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Abstract. Superresolution localization microscopy initially produces a dataset of fluorophore coordinates
instead of a conventional digital image. Therefore, superresolution localization microscopy requires additional
data analysis to present a final superresolution image. However, methods of employing the structural information
within the localization dataset to improve the data analysis performance remain poorly developed. Here, we
quantify the structural information in a localization dataset using structural anisotropy, and propose to use it
as a figure of merit for localization event filtering. With simulated as well as experimental data of a biological
specimen, we demonstrate that exploring structural anisotropy has allowed us to obtain superresolution images
with a much cleaner background. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.7.076011]
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1 Introduction
Superresolution localization microscopy (hereafter referred to as
localization microscopy), including (fluorescence) photo-acti-
vated localization microscopy1,2 and (direct) stochastic optical
reconstruction microscopy,3,4 has become a powerful imaging
tool to reveal the ultrastructures and understand the mechanisms
behind cellular functions. In localization microscopy, a small
subset of densely labeled fluorophores is switched “on” to
obtain sparsely distributed emitters in a single frame, and the
central position of each emitter is determined at nanometer
precision by a proper localization algorithm, then these fluoro-
phores are switched “off”; by repeating this process, the spa-
tially densely labeled fluorophores are thus temporally isolated.
After accumulating localization events from thousands of
imaging frames, a final reconstructed superresolution image
can be obtained with up to 10 times better spatial resolution,
compared with conventional diffraction-limited fluorescence
microscopy.5

From the principle of localization microscopy mentioned
above, it is straightforward that localization microscopy does
not produce a conventional digital image which comprises
arrays of camera-recorded pixels with values representing the
fluorescence intensity at those locations. Instead, the raw dataset
in localization microscopy is a list of coordinates of the localized
fluorophores (called localization events). Therefore, localization
microscopy requires several data analysis steps to present a final
superresolution image. First, because of the relatively long data
acquisition time, sample drift must be corrected to guarantee a
high spatial resolution.6,7 Second, since there is inherent back-
ground noise (originated from autofluorescence, out-of-focus
fluorescence, or nonspecifically labeled fluorescent molecules)

inside a superresolution image, these localization events need to
be filtered out to provide a clean background.8,9 Third, due to
the pointillist nature of the localization dataset, localization
microscopy requires a critical image rendering step to translate
the localization dataset into a final reconstructed image.10

A certain number of techniques for processing a localization
dataset have been developed, where methods utilizing structural
information usually outperform others. For example, using the
inherent structural information within subsets of localization
events imaged at different times, several highly accurate meth-
ods for sample drift correction have been proposed to overcome
the shortcomings of introducing fiducial markers for drift
correction.6 Moreover, benefiting from structural pattern aver-
age, nanometer11 or subnanometer localization precision12 has
been achieved. However, methods for localization event filtering
using structural information remain poorly explored.

In localization microscopy, background noise within the
localization dataset usually appears as nonpolymeric localiza-
tions or nonspecific clusterings.9 First, due to autofluorescence,
out-of-focus fluorescence or camera noise in data acquisition,1

nonpolymeric localizations with poor localization precision, and
low localization density are usually observed. Second, nonspe-
cific labeling is a common problem in localization microscopy
and has been discussed in literature.13,14 More specifically,
although antibodies usually have high specificity, there are
still some reactions between antibodies and nonspecific anti-
gens. Moreover, the fixation, blocking, washing in sample
preparation procedures, and antibody concentration could all
affect the degree of nonspecific labeling.9,13,14 Nonspecific
labeling in localization microscopy usually appears as
clusterings.9 In current methods for localization event filtering,
the localization events associated with poor localization
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precision or low localization density are discarded,8,15 where the
cutoff value is usually manually determined. This scheme is
effective in filtering out backgrounds with nonpolymeric locali-
zation. However, they usually fail to filter out backgrounds with
nonspecific clusterings, because the clusters usually exhibit nor-
mal localization precision and density.

