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Abstract

Significance: Photoacoustic tomography (PAT) is a promising emergent modality for the screen-
ing and staging of breast cancer. To minimize barriers to clinical translation, it is common to
develop PAT systems based upon existing ultrasound hardware, which can entail significant
design challenges in terms of light delivery. This often results in inherently non-uniform fluence
within the tissue and should be accounted for during image reconstruction.

Aim:We aim to integrate PAT into an automated breast ultrasound scanner with minimal change
to the existing system.

Approach:We designed and implemented an illuminator that directs spatially non-uniform light
to the tissue near the acquisition plane of the imaging array. We developed a graphics processing
unit-accelerated reconstruction method, which accounts for this illumination geometry by mod-
eling the structure of the light in the sample. We quantified the performance of this system using
a custom, modular photoacoustic phantom and graphite rods embedded in chicken breast tissue.

Results: Our illuminator provides a fluence of 2.5 mJ cm−2 at the tissue surface, which was
sufficient to attain a signal-to-noise ratio (SNR) of 8 dB at 2 cm in chicken breast tissue and
image 0.25-mm features at depths of up to 3 cm in a medium with moderate optical scattering.
Our reconstruction scheme is 200× faster than a CPU implementation; it provides a 25%
increase in SNR at 2 cm in chicken breast tissue and lowers image error by an average of 31%
at imaging depths >1.5 cm compared with a method that does not account for the inhomoge-
neity of the illumination or the transducer directivity.

Conclusions:A fan-shaped illumination geometry is feasible for PAT; however, it is important to
account for non-uniform fluence in illumination scenarios such as this. Future work will focus on
increasing fluence and further optimizing the ultrasound hardware to improve SNR and overall
image quality.
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1 Introduction

Ultrasound has long served as a supplement to mammography for peripheral sites, as a “second-
look” modality, especially for women with dense breasts, who are at higher risk of developing
breast cancer and for whom the gold standard of mammography falls short.1–3 Multimodal im-
aging, and in particular, photoacoustic tomography (PAT), of the breast has emerged as a prom-
ising clinical tool for the detection,4,5 staging,6,7 and pre-operative margin assessment8 of breast
malignancies.
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The SonixEmbrace automated breast ultrasound scanner (ABUS—Ultrasonix Medical
Corporation, Richmond, British Columbia, Canada) consists of a large, concave ultrasound
transducer embedded in a spherical dome. The patient lies prone on a padded platform with
one breast lying against a gel-based custom coupling pad within the imaging dome. A motor
rotates the dome through 360°, acquiring B-mode images at 0.5° intervals, which are then inter-
polated to produce volumetric ultrasound. The SonixEmbrace system has several advantages
outlined by Azar et al,9 including high lateral resolution due to the concave transducer array
design, a fixed scanning volume that facilitates registration to other imaging modalities such
as magnetic resonance imaging (MRI), and rapid volumetric acquisition time of 2 min. The
breast does not move nor is it deformed during the acquisition, and therefore, its volumetric
image can be re-sliced for analysis and diagnosis. Thus operator-dependence in image acquis-
ition is effectively removed, and the diagnosis by a qualified radiologist could be facilitated.

This rigid volume scanning scheme and tomographic geometry of the SonixEmbrace provide
an excellent platform for multimodal imaging. We have previously demonstrated simultaneous
acquisition of tomographic ultrasound, elasticity, Doppler flow, and photoacoustic imaging in
a tissue-mimicking phantom and presented our preliminary results.10 Integrating PAT into this
scanning geometry without sacrificing quality of the other modalities presents challenges in
hardware and optics design and in data reconstruction.

The state of the art in breast PATwas recently summarized by Manohar and Dantuma,11 and
we refer the reader to this review for a detailed description of common imaging and illumination
geometries currently in use. Such systems are carefully designed from the ground up to balance
the density of detection elements against the ease of delivering illumination to the sample.
Illuminating the entire surface of the tissue with a collimated or divergent beam is often pref-
erable, and this geometry has seen widespread use for the imaging of small animals12,13 and
human extremities.14 This type of illumination has the advantage of providing a relatively uni-
form fluence at the tissue surface, such that the fluence within the imaging volume can be either
assumed constant or accounted for with a depth-based attenuation model.15 In the case of the
SonixEmbrace, where the ultrasound hardware is a given and we wish to retrofit the illumination,
we are more limited in our options. In particular, for reasons elaborated upon in Sec. 2.1,
a collimated beam illuminating the entire surface of the breast is not possible.

