is the QHE coefficient filter, n is the order of the
coefficient filter, and k is the range of the filter from −n to n.

However, when implementing the direct-form filter, error
surface could possibly occur.38 Thus, Williamson conducted
research to consider implementing the cascade-form filter as
a transformation of the direct-form filter.38 The cascade-form
filters have been proven to have better performance than the
direct-form filters.39,40 In addition, the cascade-form filters
can construct low-cost systems due to their less physical
modifications.39,40 Thus, inspired by the improvement of the
smoothing filter, this paper uses cascade-form filters based
on the QHE and the binomial filters.36

These cascade-form filters are also inspired based on analysis
of the equation and the geometry of their ellipse curve. As
shown in Fig. 2, when the QHE coefficient filter is plotted in

x- and y-axes, it is observed that the curve is similar to that
of the binomial coefficient. Both curves show similar patterns;
thus, by cascading these two coefficients, it is believed that the
cascade of binomial and QHE filters will produce a smoother
signal, which could be used as a good filter in this work.

Based on the previous study, we developed a features extrac-
tion algorithm for the automated screening system, where the
preprocessing is considered as the features extraction process
(Fig. 3). In the previous studies, the range of the wavenumber
used for analyzing between normal, LSIL, and HSIL lies in the
950 to 1800 cm−1 region.19 As plotted in Fig. 1, different types
of cervical cells show different spectrum patterns with different
prominent peaks in the specific bands.

To extract those aforementioned features of the FTIR spectra,
this study employed a peak-corrected area-based features extrac-
tion (PCABFE) algorithm, as presented in Fig. 4.41 The
PCABFE extracts three primary features: the height of specific
peaks, the height of slope between amide I and amide II, and the
corrected area in specific regions. The features are calculated
using

EQ-TARGET;temp:intralink-;e002;326;532HðxÞ ¼ Ax − A1580; (2)

EQ-TARGET;temp:intralink-;e003;326;500CAðxÞ ¼ Ax − Ab; (3)

whereHðxÞ is the height of the slope between amide I and amide
II bands, Ax and A1580 are height of peak for amide I or amide II
bands, which have the minimum value and absorbance value
(height) for the band at 1580 cm−1, respectively. CAðxÞ is the
corrected area under the amide I peak. Ax and Ab are the areas
under the peak and baseline, respectively. The PCABFE algo-
rithm extracted three significant parameters: peak regions, base
points, and peak locations. The values are tabulated in Tables 1
and 2.

For evaluation of the automatic feature extraction perfor-
mance, a correlation test was conducted to determine the
capability of the proposed PCABFE algorithm as compared
to the manual extraction by using the FTIR software.
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Fig. 2 The coefficient filters of the QHE and the binomial filters, which
are plotted in x - and y -axes.
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Fig. 3 The developed features extraction algorithm for the automated
screening system.
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2.3 Feature Selection

The extracted features are reduced by discriminant analysis
(DA) and principal component analysis (PCA) techniques.
Both techniques are employed to determine the dominant fea-
tures, where the irrelevant or unrelated features that could
deteriorate the generalization performances of artificial neural
network (ANN) are eliminated to avoid a large dimensionality
problem.42

Using the Wilks’ lamda method for DA, the optimum
features are selected based on the null hypothesis and the
p-value. The null hypothesis is the equality of several classes
of parameters, while the p-value is the probability of observing
the given sample result under the assumption that the null
hypothesis is true.23 Significant level (α) chosen for admitting
or rejecting the null hypotheses is 0.05. If the p-value is less

than α, then the null hypothesis is not rejected. On the other
hand, the null hypothesis is rejected when the p-value is
more than α ¼ 0.05.

For PCA, a scree plot of all the PCs of input features of the
cervical cell dataset is presented. The appropriate numbers of
principal components to be used are selected by considering
the result from the scree plot and eigenvalues. The features
with higher eigenvalue in eigenvectors of the appropriate prin-
cipal components are selected as the optimum features.

2.4 Classification of Cervical Precancerous Fourier
Transform Infrared Spectrum Using Neural
Network

After the signal acquisition, signal smoothing, features extrac-
tion, and features selection process, the dominant features are
then fed as input data to the intelligent classification stage.