In this paper, we present a new method for localization event
filtering in localization microscopy. The method is based on
the fact that most biological structures intrinsically exhibit
anisotropy characteristic (hereafter called structural anisotropy).
We demonstrate that structural anisotropy could naturally act as
a metric in differentiating data of interest from background
noise, thus providing a cleaner superresolution image.

2 Methods

2.1 Structural Anisotropy Quantification

At first, we quantify the structural anisotropy of a biological
structure using anisotropy coefficient (denoted by g), which
indicates the anisotropic strength of the local structure. In
order to accurately calculate g, the local statistics of the locali-
zation events need to be explored to adaptively quantify local
structure features. In structure-adaptive anisotropic filtering of
magnetic resonance imaging (MRI),16 the local anisotropy of
the underlying structure is exploited using the fact that locally
orientated patterns have parallel level contours, leading to a clus-
ter along a line in the corresponding power spectrum through
the origin in the Fourier domain. Note that this cluster is
perpendicular to the dominant spatial orientation. Here, we
explore whether the same idea can be applied for quantifying
the structural anisotropy in a localization dataset, noting that
the signal levels in localization microscopy are much lower
than those in MRI, although the datasets in localization micros-
copy and MRI images both generally provide high contrast of
the underlying structures.

We start with histogram binning, fðxÞ, of a localization data-
set. First, the entire field-of-view associated with a localization
dataset is divided into a set of spatial bins. Then the number of
localizations that fall into each spatial bin is counted and used to
assign intensity values to the corresponding bins. Note that the
spatial bin size should be smaller than half of the finest structure
features that need to be resolved (according to the Nyquist sam-
ple theorem). On the other hand, the spatial bin size should also
be large enough so that each bin contains a reasonable number
of localization points to maintain a sufficient signal-to-noise
ratio in the final reconstructed image. In this paper, the spatial
bin size is set to be 10 nm. However, because a histogram image
is often noisy due to low signal-to-noise ratio per spatial bin, we
preprocess the histogram image by blurring it with a radially
symmetric Gaussian kernel whose standard deviation is usually
set to be the same as the averaged localization precision.

In the reported anisotropic filtering technique in MRI,16

the anisotropy characteristics of a local structure, fΩðxÞ, are cal-
culated by estimating the orientation direction that minimizes
the second moment function in the Fourier domain. Note Ω is
a squared local neighborhood of a spatial bin x ¼ ðx1; x2Þ.
In this paper, the size of Ω is twice the size of the object of
interest for quantifying structure anisotropy and is set to be
100 × 100 nm2. Because, the second moment matrix R (a 2 × 2
matrix for two-dimensional images) of the power spectrum is
symmetric, the second moment minimization problem can be
solved by matrix eigenvalue. Therefore, in the implementation

of structural anisotropy quantification, we first determine the
second moment matrix R. The calculation of R can be math-
ematically simplified using the partial derivatives of fΩðxÞ in
the spatial domain based on the property of Fourier transform
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Second, we calculate the maximum and minimum eigenval-
ues of R, λmax, and λmin, which describe the anisotropic strength
along and perpendicular to the dominant spatial orientation.
Then the anisotropy coefficient, g, is defined with the following
equation:
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The closer g is to 1, the stronger the anisotropic strength.

2.2 Localization Event Filtering

Biological structures usually exhibit distinct morphology or
molecule density distribution in different directions, thus present
intrinsic anisotropy characteristics. On the other hand, back-
ground clusters in the same images are locally isotropic.
Therefore, the anisotropy coefficient, g, could act as an effective
metric for localization event filtering: the foreground would
have a relatively high g value while the background would
exhibit a very low g value. However, it is worth noting that
some intersection points of the structures are also locally iso-
tropic and would exhibit low anisotropic strength, indicating
that additional analysis is necessary to preserve these intersec-
tion points from being filtered out. Moreover, we noticed that
the local neighborhoods between the intersections with low
anisotropic strength and the true background are different:
the former is usually surrounded by or directly connected to
foreground localizations events with high anisotropic strength,
while the latter usually forms isolated clustering. Therefore, we
can apply an average image filter to enhance the anisotropy
strength of the intersections.