Taking inspiration from the ever-growing body of work integrating illumination hardware
into freehand ultrasound systems,15–17 we explored diffusive, beam-shaping optics that can
be placed near the transducer to provide fluence in the acoustic acquisition plane. In 2018,
we presented preliminary results showing feasibility of a fan-shaped diffuse beam for this
purpose.18 This illumination approach remains novel among tomographic breast PAT systems,
and in the present study, we provide a complete characterization of both our hardware and
software and a new graphics processing unit (GPU)-accelerated reconstruction scheme. At the
same conference, Oraevsky et al.19 presented the laser optoacoustic ultrasonic imaging system
assembly (LOUISA)-3D system, which is superficially similar to our own in its use of a curved
transducer array and a moving illuminator, but differs in several significant ways. Most relevant
is that their system was designed to include a transparent imaging dome allowing the illuminator
to be placed nearer to the tissue and to illuminate a larger area with a single laser pulse. This
illumination system also moves independently of the transducer array, whereas these are coupled
in our system. The authors describe the illuminator itself as an arc-shaped “paddle”with multiple
fiber optic segments, which is distinct from our simpler single-fiber solution.

We also note that our design is distinct from existing systems that employ diode light bars or
rectangular shaping diffusive elements17,20 in that the light diverges significantly in the space
between the optics and the tissue, resulting in inherently non-uniform fluence at the tissue boun-
dary. While these optics offer flexibility in terms of the light delivery, this spatial non-uniformity
of the fluence must be accounted for during data reconstruction.21–23

Spatial fluence modeling is commonly used in photoacoustic simulations to provide an accu-
rate ground truth for experimental validation,20,22 and this is usually accomplished via a Monte
Carlo simulation of the radiative transfer equation (RTE). It is also often necessary in quantitative
photoacoustic tomography to fully model the fluence such that the optical parameters of the
tissue can be recovered absolutely, for example, in the recent work of Hänninen et al.24 In moti-
vating their work, the authors highlight that a significant shortcoming of the standard Monte
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Carlo method is the necessary computation time, which can be prohibitive for large tomographic
problems such as ours. This is further compounded in the case of non-stationary illumination
since the fluence must be computed separately for each tomographic acquisition angle. In the
present study, we employ a first-order approximation to the RTE to lower this computational
burden.

We note the unique recent work of Park et al.25 which estimates and accounts for non-uniform
illumination and attenuation as a part of the image reconstruction. Our work differs from this
approach in that we do not need to compute the location of the breast surface and that we do not
assume constant fluence at the sample surface.

In this study, we present a novel, fan-shaped illuminator for PAT of the breast, and we char-
acterize and quantify the performance of this illumination system in terms of the fluence that it
can deliver to the tissue surface. We also explore the use of an approximate, model-based method
for deconvolving spatially-varying illumination from measured photoacoustic signals and quan-
tify the benefits of using such a method. To our knowledge, this study constitutes the first attempt
to integrate PAT into a pre-existing multimodal ABUS system. By attempting to add PAT to this
system with minimal changes to the existing design, we have made compromises relative to the
current state of the art. In particular, our transducer is a conventional array that is designed pri-
marily for B-mode imaging. Our approach of using diffusive optics and modeling the illumi-
nation is general enough to be used in other photoacoustic imaging applications, especially those
attempting to minimize cost,20 image disease sites that are difficult to illuminate by conventional
means such as the prostate,26,27 and guide minimally invasive surgical procedures in which space
constraints often lead to inherently non-uniform illumination.28

2 Methods

2.1 SonixEmbrace ABUS

The SonixEmbrace transducer array consists of 384 elements on a 11.5-cm long circular arc
with a curvature of −12 cm. It has a center frequency of 10 MHz and 90% bandwidth. The
transducer dome has a radius of curvature of 12 cm and a diameter of 18 cm. A photograph
of the dome is shown in Fig. 1. This large transducer requires multiplexing (mux) hardware
that occupies a significant amount of space directly behind the transducer array under the dome

Fig. 1 The SonixEmbrace ABUS system, consisting of the ultrasound PC and scanning platform.
Inset shows a top-down view of the transducer dome, with the blue transducer array visible.
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(see Fig. 2), limiting conventional illumination options for breast PAT such as a collimated,
expanded beam.19,29 In further contrast to these systems, the SonixEmbrace uses a thin
(∼5 mm) gel pad for acoustic coupling, as opposed to a flexible membrane or liquid-filled
chamber. This means that there is little provision for any divergent optics to expand to cover
a significant area of the tissue surface. We explored the possibility of using diode-based illumi-
nation, as the smaller footprint of such systems could potentially place the illumination closer to
the surface. These systems would provide lower pulse power, so we chose to use a laser-based
system in the interest of maximizing fluence and, therefore, the attainable penetration depth. We
can also use an optical parametric oscillator (OPO) to perform multi-spectral PAT without
changes to the output optics, whereas a diode system would require one illuminator per
wavelength.

The mechanical constraints imposed by the configuration of the ABUS electronics and motor
led us to consider a narrow, fan-shaped beam that could fit between the multiplexer boards and
the motor axle. We 3D printed an identical transducer dome in poly(lactic acid) (PLA; Afinia,
Chanhassen, Minnesota), which has a polycarbonate optical window epoxied parallel to the
transducer, as shown in Fig. 2.