Find max absorbance 
value (height of peaks) 
of each biochemical 
compounds region

The regions 
as tabulated 
in Table 1 
and 
presented in 
Figure 1

Calculated ratio 
of each height 
of the peaks

-Choose lower height of 
peaks between Amide I 
and Amide II (i.e., Ax)

-Calculate height of peak
at 1580 cm-1 (i.e., A1580)

-Determine two base 
points (i.e., k and l) for 
each peak of 
biochemical compounds

-Calculate the area under 
spectrum for the region 
bordered by the two 
base points (i.e., Ax)

-Calculate the area under 
the baseline (i.e., Ab)

-Calculate the corrected 
area (CA) by eq 3.
CA = Ax - Ab

The base 
points as 
tabulated 
in Table 2
and 
presented 
in Figure 1

Calculate the height of 
slope between amide I 
and amide II by eq 2.
(i.e., H(x)= Ax-A1580)

Calculated ratio 
of each corrected 
area of the peaks

Primary features

Secondary features

Fig. 4 Description of the PCABFE algorithm procedures.

Table 2 The proposed base points for the biochemical components
of the cervical cell FTIR spectrum.

Biochemical components
for corrected areas features

Wavenumber (cm−1)

k l

Amide I 1750 1580

Amide II 1580 1485

C–H alkyl bending in
proteins

1485 1270

Asymmetric PO−3
4

stretching in nucleic acids
(NA II)

1270 1180

Symmetric PO−3
4 stretching

in nucleic acids (NA I)
1180 950

k and l are x -axis of FTIR spectra base points to calculate the cor-
rected areas of each biochemical components.

Table 1 The range of wavenumbers for the peak absorbance value
determination of the biochemical components of the cervical cell FTIR
spectrum.

Biochemical components for peak
absorbance value features

Wavenumber (cm−1)

m n

Amide I 1654 1626

Amide II 1560 1532

C–H alkyl bending in proteins 1414 1393

Asymmetric PO−3
4 stretching in

nucleic acids (NA II)
1248 1220

C−O stretching in carbohydrate 1170 1150

Symmetric PO−3
4 stretching in

nucleic acids (NA I)
1082 1074

Glycogen 1035 1022

m and n are the x -axis region for the absorbance of each the bio-
chemical components.
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One of the aims of this study is to classify the cervical cell FTIR
spectra into three classes (normal, LSIL, and HSIL). In this
paper, the hybrid multilayered perceptron (HMLP) network is
trained with the modified recursive prediction error algorithm
for the classification purposes.

During the training process of the HMLP network, this study
employs a 10-fold cross-validation method. The detail on the
10-fold cross-validation method can be found in the previous
study.43 The data is partitioned into 10 sized segments or
folds. Ten run iterations of training sets (i.e., 585 normal,
144 LSIL, 36 HSIL for each fold) and testing sets (i.e., 65 nor-
mal, 16 LSIL, and 4 HSIL for each fold) phases are performed
with different sets in each run. A different fold of the data is used
for testing, whereas the remaining nine folds are used for train-
ing in each run.

The datasets with selected features based on DA only and
DA–PCA techniques are tested to obtain the better system
for the automated system. The confusion matrixes are presented
for evaluation purposes. In this paper, the comparison of perfor-
mance is done based on accuracy result between this study and
related published work. The cervical cell spectra from the FTIR
spectroscopy were compared with cytology (the gold standard).
Therefore, the confusion matrix is important to be presented in
this paper to present an actual condition

EQ-TARGET;temp:intralink-;e004;63;488Accuracy ¼ ðTPþ TNÞ
Total data

× 100%: (4)

In this study, our system uses validity measures of screening
with normal and abnormal (LSIL and HSIL) classes. True pos-
itives and true negatives are obtained when the abnormal (LSIL
and HSIL) and normal cervical cells are correctly classified.
False positive (FP) is obtained when the normal cervical cell
is incorrectly classified as an abnormal cervical cell (LSIL
and HSIL). False negative (FN) is obtained when the abnormal
cervical cell (LSIL and HSIL) is incorrectly classified as a nor-
mal cervical cell.

3 Results and Discussions
The developed features extraction, features selection, and intel-
ligent classification system for cervical spectra have been pro-
posed as an automated cervical screening system. In this section,
the results and discussions of the proposed method are pre-
sented. The features extraction results are explained in
Sec. 3.1. Section 3.2 presents the features selection results.
Section 3.3 discusses the obtained results from the intelligent
classifier of cervical spectra classification in detail.
Section 3.4 presents the proposed automated screening system
for cervical cancer.

