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Abstract

Significance: Hyperspectral imaging (HSI) is an emerging optical technique that has a double
function of spectroscopy and imaging.

Aim: Near-infrared hyperspectral imaging (NIR-HSI) (900 to 1700 nm) with the help of chemo-
metrics was investigated for gastric cancer diagnosis.

Approach: Mean spectra and standard deviation of normal and cancerous pixels were extracted.
Principal component analysis (PCA) was used to compress the dimension of hypercube data and
select the optimal wavelengths. Moreover, spectral angle mapper (SAM) was utilized as chemo-
metrics to discriminate gastric cancer from normal.

Results: Major spectral difference of cancerous and normal gastric tissue was observed around
975, 1215, and 1450 nm by comparison. A total of six wavelengths (i.e., 975, 1075, 1215, 1275,
1390, and 1450 nm) were then selected as optimal wavelengths by PCA. The accuracy using
SAM is up to 90% according to hematoxylin–eosin results.

Conclusions: These results suggest that NIR-HSI has the potential as a cutting-edge optical
diagnostic technique for gastric cancer diagnosis with suitable chemometrics.
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1 Introduction

Gastric cancer is one of the most serious illnesses in the world because of its high morbidity and
mortality.1 Currently, early detection and localization of gastric cancer sites are critical to
decrease the mortality. However, it is a big challenge for clinicians who routinely utilize conven-
tional white-light reflectance endoscope to accurately identify and localize early dysplasia, car-
cinoma in situ, and flat mucosal cancers in the stomach.2 The serum markers fail to diagnose or
screen gastric cancer with sufficient sensitivity and specificity despite being helpful for mon-
itoring response to therapy and detecting cancer recurrence. Although the radiological diagnostic
tests, ionizing or nonionizing radiology, are proved to be effective for gastric cancer diagnosis, a
positive result requires further histopathology examination [hematoxylin–eosin (H&E)], which
could finally decide when and how to operate on the tumor. The result with H&E approach is
invasive, time-consuming, and impractical as a routine screening tool for high-risk patients, and
is also subjective based on the pathologist’s expertise.3 Yet accurate identification of the tumor
margins is of remarkable clinical importance, in particular for the diffuse type of gastric cancer
where the boundaries of the lesion can be indistinct and nests of cancerous cells may be found at
a distance from the visible tumor margin. As an emerging spectroscopy and imaging modality for
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medical applications, hyperspectral imaging (HSI) offers great potential for noninvasive disease
diagnosis and surgical guidance.4,5

For gastric cancer, Akbari et al.6 utilized infrared (IR)-HSI (1000 to 2500 nm) to investigate
gastric cancer with the help of chemometrics, such as spectral standard deviation, support vector
machine, integral method, normalized cancer index, and laid the ground for gastric cancer dis-
crimination. Kiyotoki et al. developed the HSI system (400 to 800 nm) to obtain HSI comprising
72 spectral bands with a spatial dimension of 640 × 480 pixels. They established a diagnostic
algorithm to detect gastric cancer using the cutoff point method at the 726-nm wavelength based
on spectral reflectance obtained from normal mucosa and tumors.7 The sensitivity, specificity,
and accuracy rates of the algorithm’s diagnostic capability were 78.8%, 92.5%, and 85.6%,
respectively. Goto et al.8 examined the difference in the spectral reflectance of gastric tumors
and normal mucosa recorded with the same HSI as Kiyotoki et al. Awavelength of 770 nm and a
cutoff value of 1/4 the corrected spectral reflectance were selected as the respective optimal
wavelength and cutoff values for differentiating tumors from normal mucosa to establish a diag-
nostic algorithm. The rates of sensitivity, specificity, and accuracy of the algorithm’s diagnostic
capability were 71%, 98%, and 85%, respectively. In 2019, Baltussen et al. developed the HSI
system (400 to 1700 nm) to distinguished normal fatty tissue, healthy colorectal mucosa, and
adenocarcinoma to provide more diagnostic information during endoscopic procedures. After
feature reduction, a quadratic classifier and support vector machine were used to distinguish
the three tissue types from tissue samples of 32 patients. The tissue-level accuracy and
patient-level accuracy were 88% and 93%, respectively.9 To some extent, these results demon-
strated the feasibility of HSI with chemometrics to discriminate gastric cancer from normal tissue
with relatively high sensitivity, specificity, and accuracy. Although the classification method
employed to distinguish the different types of samples ex vivo was quite basic, these studies
revealed promising results in the use of HSI as a diagnostic tool for gastric cancer. On the other
hand, the diagnostic capability of HSI with different algorithms was remarkably different, cancer
discrimination algorithms might be optimized and improved. Mostly in vivo research work using
HSI has focused on easily attachable tissues, such as brain, head and neck, breast, skin, oral, and
laryngeal.4,5 For the deeper gastrointestinal system, the first research on colorectal tumors in vivo
was performed by Han et al.10 They developed an HSI endoscopic system (405 to 665 nm) that
was based on a motorized filter wheel and capable of obtaining 27 different bands, to discrimi-
nate between malignant colorectal tumors and normal colonic mucosa in human patients. The
wavelength selection algorithm based on the recursive divergence method was used to identify
the most relevant wavelengths in the spectral range employed. The sensitivity and specificity
results achieved in this study reach up to 96% and 91%, respectively, using all the available
bands. The results demonstrated that HSI has the potential to provide an innovative tool for
image-guided surgery.