2.2 Laser and Optics

Our illumination system consists of a Continuum Surelite II LASER (Continuum Inc, Santa
Clara, California) coupled to an OPO from the same manufacturer to control the output wave-
length in the range of 675 to 2500 nm. We use a 80/20 beam splitter (68-376, Edmund Optics,
Barrington, New Jersey) to direct 20% of the OPO output to a USB power meter (EnergyMax
J-50MB-YAG – Coherent Inc., Santa Clara, California), allowing us to measure per-pulse energy
while imaging. The remainder of the beam has a diameter of 9.5 mm, and is subsequently
homogenized using a cross cylindrical lens array (Nr.18-00142, SUSS MicroOptics, Hauterive,
Switzerland) and coupled by means of a plano-convex spherical lens (LA1608, Thorlabs,
Newton) into a 1-mm diameter silica core optical fiber. Our beam homogenization and coupling
system are described in further detail in Ref. 30. This system provides 5-ns pulses at 700 nm with
a per-pulse energy at the output end of the fiber exceeding 50 mJ.

At the output end of the fiber is an optical assembly contained in a 3D-printed housing to
maintain alignment and direct the diffuse output toward the optical window in the ABUS dome.
The fiber is connected to the optical assembly by means of a ferrule connector (FC) fiber bulk-
head connector (Thorlabs, Newton, New Jersey) and a bearing to decouple the fiber from the
dome rotation. The fiber output first passes through an achromatic collimating doublet (65-438,
Edmund Optics, Barrington, New Jersey) and is then incident upon an engineered “line diffuser”
(EDL-100 × 0.4, RPC Photonics, Rochester, New York), which shapes the collimated beam into
a fan. This fan has a 90° divergence along one axis and a 0.24° divergence along the other. This
shape permits the beam to pass through the optical window, while illuminating its entire 11.5-cm
length. A cross-sectional view of this assembly is shown in Fig. 2.

(a) (b)

Fig. 2 Schematic diagrams showing (a) the position of the ABUS illuminator and the electro-
mechanical components beneath the ABUS imaging dome and (b) the illuminator, with the
cutaway view revealing the optical elements.
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2.3 Data Acquisition and Pre-Processing

Radio frequency (RF) data from the ABUS transducer were acquired using a SonixDAQ module
(BK Medical). The SonixDAQ has a sampling rate at 40 MHz, a 12-bit resolution, and a −10-dB
sensitivity in the range 2 to 20 MHz. Since the SonixDAQ can only acquire 128 channels at a
time, each plane acquisition requires three acquisitions to cover all of the transducer elements.
Control of the ABUS motor, and all triggering and synchronization of the optics and DAQ
acquisition was accomplished using a custom Arduino-based circuit controlled over USB from
a Windows PC.

This circuit allows flashlamp triggers to continually be sent to the laser at its pulse repetition
rate of 10 Hz, while illumination pulses (via q-switch triggers) can be requested via hardware or
software triggers. We have found that this “steady-state” operation decreases inter-pulse energy
variability. For the pulse energies that we employ in this study, this variability is on the order of
10% to 15%. To further minimize the effect of this variability, we use the power meter data to
normalize each 128-element acquisition by the relative pulse energy. A diagram summarizing
the system configuration is shown in Fig. 3.

Several steps are needed to pre-process the RF data prior to photoacoustic reconstruction.
First, each A-line is low-pass filtered to remove high-frequency components outside the working
range of the transducer. This was performed in software using a fifth-order Butterworth filter
with a cutoff at 14.5 MHz. We retain the low-frequency components at this stage as they are
essential for the following processing step: the application of singular value decomposition
(SVD) denoising to remove cross-channel noise bands.31 To perform this denoising, we compute
the SVD of a 128 × 2080matrix in which each row corresponds to the RF data for one transducer
element. In this representation, this band-shaped noise dominates the first few singular value
components. We can isolate these components and revert to the original representation, produc-
ing a matrix consisting of only the noise. This can then be subtracted from the original data,
resulting in the denoised matrix. Since these noise bands are stochastic, this decomposition and
denoising must be performed for each 128-element acquisition. Using the GPU implementation
of SVD available in the scikit-cuda Python package,32 this denoising takes only 100 ms for each
128 × 2080 array. Any low-frequency components outside the working range of the transducer
will be removed by a ramp filter described in Eq. (3).

We explored several other denoising approaches including template matching, directional
filtering33 (both to the radio-frequency and image data), and temporal averaging (i.e., acquiring
multiple frames of RF data per transducer position). Of these, temporal averaging was most
successful at reducing the prominence of the noise bands, although it comes at a cost of increas-
ing acquisition time. Our 10-Hz laser system and SonixDAQ create significant overhead for each
additional acquisition, especially since the ABUS array requires three 128-element acquisitions
per transducer position. For a volumetric scan of 200 angular positions, acquiring a single frame
per position resulted in a 20-min scan time, whereas acquiring 10 frames per position increased
the scan time to well over 1 h.