Here, we propose a new localization event filtering method
based on structural anisotropy (SALEF), which is realized by
the following procedures: (1) the anisotropy coefficient map
(g map) of the localization dataset is established; (2) the g map
is smoothed using an average filter; (3) the averaged g map is
used to associate each localization event with a g value;
and (4) localization events associated with a g value lower than
a semiempirical threshold (discussed later) were identified as
fluorescence background and thus discarded.

In this localization event filtering method, there are three
parameters that can be adjusted: (1) the size of the local neigh-
borhood, Ω, which is used to calculate the structural anisotropy;
(2) the size of an average filter, which should be comparable to
the object of interest and is set to be 50 × 50 nm2 in this study;
and (3) the semiempirical threshold for identifying background.
We recommend examining the g histogram of all localizations
and then choosing an appropriate g value which can efficiently
cut out a low g region (background) from others (foreground).
In this way, we obtain a semiempirical threshold to 0.05 for
this study.
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2.3 Simulated Dataset

We simulated two representative kinds of biological structures
(filament and ring) to evaluate the effectiveness of our methods.
First, we generated a ground-truth dataset with no localization
error or background. The dataset consists of a realistic structure
of eight microtubules and 30 ring structures where the radius
ranges from 50 to 150 nm and the structure diameter is
25 nm. Note the filament structure was generated according
the ground-truth information of an open training dataset with
microtubule structures.17 The localization density, ρ, is set to
be 100;000 molecule∕μm2. Next, we generated localization
datasets with various localization precision (σ) and localization
density (ρ): a Poisson-distributed number of points were
sampled from the ground-truth to generate a dataset with an
average density equal to ρ; then these points were randomly dis-
placed with a Gaussian probability density with a variance equal
to σ. In each simulated dataset, we randomly distributed 200
background clusters over the whole field-of-view to represent
false localization events due to background fluorescence.
These clusters are Gaussian distributed clusters with a random
FWHM between 10 and 20 nm. The density of background
clusters are the same as the foreground.

2.4 Experimental Dataset

The microtubule imaging experiments were performed with
a home-built microscope consisting of an Olympus IX-71
inverted microscope, an oil immersion objective (Olympus
UAPON 100XO, NA 1.40) and an electron multiplying charge
coupled device (EMCCD) camera (Andor iXon 897). The acti-
vation laser at 405 nm and the excitation laser at 640 nm (both
from CNI Laser, China) were combined before entering the
microscope through a home-built illuminator. Data were
acquired by the EMCCD camera and the bundled software.
The pixel size at the sample plane is 160 nm. The dataset
was analyzed with a maximum likelihood estimator, the
MaLiang method.18 The sample drift is corrected.6

The sample was fixed BS-C-1 cells. The planted cells were
first washed twice with warm phosphate buffered saline (PBS),
fixed with warm paraformaldehyde (PFA) (4% in PBS, 10 min),
washed three times with PBS, then permeabilized and blocked
(0.5% Triton X-100, 3% bovine serum albumin in PBS, 30 min).
Then, the cells were incubated with primary antibody (mouse
anti-β-tubulin, Sigma-Aldrich, T8328) for 2 hours at room tem-
perature. Later on, the cells were washed three times (10 min
each, PBS) and incubated with secondary antibody (goat anti-
mouse, labeled with Alexa Fluor 647, Invitrogen, A21235) for
1 h at room temperature, washed three times (10 min each, PBS)
and postfixed (3% PFA and 0.1% gluteraldehyde in PBS,
10 min). Finally, the sample was washed three times (PBS)
and stored at 4°C before imaging.