3.1 Features Extraction Results

The primary features (i.e., CA amide 1, CA amide 2, CA pro-
teins, CA NA II, CA NA I, PH amide 1, PH amide 2, PH pro-
teins, PH NA II, PH carbohydrate, PH NA I, PH glycogen, and
height of slope between amide 1 and amide 2) create a very
strong linear relationship with correlation test results more
than 0.95 (approaching one), as presented in Table 3.

Generally, all features have a strong linear relationship (cor-
relation test achieved more than 0.8, as presented in Table 4)
compared to those extracted manually by using FTIR spectros-
copy software. The results show that the PCABFE algorithm
and the manual extraction using the FTIR spectroscopy software

have constructed a linear curve for all features. Based on the
evaluation of the PCABFE performance, a total of 32 features
are extracted, as listed in Table 4.

3.2 Features Selection Results

Based on the 32 possible features, as shown in Table 4, the DA
and PCA techniques are employed to determine the dominant
features for the classification process in the next stage.
Table 5 tabulates the results attained from DA of 32 features.
Based on the results, 11 features show insignificant effect or
low impact to the classification process as the p-values distri-
bution obtained are more than 5% (as made bold in Table 5). The
features with p-value distribution less than 5% are said to have
high impact on the classification process. Thus, based on this
argument, 21 of 32 features have been selected as dominant
features for the DA process.

Afterward, the 21 features of the cervical cell FTIR spectra
are further analyzed using the PCA technique. By considering
the results from the scree plot and eigenvalues, the appropriate
number of principal components to be used is four. The four
principal components [first principal component (PC1), second
principal component (PC2), third principal component (PC3),
and fourth principal component (PC4)] are used in the features
selection. Table 6 lists the variables that have strong relationship
with PC1, PC2, PC3, and PC4.

From the result of PC1, the variables that tend to have strong
relationship are x3ðr3cÞ, x5ðr5cÞ, x7ðr7cÞ, x13ðr3pÞ, x14ðr4pÞ,
x15ðr5pÞ, x16ðr6pÞ, x17ðr7pÞ, x20ðr10pÞ, x22ðr12pÞ, and
x32ðh1 sÞ. In PC2, the variables which have strong relationship
are x9ðr9cÞ, x12ðr2pÞ, x23ðr13pÞ, x24ðr14pÞ, and x26ðr16pÞ. In PC3
and PC4, the variables which tend to have strong relationship are
x2ðr2cÞ and x8ðr8cÞ, and x4ðr4cÞ and x6ðr6cÞ, respectively.
Therefore, the feature selection process result reveals that the

Table 3 Results of correlation test of primary features of cervical cell
FTIR spectra.

Primary features of cervical cell spectra Correlation value

CA amide I 0.9912

CA amide II 0.9946

CA protein 0.9940

CA NA II 0.9938

CA NA I 0.9961

PH amide I 0.9909

PH amide II 0.9867

PH protein 0.9538

PH NA II 0.9884

PH carbohydrate 0.9933

PH NA I 0.9792

PH glycogen 0.9712

Height of slope 0.9952
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important or dominant input features consist of 20 variables:
x2ðr2cÞ, x3ðr3cÞ, x4ðr4cÞ, x5ðr5cÞ, x6ðr6cÞ, x7ðr7cÞ, x8ðr8cÞ,
x9ðr9cÞ, x12ðr2pÞ, x13ðr3pÞ, x14ðr4pÞ, x15ðr5pÞ, x16ðr6pÞ,
x17ðr7pÞ, x20ðr10pÞ, x22ðr12pÞ, x23ðr13pÞ, x24ðr14pÞ, x26ðr16pÞ,
and x32ðh1 sÞ.

Table 4 Results of the correlation test of 32 possible features of the
cervical cell FTIR spectra for classification purpose.