The other denoising approaches were either very sensitive to input parameters or unaccept-
ably detrimental to the image quality. We have found that the SVD-based approach works on

Fig. 3 The experimental setup used in this study. Optical elements T, L, H, and S are a translation
stage, lens, beam homogenizer, and beam splitter, respectively. Dotted lines represent serial
communications, and dashed lines are synchronization triggers.
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a wide variety of data with the same input parameters, removes the noise bands with minimal
effect on the photoacoustic signals, and is computationally efficient to apply to the data. We have
included an example comparing the effectiveness of directional filtering and SVD-based denois-
ing in the Supplementary Materials.

2.4 Reconstruction

When a laser pulse with spatial energy distribution Ψðr; tÞ at time t and positions r is incident
upon a sample with coefficient of thermal expansion β, heat capacity Cv, acoustic speed vs,
and optical absorption coefficient μaðrÞ, an acoustic wave is generated with initial pressure
distribution

EQ-TARGET;temp:intralink-;e001;116;603p0ðr; tÞ ¼
v2sβ
Cv

Ψðr; tÞμaðrÞ: (1)

Assuming the medium properties β, Cv, and vs are spatially homogeneous and the laser pulse
is temporally short, Ψðr; tÞ ¼ ΨðrÞδðtÞ, we have

EQ-TARGET;temp:intralink-;e002;116;533p0ðrÞ ∝ ΨðrÞμAðrÞ; (2)

at time t ¼ 0, when the laser is incident upon the sample. The goal of PAT is to reconstruct μaðrÞ
for the set of positions r, based on a set of time-varying pressure values pDðrD; tÞ measured at
discrete detector positions rD. This involves first inverting the measurements pDðrD; tÞ to find
the initial pressure distribution p0ðrÞ. For a spherical scanning geometry, Xu et al.34 expressed
this inversion in a back-projection form as

EQ-TARGET;temp:intralink-;e003;116;442p0ðrÞ ¼
2

Ω0

Z
Ω0

dΩ0

�
pDðrD; tÞ − t

∂pDðrD; tÞ
∂t

�
t¼jr−rD j

vs

; (3)

where Ω0 is the solid angle of the detection surface containing the points rD and dΩ0 is the
solid angle of the surface element at a location rD relative to a sample point r. While this form
is exact only in the case in which this surface completely encloses the sample (Ω0 ¼ 4π), the dΩ0

Ω0

term serves as a weight that will somewhat mitigate the effects of the well-known partial view
problem.34

Finding p0 in Eq. (3) is typically accomplished using back-projection algorithms such as
delay-and-sum and is a well-studied problem.35 More sophisticated reconstruction algorithms
take into account the fact that the measured pressure data are not exactly equal to the actual
pressure incident on the detector due to factors such as the electromechanical and spatial impulse
responses (SIRs) of the detector.35,36 We can generalize the measured pressure data as

EQ-TARGET;temp:intralink-;e004;116;269pDðrD; r; tÞ ¼ EðtÞ � SðrD; r; tÞ � pðrD; tÞ; (4)

where pðrD; tÞ is the actual time-varying pressure incident on the detector at rD, SðrD; r; tÞ is the
SIR of the detector at rD relative to measurement point r, EðtÞ is the electrical impulse response
(EIR), and * denotes linear convolution with respect to time. Here we consider only the spatial
sensitivity of the transducer, i.e. we assume a flat frequency response, giving

EQ-TARGET;temp:intralink-;e005;116;190EðtÞ ¼ δðtÞ; pDðrD; r; tÞ ¼ SðrD; r; tÞ � pðrD; tÞ: (5)

Since the SonixEmbrace transducer was designed for ultrasound imaging, it includes an
acoustic lens for beam focusing, and as such it would be a poor assumption to fully neglect
the SIR, as is common in many PAT reconstruction schemes. It is known, however, that account-
ing for the SIR is computationally difficult.35,36 In an attempt to strike a balance, we separate the
SIR into a spatial portion that describes the directional sensitivity and a temporal portion that
describes the averaging effect due to the finite size of the transducer element

EQ-TARGET;temp:intralink-;e006;116;86SðrD; r; tÞ ¼ S0ðrD; rÞS1ðtÞ; (6)
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and proceed under the assumption that S1ðtÞ ¼ δðtÞ. This implies that the elements are point-
like, but still have a non-uniform directional response

EQ-TARGET;temp:intralink-;e007;116;711pDðrD; r; tÞ ¼ S0ðrD; rÞpðrD; tÞ: (7)

Under this assumption, S0ðrD; rÞ has no time dependence and as such does not depend on
jr − rDj when substituted into Eq. (3). This assumption also implies that the transducer has a flat
frequency response. In the coordinate system of one transducer, we define θL and θE as the
angles between the element normal (the axial direction) and the sample point in the lateral
(in-plane) and elevational (out-of-plane) directions, respectively, such that

EQ-TARGET;temp:intralink-;e008;116;620pDðrD; r; tÞ ¼ S0ðθL; θEÞpðrD; tÞ: (8)

Since we are already computing the total angle between the element normal and the sample
point to calculate the solid angle element dΩ0 in Eq. (3), S0ðθL; θEÞ does not appreciably change
the computational effort required. Since θL and θE must be computed for every pair of rD and
r (∼105 · 107 ¼ 1012), this approach lends itself well to parallelization using GPUs.