3 Results and Discussion
First, we evaluate the performance of structural anisotropy quan-
tification described above using an ideal simulated dataset. The
test dataset comprises of three different types of structures:
filament, ring, and randomly distributed cluster [Fig. 1(a)].
The former two types of anisotropic structures are referred to
as foreground, while the clusters are referred to as background.
We calculated the anisotropy coefficient of the dataset. As a
result, the g map of the dataset [Fig. 1(b)] intuitively separates
the background from the foreground, even when they are very

close to each other [Figs. 1(a) and 1(b)]. The g histogram also
differentiates the foreground from the background [Fig. 1(c)].
Additionally, when two filaments are nearly perpendicular to
each other, we observe low anisotropy strength in the intersec-
tions [Fig. 1(a)].

We further investigate the performance of the proposed
method on imperfect simulated datasets with various localiza-
tion precision (σ) and localization density (ρ). We generated
localization datasets with σ ranging from 0 to 30 nm and ρ rang-
ing from 5000 to 100;000 μm−2. The simulation covers typical
experimental scenarios. As shown in Figs. 2(a)–2(b), although
the performance of the structure differentiation slightly degrades
with the decreases of σ and ρ, structural anisotropy effectively
separates the background from the foreground under various
conditions. For the dataset with a typical σ (15 nm) and ρ
(50;000 μm−2), our method exhibits a similar result as the
ground-truth dataset [Figs. 2(c) and 2(e)]. In the scenario of
low ρ [5000 μm−2, see Figs. 2(d) and 2(f)], our method is
still effective for differentiating a background with foreground,
even though the absolute anisotropy strength of the foreground
is lowered by the poor sampling density. These results indicate
that structural anisotropy is an effective metric in describing bio-
logical structures in localization microscopy.

Then we use both simulated and experimental datasets to
evaluate the performance of using structural anisotropy in locali-
zation event filtering. First, we use the imperfect simulated data-
sets with various σ and ρ (the same datasets used in Fig. 2) to
quantify the performance of the SALEF method. The quantifi-
cation is characterized by two parameters: detection rate and
false-positive rate. The detection rate is the ratio between the
real identified background localization event and the simulated
background; while the false-positive rate is the ratio between the
localization events that are falsely recognized as background

Fig. 1 The performance of the adaptive structural anisotropy quanti-
fication in analyzing simulated ground-truth datesets. (a) A simulated
ground-truth dataset containing filament and ring structures, as well
as background clusters. (b) The anisotropy coefficient map (g map) of
(a). The color map is shown in the lower right. (c) The histogram of g of
the simulated ground-truth dataset. Scale bar: 500 nm in (a) and (b).
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and the total identified background localization events. We show
that SALEF provides robust performances under various σ and ρ
conditions [Figs. 3(a) and 3(b)]. The detection rate is larger than
80% for typical σ and ρ conditions. When ρ is lowered to

5000 μm−2, the detection rate decreased to ∼60%. The false-
position rate is lower than 10% for typical σ and ρ conditions
and increases with the decrease of σ and ρ. Intuitively, for
a typical dataset with σ ¼ 15 nm and ρ ¼ 50;000 μm−2,
SALEF provides a cleaner image than the original one
[Figs. 3(c) and 3(d). Note that the same regions are shown in
Figs. 1(c) and 1(d)]. Because of the average filtering, the locali-
zation events in the intersections of two perpendicular filaments,
where low anisotropy strength had exhibited, are well preserved.
However, the averaging process also has a side effect: a small
fraction of the background located close to the foreground
could not be filtered out. This side effect slightly reduces the
detection rate.

We further investigate the performance of SALEF using real
experimental images of microtubule structures. In the micro-
tubule dataset, a total number of 303,221 fluorophores were
identified from a field-of-view of 419 μm2. The structure sur-
face was estimated to be 8.87 μm2, thus the localization density
was ∼34;000 molecules∕μm2. The average localization preci-
sion of the datasets was calculated to be 12.7 nm using a theo-
retical equation19 which accounts for the excess noise in
EMCCD camera.20,21