Features Abbreviation
Correlation

value

CA amide I/CA amide II (r 1c ) x1 0.9978

CA proteins/CA NA I (r 2c ) x2 0.9590

CA amide II/CA NA I (r 3c ) x3 0.9876

CA proteins/CA amide I (r 4c ) x4 0.9992

CA amide II/CA proteins (r 5c ) x5 0.9913

CA amide I/CA NA II (r 6c ) x6 0.9891

CA amide II/CA NA II (r 7c ) x7 0.9956

CA protein/CA NA II (r 8c ) x8 0.9968

CA amide I/CA NA I (r 9c ) x9 0.9716

CA NA II/CA NA I (r 10c ) x10 0.9496

PH amide I/PH amide II (r 1p) x11 0.9875

PH proteins/PH NA I (r 2p) x12 0.8000

PH amide II/PH NA I (r 3p) x13 0.8926

PH proteins/PH amide I (r 4p) x14 0.9512

PH amide II/PH proteins (r 5p) x15 0.9880

PH amide I/PH NA II (r 6p) x16 0.9972

PH amide II/PH NA II (r 7p) x17 0.9957

PH amide I/PH NA I (r 8p) x18 0.9337

PH NA II/PH NA I (r 9p) x19 0.8777

PH amide I/PH carbohydrates
(r 10p )

x20 0.9451

PH amide II/PH carbohydrates
(r 11p )

x21 0.9313

PH amide I/PH glycogen (r 12p) x22 0.9948

PH proteins/PH glycogen (r 13p) x23 0.9526

PH NA II/PH glycogen (r 14p) x24 0.9951

PH carbohydrates/PH NA I (r 15p) x25 0.8069

PH carbohydrates/PH glycogen (r 16p) x26 0.9701

PH proteins/PH NA II (r 17p) x27 0.8746

PH proteins/PH carbohydrates (r 18p) x28 0.8510

PH NA II/PH carbohydrates (r 19p) x29 0.8909

PH amide II/PH glycogen (r 20p) x30 0.9935

PH NA I/PH glycogen (r 21p) x31 0.9439

Height of slope (h1 s) x32 0.9952

Table 5 Results for stepwise method of DA technique for 32
extracted features.

Features p-value distribution Features p-value distribution

x1 0.000 x17 0.000

x2 0.000 x18 0.320

x3 0.000 x19 0.073

x4 0.000 x20 0.000

x5 0.000 x21 0.459

x6 0.000 x22 0.000

x7 0.000 x23 0.000

x8 0.000 x24 0.000

x9 0.000 x25 0.752

x10 0.598 x26 0.000

x11 0.045 x27 0.431

x12 0.000 x28 0.260

x13 0.000 x29 0.397

x14 0.000 x30 0.295

x15 0.000 x31 0.193

x16 0.000 x32 0.000

Table 6 Variables that have strong relationship from PC1 to PC4.

PC1 PC2 PC3 PC4

x3 x9 x2 x4

x5 x12 x8 x6

x7 x23 — —

x13 x24 — —

x14 x26 — —

x15 — — —

x16 — — —

x17 — — —

x20 — — —

x22 — — —

x32 — — —
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3.3 Intelligent Classification Results

For the intelligent classification results, the datasets using 21
features from the DA and 20 features from the DA–PCA proc-
esses are tested, respectively, to determine the most stable sys-
tem. These dominant features from the DA and the DA–PCA
processes are individually fed into HMLP classifier for classi-
fication purpose. The HMLP classification results of the DA
datasets with 21 dominant features are presented in Table 7.
The HMLP with the DA datasets could detect 634 normal
from 650 totals normal, 102 LSIL from 160 totals LSIL, and
24 HSIL from 40 totals HSIL cervical FTIR spectra.

Meanwhile, the HMLP classification results of the DA–PCA
datasets with 20 dominant features are presented. As shown in
Table 7, the HMLP could detect 621 normal from 650 totals
normal, 106 LSIL from 160 totals LSIL, and 27 HSIL from
40 totals HSIL cervical FTIR spectra.

Overall, the results tabulated in Tables 7 demonstrate that the
HMLP shows a good performance for classifying cervical cell
FTIR spectra into normal, LSIL, and HSIL classes. However,
when the DA–PCA datasets were used, higher FP values
were achieved than the HMLP with DA datasets. As shown
in Table 7, the FP value was given as 29 (which is 26 normal
cells incorrectly classified as LSIL, and three normal cells are
incorrectly classified as HSIL cases) for DA–PCA dataset.
While the FP values from DA datasets were significantly
lower with 16 normal cases incorrectly classified as LSIL
cases, and the normal cells were not classified as HSIL class.
These results occurred because, in fact, the HSIL cells are
high stages of abnormality, and their characteristics exhibit ap-
parent differences from the normal cells. Meanwhile, the FN
values for the HMLP with DA datasets are higher than the
HMLP with DA–PCA datasets given in detail in Table 7.
The FN values are 52 LSIL cells incorrectly classified as normal
class for DA–PCA datasets. No HSIL cells are incorrectly clas-
sified as normal class. Meanwhile, the FN values of DA datasets
obtained 54 LSIL cells incorrectly classified as normal class, as
tabulated in Table 7. The HSIL cell is also not classified as nor-
mal class. These results occurred because the LSIL cells, in fact,
only affect the surface of the cervical tissue. The majority will
regress back to normal spontaneously.44 Over time, a small pro-
portion will continue to develop into true cancer. The HSIL cells
cannot be recovered to be normal cells. Based on the FP and FN
values for both datasets results in Table 7, the system can sig-
nificantly differentiate between normal and HSIL cells, and the
LSIL and normal cells can also be distinguished. However,
small portions of the LSIL are incorrectly classified as normal
cells, and part of normal cells are incorrectly classified as LSIL
cells. Similarly, these results are expected since most LSIL cells