2.4.1 Non-uniform illumination

If the illumination source is spatially uniform within the sample, i.e., ΨðrÞ ¼ Ψ, Eq. (2) implies
that μaðrÞ is directly proportional to the initial pressure p0ðrÞ. If the illumination is non-uniform,
we must deconvolve these two spatial distributions. Since strong light attenuation in tissue limits
imaging depth, it is common in PAT to apply an exponential weighting to the reconstructed p0ðrÞ
to enhance signals further from the surface. Our illumination is not collimated (uniform) at the
tissue surface, but it can still be accounted for in a similar manner.

With sufficient geometric constraints, we model ΨðrÞ as a solution of the RTE for homo-
geneous medium with temporally short pulses.37 For an illumination source given by ri, the
optical fluence at a point r will be a function of the distance r ¼ jr − rij from the source:

EQ-TARGET;temp:intralink-;e009;116;394Ψðr − riÞ ¼
1

4πDr
expð−μeffrÞ; (9)

where the effective attenuation coefficient μeff and the photon diffusion coefficient D are
defined as

EQ-TARGET;temp:intralink-;e010;116;330μeff ¼
ffiffiffiffiffiffiffi
μa0
D

r
D ¼ 1

3ðμa0 þ μs 0 Þ
μs 0 ¼ μsð1 − gÞ; (10)

with μa0 and μs being the bulk absorptive and scattering attenuation coefficients, respectively,
and g being the tissue anisotropy. Equation (9) holds in the diffusion limit, when μa0 ≪ μs.
For human breast tissue at 700 nm, μs ¼ 10.0 cm−1 and μa0 ¼ 0.2 cm−1.38 Assuming constant
optical properties in the tissue constitutes a first order approximation to the true fluence, which
would require either prior knowledge or joint reconstruction of the scattering and absorption
coefficients.

The geometry of the illuminator and the resultant fluence at the sample surface is shown in
Fig. 4. For a given position in the sample, r, the fluence can be computed by integrating Eq. (9)
over values of ri on B, the section of the dome surface bounded by the angles θ and ϕ corre-
sponding to the two diverging axes of the fan-shaped beam:

EQ-TARGET;temp:intralink-;e011;116;166ΨðrÞ ¼
ZZ

B

1

4πDr
expð−μeffrÞdθ dϕ: (11)

2.5 Reconstruction Implementation

Figure 5 shows a summary of our reconstruction scheme. We first filter and back-project the
measured signals to recover the initial pressure, taking into account the spatial sensitivity of
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the transducer array. We then compute the illumination map and use it to normalize the initial
pressure, recovering the optical absorption map for the current illuminator position. It is impor-
tant to reiterate that, since the illuminator is fixed relative to the transducer and not the sample,
ΨðrÞ must be recalculated for each acquisition angle. By applying this method for each angle,
and combining the results, the optical absorption coefficient in the entire 3D tissue volume can be
reconstructed. This accumulation over acquisition angles means that the final estimate of μa
cannot be linearly separated into Ψ and p0 as would be the case with systems employing
stationary illumination.

For all results in the present study, we collected RF data at 200 planes with a constant angular
spacing of 1.8°. We structured our GPU reconstruction into a number of blocks equal to the
number of image voxels, i ¼ 1; · · · ; N, with each 384-element acquisition plane divided into
384 threads. This was performed sequentially for each of the planes, with the results being accu-
mulated in GPU memory.

We computed the illumination map given by Eq. (11) at each of the N image voxels by
dividing the surface B into small patches and summing their contributions to the fluence within
the sample. These contributions are independent and can thus be computed in parallel on a GPU.
For the present study, we divided B into 200 patches, each of which was computed in a separate
GPU thread, resulting in a 200× reduction in computation time.

Reconstruction was implemented in Python, with the following computationally-intensive
portions implemented in CUDA: back-projection, filtering, SVD denoising, and calculation
of the illumination map ΨðrÞ. Reconstruction was performed on a 64-bit Windows 10 PC with

Measured
transducer
directivity

Filtered
backprojection

Illumination map

Initial pressure
Measured

signals

For each 
acquisition

angle

GPU

Fig. 5 A schematic outline of our reconstruction scheme. Green boxes indicate operations com-
puted on GPUs.

Fig. 4 The coordinate system for the illumination system, indicating the divergence angles of the
beam and the intersection with the sample surface.
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16 GB of memory, an Intel Core i7-7700 processor (Intel Corporation, Santa Clara, California),
and a GeForce GTX 1060 3GB GPU (Nvidia Corporation, Santa Clara, California).

All reconstructions in this paper have a resolution of 0.5 mm and assume a constant acoustic
velocity of 1500 m s−1. To calculate the illumination profile using Eqs. (10) and (11), we used
the scattering and absorptive attenuation coefficients of milk at 700 nm39—μs ¼ 30 cm−1 and
μa0 ¼ 0.015 cm−1 for the calibration phantom and of human breast tissue at 700 nm38—
μs ¼ 10.0 cm−1 and μa0 ¼ 0.2 cm−1 for the chicken breast phantom.

