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Abstract

Significance: Researchers have made great progress in single-image super-resolution (SISR)
using deep convolutional neural networks. However, in the field of leukocyte imaging, the per-
formance of existing SISR methods is still limited as it fails to thoroughly explore the geometry
and structural consistency of leukocytes. The inaccurate super-resolution (SR) results will hinder
the pathological study of leukocytes, since the structure and cell lineage determine the types of
leukocyte and will significantly affect the subsequent inspection.

Aim: We propose a deep network that takes full use of the geometry prior and structural con-
sistency of the leukocyte images. We establish and annotate a leukocyte dataset, which contains
five main types of leukocytes (basophil, eosinophil, monocyte, lymphocyte, and neutrophil), for
learning the structure and geometry information.

Approach: Our model is composed of two modules: prior network and SR network. The prior
network estimates the parsing map of the low-resolution (LR) image, and then the SR network
takes both the estimated parsing map and LR image as input to predict the final high-resolution
image.

Result: Experiments show that the geometry prior and structural consistency in use obviously
improves the SR performance of leukocyte images, enhancing the peak-signal-to-noise ratio
(PSNR) by about 0.4 dB in our benchmark.

Conclusion: As proved by our leukocyte SR benchmark, the proposed method significantly
outperforms state-of-the-art SR methods. Our method not only improves the PSNR and struc-
tural similarity indices, but also accurately preserves the structural details of leukocytes. The
proposed method is believed to have potential use in the wide-field cell prescreening by simply
using a low-power objective.
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1 Introduction

Image super-resolution (SR), which is a classic low-level task in the field of computer vision,
aims at recovering high-resolution (HR) image from a given low-resolution (LR) image.
Obviously, image SR is an ill-posed inverse problem since an LR image may correspond to
many HR candidates. Recently, convolutional neural network (CNN) has been introduced into
the image SR problem. This powerful technology has brought new life to SR algorithms.1–8

1.1 Image Super-Resolution

Image SR has become an important branch of computer vision tasks. It can be categorized into
four types according to Yang’s work:9 prediction models, edge-based methods, image statistical
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methods, and patch-based (or example-based) methods. Among them, patch-based methods,
especially those utilizing deep CNN models, achieve better performance than the other three
methods. The well-known algorithm called bicubic interpolation belongs to the first, which
is able to calculate SR images in a very short time. However, bicubic interpolation loses most
high-frequency information in LR images.

Dong et al.’s work1 first introduced a deep CNN to the SR algorithm, in which a three-layer
CNN (called SRCNN) learns the mapping between LR and HR patches based on large external
datasets such as 91 images and Imagenet.10 Later, Kim et al.2 proposed a very deep convolution
network (called VDSR) to capture deeper features of the input image. They also introduced a
skip-connection between the input image and the final feature layer, which enables a higher
learning rate and mitigates gratitude explosion/vanishing.11 There are also some studies focusing
on making full use of geometry prior such as Chen et al.’s work.8 Their proposed model first
generates a coarse SR image using CNN, then the image features and the landmark parsing maps
are estimated simultaneously using two separate networks. Yang et al.12 reviewed representative
deep learning-based single-image super-resolution (SISR) methods and group them into two
categories according to their contributions to two essential aspects of SISR: the exploration
of efficient neural network architectures for SISR and the development of effective optimization
objectives for deep SISR learning. Finally, both the features and the maps are concatenated in the
channel dimension and sent to a fine SR network to recover the HR image, which shows remark-
able improvement over the other none-prior methods in the field of human face SR.

1.2 Deep Learning in Pathology

Since CNN-based methods have achieved remarkable success in the field of computer vision, it
is not surprising that deep learning is about to be used in pathology. Researchers have witnessed
the obvious trend of integration of deep learning and pathology, particularly in the field of cell
segmentation, cell classification, tissue staining, cancer diagnosis, etc. Koyuncu et al.13 applied a
multitask deep regression model for cell detection in images acquired with inverted microscopy.
Fu et al.14 designed an 11-layer CNN for segmentation of histological images, particularly those
with Masson’s trichrome stain. Microscopy SR has also been developed under deep learning
frameworks. Rivenson et al.15 proposed a deep neural network to super-resolve Masson’s tri-
chrome stained lung tissue, Masson’s trichrome stained kidney tissue, H&E stained breast tissue,
and so on. They also proposed a mobile-phone-version SR model,16 which can correct distortion
introduced by mobile-phone-based microscopes and generate high-resolution tissue sample
images. de Haan et al.17 reviewed some of these emerging applications of deep learning ranging
from image transformations between microscopic imaging systems to adding new capabilities to
existing imaging techniques, as well as solving various inverse problems based on microscopy
image data. Nevertheless, these aforementioned methods are more concerned tissue-level SR
than cell-level SR.