A reconstructed superresolution image from the dataset
suffers from a nonspecific background which is randomly dis-
tributed over the field-of-view {Fig. 4[a(i)]}. By calculating the
structural anisotropy coefficient from the image, we found that
the structural anisotropy could effectively discriminate the fore-
ground from the background [Figs. 4(a)–4(c)]. Note that there is
an abnormal peak in the g value between 0 and 0.05 [see the g
histogram in Fig. 4(d)]. Therefore, we filter out the localization
events whose g values are smaller than 0.05, and obtain a clean
superresolution image [Figs. 4(a)–4(c)]. On the contrary, if we

Fig. 2 The performance of adaptive structural anisotropy quantification in analyzing simulated datasets
with various localization precision (σ) and localization density (ρ). (a) The averaged g value of the
filament, ring, and background clusters as a function of σ under ρ ¼ 50;000 μm−2. (b) The averaged
g value of the same structures in (a) as a function of ρ under σ ¼ 15 nm. The error bar indicates the
standard deviation values from five independent simulations. Close-up views of the datasets with ρ ¼
50;000 μm−2 (c) and ρ ¼ 5000 μm−2 (d), respectively. Here, σ is 15 nm in both (c) and (d). (e) and (f) show
the corresponding g maps of (c) and (d).

Fig. 3 The performance of SALEF in analyzing simulated datasets.
(a) The detection and false-positive rates as a function of σ in recog-
nizing background events under ρ ¼ 50;000 μm−2. (b) The detection
and false-positive rates as a function of ρ in recognizing background
events under σ ¼ 15 nm. (c) A close-up view of a simulated dataset
with ρ ¼ 50;000 μm−2 and σ ¼ 15 nm. (d) The resulting image of
(c) after applying the SALEF method. The images are generated
by histogram binning. Scale bar: 500 nm.

Journal of Biomedical Optics 076011-4 July 2016 • Vol. 21(7)

Wang and Huang: Structural anisotropy quantification improves the final superresolution image. . .



use a popular density-based localization event filtering method,
which discards 5% of the localization events with the lowest
localization density, the background cannot be effectively
filtered out [Figs. 4(a)–4(c)]. Note the localization dataset in
Fig. 4[a(i)] is filtered using a localization precision threshold
of 50 nm. The image resulting from SALEF [Figs. 4(a)–4(c)]
presents a Fourier ring correlation (FRC) resolution22 of
56.1 nm, which is better than that of the original image
{57.1 nm in Fig. 4[a(i)]}, but is lower than that from the den-
sity-based localization event filtering method (51.9 nm). The
reason is that SALEF only filters out the background and
preserves the foreground, while the density-based localization
event filtering method filters out both low localization density

components in the foreground and background. Note that the
FRC resolution will become higher when there are fewer low
localization density components.

4 Conclusion
We investigated the structural anisotropy characteristics of the
datasets in superresolution localization microscopy, and pre-
sented a method for localization event filtering. Using both
simulated and experimental images, we verified that SALEF,
our new localization event filtering method based on structural
anisotropy, is able to provide a much cleaner superresolution
image than previous localization filtering methods.

Fig. 4 The performance of SALEF in analyzing experimental dataset. (a) The original localization dataset
(i), its anisotropy coefficient map (ii), the reconstructed image after applying SALEF (iii) and the recon-
structed image after density-based localization event filtering (vi), respectively. The color map of [a(ii)] is
shown in the lower-right. (b) and (c) Close-up views of the boxed regions in each column of (a). (d) The g
histogram for the image in [a(ii)]. (e) The FRC resolution curves of the datasets in (a). The estimated
FRC resolution is: 57.1 nm [a(i)], 56.1 nm [a(iii)] and 51.9 nm [a(vi)], respectively. All the images are
histogram binning images of the corresponding localization dataset. Scale bar: 5 μm in (a); 500 nm
in (b); 250 nm in (c).
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However, the method presented in this study is not applicable
to isotropic structures, e.g., the cell membrane proteins that
are organized in small and radially symmetric clusters, simply
because there is no structural anisotropy difference between
the background and the foreground. In this case, other image
processing techniques, including segmentation23 and cluster
analysis,24 can be used.
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