2.6 Phantoms

To provide a robust and reproducible way to test our entire imaging system and reconstruction
scheme, we designed and built a modular photoacoustic phantom.

As an absorber, we used 0.25-mm diameter monofilament fishing line, coated with black
spray paint. This provided a strong photoacoustic signal, and the small diameter served as a
test of the system resolution. To suspend the fishing line in the imaging volume, we designed
and 3D printed a scaffold offering multiple mounting points between which the line was
extended. The scaffold consisted of a base that precisely aligns the phantom with the imaging
volume and several cylindrical columns with regularly-spaced holes through which the fishing
line was threaded. This scaffold is shown in Fig. 6. As shown in Fig. 6, the fishing line was
threaded through multiple points, providing a complex inclusion geometry that is nonetheless
simple to describe and reproduce. For imaging the calibration phantom, the ABUS dome was
filled with a 50/50 mixture of water and milk to provide optical scattering. To account for this
mixture, we scaled the scattering and absorptive attenuation coefficients in our reconstruction by
a factor of two, giving μs ¼ 15 cm−1 and μa0 ¼ 0.0075 cm−1.

An additional advantage to using a 3D printed template is that we can easily use the design
file to generate the inclusion geometry for use in simulations and validation of our recon-
structed data.

To test our system in a more highly-scattering medium, we imaged a piece of 0.5-mm
diameter pencil graphite embedded 2-cm deep in a piece of chicken breast tissue.

3 Results

3.1 SVD Denoising

Figure 7 shows an example of the effect of the denoising method described in Sec. 2.3 on rep-
resentative RF data. For our data, discarding the first 10 singular values produced the best

Fig. 6 Images of the calibration phantom used in this study. The white template is 3D printed
plastic, and black painted fishing line serves as a photoacoustic source. The circular portion
of the template has an outer diameter of 19 cm.
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balance between removing noise and maintaining signal, as characterized by measuring the SNR
for an A-line containing a known inclusion signal.

3.2 Transducer Directivity

We measured the spatial sensitivity of the ABUS transducer, S0ðθL; θEÞ, by attaching a 2 mm
long, 0.7 mm diameter graphite rod on a piece of fishing line to a 3-axis translation stage such
that it was suspended in the water-filled ABUS dome. We coupled our laser system into the
optical fiber as described in Sec. 2.2 and mounted the output end on the translation stage,
directed toward the graphite inclusion. This ensured relatively constant illumination as the inclu-
sion was translated. Photoacoustic data was acquired at a total of 200 points, over 1 cm in the
elevational direction and 1.6 cm in the axial direction. The lateral position was fixed near the
midpoint of the transducer since there are sufficient elements to constitute a range of lateral
positions.

We observed a Gaussian dependence of the signal intensity on the angle between the trans-
ducer normal and the inclusion position, both in the lateral and elevational directions. The mea-
sured standard deviations of these distributions, σL and σE, corresponding to the lateral and

Fig. 7 The effect of SVD denoising on the RF data. Right panels show the signal along the red line
for each of the three images. Noise signal corresponds to the first 10 singular values. (a) The raw
data without processing. (b) The isolated noise. (c) The subtraction of (a) and (b).
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elevational angles θL and θE was 18.5° and 6.2°, respectively. These data and the associated fits
are included in Fig. 8.

3.3 Combined Imaging

Figure 9 shows representative in-plane images of the calibration phantom, demonstrating regis-
tered B-mode and photoacoustic imaging. For clarity of display, the photoacoustic data were
thresholded such that only pixels with amplitudes in the top 10% of the image histogram were
visible. The full dynamic range of the non-thresholded photoacoustic image was 10 dB.
Figure 9(c) shows the model inclusion data derived from the design file for the 3D printed wire
phantom, which further confirms that the designed structure of the phantom matches what we see
when imaging. It is worth noting that the diameter of the inclusions in the model data in Fig. 9(c)
are exaggerated 10× to be more easily visible. There are two circular features in the model data,
corresponding to wires oriented normal to the imaging plane and therefore generating photo-
acoustic signals too weak to be above the display threshold. We used two measures to quantify

Fig. 8 The sensitivity of the SonixEmbrace transducer elements as a function of the elevational
and lateral angle between the element normal and the imaging point. Red lines indicate Gaussian
fit.

(a)

(b)

(c)

Fig. 9 B-mode and photoacoustic data for a representative plane of the calibration phantom, indi-
cating registration with modeled inclusion positions derived from the wire phantom design file.
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the agreement between any two of these registered modalities. The first was the root-mean-
squared error (RMSE), defined as

EQ-TARGET;temp:intralink-;e012;116;614RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðAi − BiÞ2
vuut ; (12)

where Ai and Bi are the value of the i’th pixel in the two images and N is the number of pixels in
the image. The second metric used was the structural similarity index (SSIM) defined by Wang
et al.40 We used the Python implementation of this function from the scikit-image package.41

Support structures from the phantom template (see Fig. 6) visible in the bottom left corner and
far right side of the B-mode image were cropped out before performing these measurements.
These comparisons are summarized in Table 1.