1.3 Leukocyte Super-Resolution

Recovering high-frequency context in leukocytes is much more challenging since a leukocyte is
much smaller than tissues and consists of many different types with tiny differences, which
means SR reconstruction should be done precisely and carefully without changing the original
shape. Here, we propose a prior-embedded SR network specific for leukocytes. Adhesion of the
nucleus in leukocytes is an important criterion for leukocyte recognition. In order to preserve the
adhesion information during super-resolving, we introduce the geometry prior, which constrains
the structural consistency of the nucleus, cytoplasm, and backgrounds in leukocyte images. Our
model can be divided into two parts: prior network and SR network. The prior network generates
a three-channel parsing map by predicting the geometry information of a given LR leukocyte
image. The SR network takes both the LR image and parsing map as input and finally generates
a visually pleasing HR image. Experiments have demonstrated that our method outperforms
none-prior SR methods mathematically and visually. It should be pointed out that our model
can be easily transformed into other kinds of pathology SR tasks, including, e.g., holography,
dark-field, and fluorescence.
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2 Method

Given an input LR image of size W ×H, we first upsample it to the size of the final HR image
sW × sH using bicubic interpolation, where s means the scale factor. With this simple trick, the
network earns a relatively good starting point, making the training process converge faster. It also
keeps pixel-to-pixel correspondence between input and output. In the following sections, we
mark IHR and ILR as HR and LR image, respectively, with both having size sW × sH.

2.1 Prior Network

In the proposed approach, we use parsing maps as the cell’s geometry prior. So prior estimation
equals semantic segmentation. The network takes ILR as input and estimates a three-channel
parsing map IM, which represents the region of the nucleus, cytoplasm, and backgrounds,
respectively.

We follow the design philosophy of U-net structure as illustrated in Ref. 18, which has been
successfully utilized in the field of microscopy image segmentation. Nevertheless, there are still
some differences between U-net and our proposed network. First, in the U-net, spatial size of the
feature maps keeps shrinking in the encoder module and expanding in the decoder module, and
we use zero-padding to keep spatial size unchanged during convolutions in the proposed net-
work. Second, we half the channels of feature maps in U-net, since we found this light version
still obtained good results. There also exist some semantic segmentation models more powerful
than U-net such as Refs. 19–23. These methods focus on large natural image datasets such as
VOC201224 and COCO,25 which contain tens of semantic class and dense detection targets.
We use the relatively small U-net for the consideration of computation speed.

2.2 SR Network

The architecture of our SR network is illustrated in Fig. 1(a). Our network can be divided into the
following parts: LR feature encoder, mask encoder, and SR decoder.

(a)

(b)

Fig. 1 Network structure of our proposed model. The orange block indicates a convolutional layer
followed by a Leaky ReLU. The green block indicates a residual block containing two continuous
orange blocks and a skip connection. “k3n64” indicates the kernel size is 3 × 3, the feature map
number is 64. The prior network is abridged since the structure almost equals U-net. (a) The full
structure of our proposed model. (b) The structure of our proposed model without prior branch.
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The basic unit of our SR network is residual block similar to enhanced deep residual networks
for single image super-resolution (EDSR).6 The block is built by a sequence of two convolution
layers, and each convolution layer is followed by a Leaky rectified linear unit (ReLU). Batch
normalization (BN) is discarded because it may break the diversity of images.

Inspired by SRGAN,5 we employ feature extractor on the input image. It contains a single
conv layer followed by Leaky ReLU. Thus, the input ILR with 1 channel will be transformed into
a 64-channel shallow feature map. The LR feature encoder contains three stacked residual
blocks, which further encodes shallow features into deep features. IM generated by a prior net-
work is sent to a mask encoder network. Note that mask encoder has the same depth as the LR
feature encoder. We design such a structure for the balance of both features’ depths. Then shal-
low features and deep features of the image, along with features of the mask, are stacked together
and sent to the SR decoder, generating the final ISR.