will regress back to normal.44 Therefore, our system produced
consistent results with acceptable accuracy to classify the cer-
vical precancerous cells.

The result of the HMLP with the DA dataset shows relatively
better performance in term of stability. Therefore, based on the
21 selected features (from DA datasets), the HMLP classifier
shows a good performance for classifying cervical cell FTIR
spectra into normal, LSIL, and HSIL classes with 92% of accu-
racy. The promising results obtained in this stage are utilized to
develop an automated screening system for cervical cancer. The
results of the proposed system are elaborated in detail in
Sec. 3.4.

3.4 Automated Screening System for Cervical
Cancer

The proposed screening system contains the automatic features
extraction and intelligent screening. Figure 5 shows the interfac-
ing of the system. A user is only required to input the cervical
cell FTIR spectra. The smoothing spectrum, the features of cer-
vical cells FTIR spectrum, and the case and class of the cervical
cell FTIR spectra will automatically be displayed. This pro-
cedure could possibly produce faster screening results and
decrease the dependency on human experts, thus reducing
the workload of pathologists.

To date, several researchers have developed cervical cancer
screening tools based on the spectroscopy approaches. Our pro-
posed system can be compared to the other developed system
using FTIR spectroscopy.19 This system used only five features,
which are obtained from the ratios of the peak height values
(1) glycogen/NA I, (2) NA I/carbohydrates, (3) NA I/amide
II, (4) proteins/amide I, and (5) NA I/proteins to differentiate
the different types of cervical cell spectra. We also include
the developed system that uses Raman spectroscopy27 in our
comparison. The comparison results are shown in Table 8,
where the three systems of A19, B27, and C (proposed system)
are tabulated.

Table 8 suggests that our proposed system achieved the best
performances in term of accuracy with 92%. This is likely
because our proposed system used more dominant features
(21 features from DA datasets) to differentiate between three
classes of the cervical cells (normal, LSIL, and HSIL cells).

Therefore, we suggest, based on the aforementioned explan-
ation, that our system simultaneously has better results to differ-
entiate the cervical cells due to the proposed signal smoothing
filter, PCABFE algorithm to extract features from the cervical
cell FTIR spectra, DA to select the optimum features (21 fea-
tures), and HMLP network for classification.

Table 7 Confusion matrix of DA datasets and DA–PCA datasets for distribution of those individuals screened by screening status and cytology
condition status.

Cytology results screening status

DA datasets

Total

DA–PCA datasets

TotalNormal LSIL HSIL Normal LSIL HSIL

Normal 634 16 0 650 621 26 3 650

LSIL 54 102 4 160 52 106 2 160

HSIL 0 16 24 40 0 13 27 40
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4 Conclusions
In this paper, an automated screening system has been presented
to determine the case and classes of cervical precancerous cells
based on cervical cell FTIR spectrum. The automated screening
system employs signal processing techniques and ANN. The
digital signal processing techniques introduce a cascade of
direct form smoothing filter and an automated features extrac-
tion technique for extraction features from the cervical cell FTIR
spectra. Meanwhile, the DA features selection technique and
ANN are employed in the classification stage. The effectiveness
of the proposed screening system has been demonstrated empir-
ically using 850 cases of cervical cell FTIR spectra to classify
the cervical cells into normal, LSIL, or HSIL cell with an accu-
racy of 92% based on the DA datasets. Although the results
obtained so far are encouraging, more investigations on both
theoretical and practical aspects are needed to further indicate
the applicability of the proposed screening system to screen
for cervical precancerous stage-based cervical cell FTIR spectra.
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