3.4 Illuminator Spatial Profile

Figure 10 shows the calculated illumination structure within the sample, as per Eq. (11). We also
measured the fluence at the sample side of the optical window to estimate the overall losses in
our fiber coupling and diffusing system. The measured data are shown in Fig. 10(b), alongside
the modeled fluence for the same location. The broader shape of the measured data is due to the
1-cm aperture of the power meter used. Integrating the fluence over the entire window indicates a
total energy per pulse of around 35 mJ, down from 100 mJ at the OPO output. If this same laser
pulse were collimated to the size of the dome (surface area 250 cm−2), the average fluence at
the tissue surface would be 0.14 mJ cm−2.

3.5 Reconstruction Comparison

To test our reconstruction scheme, we reconstructed our measured data both with and without
accounting for transducer directivity and non-uniform illumination. We then measured SNR of a
known inclusion for each method. We measured SNR here by extracting the photoacoustic
amplitude along a line perpendicular to the long axis of the inclusion. We found the maximum
of this signal and defined the “peak” as the region where the amplitude is greater than 50% of this
maximum. We then defined the SNR as the mean amplitude of the signal in this region divided
by the standard deviation of the amplitude over the entire image.42 The width of this peak region

Table 1 Registration errors between imaging modalities.

B-mode versus model PA versus model B-mode versus PA

RMSE 2.66 2.33 3.31

SSIM 0.48 0.78 0.40

(a) (b)

Fig. 10 Optical fluence for one acquisition plane. (a) The two-dimensional structure of the illumi-
nation, relative to the transducer face, which is shown in black. (b) The measured fluence at the
sample side of the optical window in black, compared with its predicted value, as a function of
the position along the arc of the window.
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is the full width at half maximum (FWHM) and provides a measure of the resolving power of
the system. Figure 11 shows an example of this measurement from the chicken breast phantom.
A comparison of the measured values is given in Table 2. Figures 11(a)–(d) were scaled to the
same dynamic range for display to make qualitative differences in the images clearer.

To further quantify the performance of our reconstruction scheme, we compared the image
error in this reconstruction as a function of imaging depth in our calibration phantom. Using the
known model for the inclusions, Mi, we define image error as

EQ-TARGET;temp:intralink-;e013;116;289ERR ¼ jAi −Mij
jMij

; (13)

where Ai is the reconstructed absorption value of the i’th voxel and j · · · j is the two-norm. We
performed this measurement both with and without accounting for the directivity of the trans-
ducer and with and without accounting for the non-uniformity of the illumination. To measure
the depth dependence, we divided the imaging volume into 50 equal-width spherical shells, each
of which corresponds to a particular distance from the transducer surface. These data are sum-
marized in Fig. 12. Figure 13 shows maximum intensity projections of a tomographic recon-
struction of our calibration phantom, alongside the model data predicted from our design files.

(a) (b)

(c) (d)

Fig. 11 Comparison of reconstruction methods applied to chicken breast phantom. Insets show
the PA amplitude along the dashed white line, normalized to the same dynamic range across all
four images, with vertical dashed red lines indicating the FWHM of the peak. Corresponding mea-
surements are summarized in Table 2.

Table 2 Comparison of reconstruction methods applied to chicken breast phantom (see Fig. 11).

No directivity Directivity

No illumination compensation SNR: 6.3 dB, FWHM: 1.8 mm SNR: 7.1 dB, FWHM: 1.3 mm

Illumination compensation SNR: 7.3 dB, FWHM: 1.5 mm SNR: 8.0 dB, FWHM: 1.2 mm
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We note a broader dynamic range displayed in this data since the calibration phantom was
imaged in a medium with lower light attenuation than the chicken breast tissue.

4 Discussion

Our combined B-mode and photoacoustic imaging results, as shown in Fig. 9, show qualitatively
a strong agreement between both modalities and the model data, indicating no significant errors
between the designed phantom template and the final image data. This reinforces a primary
advantage of the ABUS as a multi-modal imaging platform, as no registration procedure was
required between these data. As indicated by the registration metrics in Table 1, we see that the
photoacoustic data are in closer agreement with the model, evidenced by a lower RMS error, and
a higher structural similarity value. We expect that this is likely due to the photoacoustic data
being similarly sparse and of high contrast, in comparison with the B-mode data.

Fig. 12 Image error as a function of imaging depth, compared for reconstruction schemes with
and without transducer directivity and/or non-uniform illumination compensation.