All the convolutional layers generate features with the same channels except for the last one,
and all the nonlinear layers are set as Leaky ReLU with a negative slope of 0.2. Note that a more
stacked residual block may extract deeper features and result in better performance. Here, we use
a relatively shallow residual block for computation speed.

2.3 Loss Functions

As described above, we have two mapping functions to be optimized. One is for generating the
mask IM from the LR image ILR; θ1, another is for generating the SR image ISR given the LR
image ILR and the corresponding mask IM

EQ-TARGET;temp:intralink-;e001;116;467IM ¼ f1ðILR; θ1Þ; (1)

EQ-TARGET;temp:intralink-;e002;116;424ISR ¼ f2ðILR; IM; θ2Þ ¼ f2½ILR; f1ðILR; θ1Þ; θ2�: (2)

Obviously, our model contains two corresponding losses: one for SR and another for semantic

segmentation. Let ÎSR and ÎM be the ground truth, and the overall loss function can be written as

EQ-TARGET;temp:intralink-;e003;116;387L ¼ 1

N

XN

i¼1

½LSRðÎSRi − ISRi Þ þ λLpriorðÎMi − IMi Þ�; (3)

where N is the number of training samples in each batch and λ is the coefficient balancing the
two losses. Here, we set λ ¼ 1. For Lprior, we follow the binary cross entropy loss used in U-
net.18 Since training with the optimization of the mean square error often results in over-smooth
details, we use the more-robust loss function proposed in LapSRN7

EQ-TARGET;temp:intralink-;e004;116;288LSRð·Þ ¼ ρð·Þ; (4)

where ρðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ϵ2

p
is the Charbonnier penalty function.26 We set ϵ ¼ 10−3 empirically.

In summary, the total loss function can be written as

EQ-TARGET;temp:intralink-;e005;116;231L ¼ 1

N

XN

i¼1

½ρðÎSRi − ISRi Þ þ BCEðÎMi − IMi Þ�: (5)

2.4 Implementation Details

In order to maintain the structural consistency, we do not crop them into small patches but take
the full image as input. All images are converted to the YCbCr format. Our network only super-
resolves the luminance channel, whereas the other two channels are upscaled by bicubic
interpolation.

We set 3 × 3 as the size of all convolutional layers except the final one, whose kernel size is
1 × 1. For all convolutional layers, we adopt zero-padding to fix the image size. In the SR net-
work, all convolutional layers produce feature maps with 64 filters, while the last one produces
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one-channel images. It is worth noting that the output of the initial feature extractor, the LR
feature encoder, and mask encoder are concatenated in the channel dimension and sent into the
SR decoder, so the input of the SR decoder network has 192 filters.

2.5 Training

We set the size of a minibatch as 8 considering computation complexity and convergence speed.
We implement our network with the Pytorch-1.4 and update the parameters with the Adam
optimizer.27 The learning rate is set to 10−4. We iterate parameters for 100 epochs on two
NVIDIA GTX 1080 graphics processing units (GPUs), which take roughly 6 h for training.

The pretraining strategy eases the difficulty of training large, multitask models. It has also
been used in some SR works or video SR works.5,28–30 In our early experiments, the mask pre-
dicted by a model without pretraining is precise enough and no much worse than that using
pretraining. Thus, we choose end-to-end training, which learns the parameters of the prior net-
work and SR network simultaneously.

3 Experiments

3.1 Dataset

We capture 863 leukocyte images as our dataset in which 759 were set as the training set, 52 were
set as the validation set, and the other 52 were set as the testing set. The dataset contains five
basic types of leukocytes: basophil, eosinophil, monocyte, lymphocyte, and neutrophil. Each
image contains a single leukocyte observed with 100 × ∕1.25 N:A: oil-immersion objective lens.
The original images (with sizes of 224 × 224 pixels) are set as HR images, and the LR images
were obtained by down-sampling HR images with MATLAB’s function imresize.