Fig. 13 Maximum intensity projections of a tomographic reconstruction of the calibration phantom.
(a) The data reconstructed with directivity and illumination compensation; (b) the model data; and
(c) an overlay of the two. White scale bar indicates 1 cm.
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Comparing our imaging results in chicken breast tissue, we see that our reconstruction
method offers a significant improvement in both the qualitative appearance of the images in
Fig. 11 and the quantitative improvement to the SNR values and resolution of an inclusion
at a 2-cm imaging depth, as summarized in Table 2. We see that including either transducer
directivity or illumination compensation increases SNR and improves resolution, whereas the
best results are achieved when both are included. This measured SNR of 8 dB is comparable to
the results of Wray et al,43 who achieved SNR values of 6.1 and 9.2 dB at depths of 1.5 and
1.8 cm, respectively, in human muscular tissue. We note that, in that study, the authors had a
similar constraint of a single laser pulse per acquisition, but they used a transducer optimized for
photoacoustic imaging. As such they were able to attain a much higher resolution of 255 μm,
compared with our resolution of 1.2 mm.

Our calibration phantom image error shown in Fig. 12 shows that, at imaging depths
>1.5 cm, both directivity and illumination compensation offer an improvement over the stan-
dard reconstruction. The effect of directivity is more significant, but the combination of the two
consistently produces the smallest error. Adding both compensation terms improves the image
error by an average of 18% over all imaging depths and by an average of 31% over imaging
depths >1.5 cm. It is to be expected that our method would offer the greatest improvement at
larger imaging depths since that is where the actual fluence will differ most from the assumption
of uniform illumination.

We note that, since the illumination map Ψ must be computed for each acquisition angle,
significant computation time is added to the reconstruction. For a tomographic reconstruction of
the entire ABUS volume from 200 transducer planes, adding non-uniform illumination compen-
sation increases the computation time from ∼5 min to ∼1 h.

Our calibration phantom design has the advantage that its physical description is fully
determined by the attachment points of the wires in the 3D printed structure, which are known
from the computer-aided design. While a vascular structure mimicking actual breast images,
as presented by Schoustra et al,29 for example, would have been more relevant to the ABUS,
uncertainty in the inclusion locations would have made the computation of metrics such as the
image error much more difficult. Our next step is to acquire real images from healthy volunteers
as performed in that study.

5 Conclusions

We developed an illumination scheme for PAT that can be implemented in cases in which there
is insufficient space to illuminate the entire surface of the breast, as is the case with the
SonixEmbrace ABUS. This illuminator can attain a fluence of up to 2.5 mJ cm−2 at the tissue
surface. We demonstrated the use of this PAT system to image the 0.25-mm features of our
calibration phantom at depths of up to 3 cm in an optically scattering background.

We also devised a reconstruction scheme that can account for this non-uniform illumination,
attaining a 25% increase in SNR at 2 cm in chicken breast tissue when compared with a recon-
struction scheme that assumes spatially uniform illumination. We quantified the improvement
that this reconstruction scheme affords, such that we can apply it on a case-by-case basis depend-
ing on whether image fidelity or reconstruction time needs to be prioritized. Implementing this
algorithm on a GPU provided a 200× speed improvement over the same algorithm when
executed on a CPU, for an identical imaging configuration (number of acquisition planes, and
image grid size).

There are several limitations of our system that would be barriers to clinical translation.

1. Relatively slow scan time of 20 min. This is primarily due to the slow data transfer rate of
the SonixDAQ module. To mitigate this, we are migrating to a Verasonics Vantage system
(Verasonics, Inc, Kirkland, Washington) and exploring upgrades to our laser system to
improve on our current pulse repetition rate of 10 Hz. We also currently stop the motor
for each acquisition, but we intend to explore the possibility of continuous scanning.

2. Long reconstruction time. For this study, we reconstructed the entire ABUS volume; how-
ever, in a clinical application, we would likely be imaging regions of interest or 2D planes
during the exam, while the entire 3D tomographic data would be reconstructed offline for
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later review by a radiologist, comparable to the workflow for modalities such as mam-
mography or MRI. Nonetheless, we are exploring optimizations to our algorithms and
moving to cluster-based computation for further improvement.

3. Persistent noise bands in the RF data. These are largely due to the relatively low amplitude
of our PA signals. We are exploring further pre-processing techniques for reducing this
noise, but the most promising path forward is to increase the fluence in the tissue by add-
ing a second illuminator. We are also developing a regularized reconstruction scheme to
further mitigate noise and reconstruction artifacts.

There are further improvements that could be made to our imaging results by more thor-
oughly characterizing the current array and moving to a reconstruction technique that fully
accounts for the frequency-dependent spatial response of the transducer. We also intend to
explore supplementing the SonixEmbrace transducer with a more broadband, purpose-built
photoacoustic array. For the imaging of breast cancers undergoing angiogenesis, a center
frequency of 2.25 MHz with sensitivity extending into the kHz range is ideal.44 Further, the
inclusion of an elevational acoustic lens on the SonixEmbrace transducer limits the acceptance
angle of the detection elements, leading to imaging artifacts and decreased sensitivity.23

Capacitive micromachined ultrasound transducers (CMUTs) have proven very promising in
terms of frequency response and angular sensitivity,45,46 but they suffer from expensive and
complex fabrication and are known to be delicate and therefore prone to degradation with use.
Recent developments in fabrication techniques may alleviate or eliminate some of these issues,
facilitating rapid prototyping of thin, flexible, transparent CMUT arrays.47,48
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