We mark the parsing map with LabelMe tools.31 First, we handcraft several landmarks on the
boundaries of the cytoplasm and nucleus. Then we connect these landmarks in order to create a
closed polygon, which is also known as the parsing maps. We mark the nucleus as blue, cyto-
plasm as red, and background as black. Some examples are shown in Fig. 2.

3.2 Effects of Priors

Since our network can be divided into two parts, we easily obtain a none-prior SR network by
removing the prior network and mask encoder, just as in Fig. 1(b). We mark the none-prior

Fig. 2 Some example images in our leukocyte dataset: (a) original leukocyte images and
(b) ground-truth landmarks marked with LabelMe. The red circle represents the region of cyto-
plasm, and the blue circle represents the region of the nucleus. (c) Generated parsing maps
according to the landmarks of (b).
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network as none-prior and the prior-contained network as geometry-prior. We train both the
networks on our leukocyte dataset and test the peak-signal-to-noise ratio (PSNR) on the lumi-
nance channel. Table 1 shows the result of the above experiment. It can be seen that adding
prior to the model significantly improves the performance of SR for leukocytes. It directly
proves the power of using priors. The parsing map is available to guide the network to recover
corresponding details in a specific region.

3.3 Results of Segmentation

The results of parsing map estimation are shown in Fig. 3, and the ground truth parsing maps are
marked by anchors. As shown, the predicted parsing maps are almost as precise as the ground
truth, especially with a down-sampling scale 4×. Notice that parsing maps predicted from images
down-sampled with a scale 8× are basically similar to that with a scale 4×. This indicates that our
prior network is able to predict parsing maps in very LR images.

We do not compare our prior network with other segmentation models for two reasons:
(1) we build a prior network not for reaching the state-of-the-art segmentation results, but for
assisting the SR task. (2) The ground truth parsing maps of our dataset are not annotated pixel-
by-pixel and are not suitable for any pixel-level metrics.

3.4 Comparing with the other Methods

We compare our method with other SR methods mentioned above. Since our network works
only when prior masks are available, we make comparison on our 52 leukocyte images described
in Sec. 3.1. We compute the PSNR32 and structural similarity (SSIM)33 between super-resolved
images and ground-truth in a float32 format. For SRCNN, we use the most powerful version
9-5-5. For SRResNet, we use SRResNet-16 version (containing 16 residual blocks). EDSR6 is

Table 1 Comparisons between none-prior and geometry-
prior models on our dataset. Here, we only show the PSNR
results of the experiments.

None-prior Geometry-prior

Leukocyte 39.5252 40.0031

Fig. 3 Results of parsing map prediction: (a) LR images. We only show the images down-sampled
with scale 8×. (b) Ground-truth parsing maps, (c) predicted parsing maps at a scale of 8×, and
(d) predicted parsing maps at a scale of 4×.
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excluded here, because it uses far more filters and residual blocks than the other methods. For fair
comparison, we reimplement them on Pytorch-0.3rc and ensure they have a similar performance
on natural images. We conduct experiments on two down-sampling scales, 4× and 8×.

In order to maintain the consistency of the experimental results, several networks participat-
ing in the comparison are trained with the same parameter settings as our network. The learning
rate is set to 10−4 and then decayed by a factor of 2 every 10 epochs. The size of the minibatch is
set to 8 and the Adam optimizer is chosen as the optimizer with β1 ¼ 0.9. The number of epochs
is set to 100, except for SRGAN and SFTGAN,34 because training of a generative adversarial
network (GAN)-based network is more difficult to converge. We set the number of epochs for
SFTGAN to 200. Feature maps used for SRGAN and SFTGAN are obtained with a pretrained
19-layer VGG network provided by torchvision.models.vgg19.

Qualitative comparisons are shown in Table 2. Some super-resolved results are also shown
in Figs. 4 and 5. To our great surprise, at scales both 4× and 8×, VDSR achieves very poor
performances whose PSNR is even lower than SRCNN. The reason may be VDSR’s long-plain
structure. The over-long convolutional sequence blocks effective gradient flowing, resulting in
gradient exploding/vanishing. As we can see, the color and texture information in the micro-
scopic image is relatively small, the influence of BN artifacts in the result of SRGAN is relatively
high. SFTGAN improved the high-frequency details and handles the BN artifacts quite well.
However, GAN-based methods tend to generate an unrealistic texture, which is not a good thing
for medical images because morphological examination of peripheral blood cells relies heavily
on image texture and structure information.

Table 2 Benchmark results with bicubic down-sampling models. PSNR and SSIM values are
both calculated for scaling factors of 4× and 8×. Bold/italics values indicate the best/second best
performance.

Bicubic SRCNN VDSR SRResNet SRGAN SFTGAN Ours (NP) Ours (GP)

4× PSNR 36.6830 37.8846 36.6831 38.4418 36.1347 35.9718 39.5252 39.9251

SSIM 0.9714 0.9775 0.9714 0.9785 0.9421 0.9238 0.9832 0.9834

8× PSNR 31.1077 31.4251 31.1073 33.7853 31.4918 31.3653 34.4041 34.9352

SSIM 0.9239 0.9314 0.9241 0.9498 0.9156 0.8566 0.9565 0.9572

SRResNetVDSRSRCNNBICUBIC Ours TargetSFTGANSRGAN

Fig. 4 Qualitative comparisons (scale 4×). Readers are advised to zoom in for a better view
(save image, then zoom in using a photo reader program).
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Our network significantly surpasses all the other SR methods, either on PSNR or on SSIM.
First, the none-prior version has significantly surpassed the state-of-the-art method SRResNet by
about 1 dB at scale 4× and 0.6 dB at scale 8×, which means a very large improvement. It should
be noticed that SRResNet has 16 residual blocks, which is much more than ours (6 blocks in total
in the SR branch). We attribute this improvement to the suitable design of our model’s structure.
Our final geometry-prior model further surpasses the none-prior version by about 0.4 dB at scale
4× and 0.5 dB at scale 8×, which has been shown in the previous experiments. The result has
shown that our proposed model has superiority both in structure and in prior utilization.

An image super-resolved by SRResNet looks similar to that by our method at scale 8×. But
if we take a closer look (Fig. 6), our method preserves shaper edges in many instances, such as
cytoplasm’s boundary, joints between two nuclei, and a gully in the nucleus. This result shows

SRResNetVDSRSRCNNBICUBIC Ours TargetSFTGANSRGAN

Fig. 5 Qualitative comparisons (scale 8×). Readers are advised to zoom in for a better view.

Fig. 6 Qualitative comparisons at detail (scale 8×). Readers are advised to zoom in for a better
view. (a) The full-size image generated by our method. The red bounding box indicates the region
to be compared below. (b) Region of red bounding box in image generated by SRResNet.
(c) Region of red bounding box in image generated by our method. The green circle indicates
the region with significantly different contexts between the two methods.
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that our model can recover more refined details than SRResNet in extreme situations. The com-
parison at scale 8× has practical significance since it is quite difficult for hospitals or research
institutes in resource-limited areas to get high standard microscopes. Our method can mitigate
this difficulty computationally, improving the quality of leukocyte images more significantly
than other methods.

We have not tested our proposed method on the natural image benchmark since natural
images contain much more semantic classes and more complex regions. As mentioned above,
readers are welcomed to test our method on natural image datasets by replacing U-net with a
more powerful network if interested.

4 Conclusion

In this paper, we proposed a deep end-to-end trainable SR network for leukocytes. The key
component of the proposed method is the prior network, which estimates the parsing map
of the leukocyte. The estimated parsing map and LR images were both sent to the SR network,
and finally HR images are reconstructed. Experimental results have shown that the prior network
improved the SR performance, enhancing the PSNR by about 0.4 dB compared with the none-
prior network in our benchmark. In addition, our model achieved superiority over state-of-the-art
methods both quantitatively and qualitatively. We have proposed and demonstrated that a prior-
embedded deep neural network can improve optical microscopy imaging of leukocytes. For LR
images synthesized from high-resolution images, this mapping process can be considered a sim-
ple averaging. For the mapping between real high-N.A. microscope and low-N.A. microscope
images, in addition to averaging, there may be some distortion caused by optical components.
Although we did not test our network on real experimental low-N.A. microscope data, we have
confidence that the CNN can realize the mapping between LR images and high-resolution
images of real data together with learning and correcting the aberration effects of low-N.A.
microscopes. Hence, we believe this approach can be used to transfer images that are acquired
under LR systems into high-resolution and wide-field images for prescreening applications,
significantly extending the space bandwidth product of the output images.
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