Our team has investigated the feasibility of near-IR HSI (900 to 1700 nm) (NIR-HSI) for
gastric cancer detection with minimum noise fraction transform and cancer target detection
algorithms.11 Chemometric pattern recognition approaches including nonsupervised and super-
vised are frequently applied to large databases of spectra to extract relevant biochemical infor-
mation related to disease and to convert that information into a predicted diagnosis.12,13 When
classification algorithms are applied to medical HSI data, these algorithms face two main chal-
lenges: the high dimensionality and the limited number of samples. However, these challenges
are not necessarily current in other HSI domains but are more prevalent in medical HSI because
of substantial interpatient spectral variability.4 Here, this research investigates the feasibility and
effectiveness of gastric cancer diagnosis using NIR-HSI with chemometrics mainly including
principal component analysis (PCA) and spectral angle mapper (SAM). Nonsupervised PCA is
the most widely used dimensionality reduction method for medical hyperspectral dataset
analysis.3 PCA could remarkably reduce the dimensionality of a hyperspectral image and select
the optimal wavelengths as later input endmember.14 SAM is a supervised image classification
method that allows rapid mapping of similarity degree between image spectra and reference
spectra with pixel level.15 Because of the convex–concave of the stomach surface and nonun-
iformity of the illumination device, SAM is relatively effective when used on calibrated reflec-
tance data, because it is insensitive to illumination and albedo effects.
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2 Materials and Methods

2.1 NIR-HSI System

The NIR-HSI system, Hyperspec NIR XS-100 (Headwall Photonics, Fitchburg, Massachusetts),
consists of a 14-bit InGaAs charge-coupled device line array detector, a push broom imaging
spectrograph, a standard f∕2.0 C-mount lens, an illumination unit of two 180-W tungsten
halogen lamps with a slit (18 mm in length, 25 μm in width), and a sample transport mechanism.
The detector captures reflected light from samples line by line in the NIR spectral range from 900
to 1700 nm, in which there are totally 168 bands in the case of ∼5-nm intervals. The spatial
resolution of the system is about 0.8 mm/pixel. The image acquisition software is Hyperspec®

(Headwall Photonics, Fitchburg, Massachusetts).

2.2 Image Acquisition

Gastric cancer specimens were collected immediately from randomly selected patients who
underwent partial gastric resection for tumor removal at People’s Hospital of Huangpi District,
Wuhan, China. A total of 29 samples, 17 males and 12 females, the mean age of the patients was
54 years with the oldest 80 years and the youngest 26 years. All specimens, mucosa surface
upward, were kept on a black plastic plane. Surface moisture was wiped by absorbent paper
before image acquisition at room temperature. To acquire hyperspectral images, the transport
mechanism was moved at a constant speed of 2 mm/s. After measuring and marking the tissue
surface, these specimens then were sent to H&E. The study was approved by the local ethics
committee, and informed consent for use of samples was obtained from all patients.

2.3 Image Processing

Image processing, spectral extraction and analysis were carried out by the Environment for
Visualizing Images (ENVI 4.7) software (Research Systems Inc., Boulder, Colorado). In addi-
tion, the scientific graphing software Origin 8.0 (OriginLab, Northampton, Massachusetts) was
also used for spectral analysis.

To eliminate the influence of the dark current and the nonuniformity of the illumination
device, the raw hyperspectral image should be calibrated and normalized. A standard
reference white panel was placed in the scene of imaging and its data were utilized as the
white reference. The reflectance from the white panel provides an estimate of the incident
light on the tissues at each wavelength. The dark current was captured by turning off the light
source along with completely covering the lens of the detector with its opaque cap and record-
ing the detector response. Then the data were normalized to find a relative reflectance using the
equation.6

After calibration and normalization, a mask was created to remove background noise at
1181 nm. A mask image is a binary one that consists of values of 0 and 1. When a mask image
is used in a processing function, ENVI includes the areas with values of 1 and ignores the
masked 0 values in the calculations. Only the masked image was subjected to further data
analysis.

2.4 Spectrum Extraction and Analysis

The H&E result as the “gold standard” was applied to extract characteristic spectra of cancerous
and normal tissues. The region of interest (ROI) of gastric cancer was manually selected in a
zoom window containing the cancerous areas using the circle drawing mode provided by ENVI
ROI tool. A small circle (4 pixels) was first drawn within a selected lesion, and the circle was
then grown to merge the neighboring diseased pixels using a specified standard deviation (20%)
away from the mean of the drawn region. The value of the standard deviation multiplier was
determined by visual inspection of the increased ROI in such a way that all the pixels in the
grown area were cancerous and the edge pixels were also avoided at the same time. This “grow”
ROI selection method is especially effective for selecting the diseased areas with irregular
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shapes.16 The cancerous mean spectrum was calculated among all diseased pixels. The mean
spectrum of normal tissue was extracted by the same flowchart and approach.

2.5 Cancer Diagnosis

Since hyperspectral images have large amounts of hypercube data containing spectral and spatial
information, dimensionality reduction is one of the most important steps during the spectral
analysis. To reduce the dimension of the hyperspectral image, PCA was employed to extract
a set of orthogonal principal components (PCs) comprising scores and loadings that account
for the maximum variance in spectral datasets.17 The scores of PCA represent the weighted sums
of the original variables without significant loss of useful information, and the loadings can be
used to identify important variables that are responsible for the specific features appeared in the
corresponding scores.18 The optimal wavelengths were selected based on the maximum and
minimum loadings of the PCs with highest weights, which contributed most spectral variance
between cancerous and normal.

The selected optimal wavelengths were used to replace the full wavelengths for diagnosis
with SAM. SAM is a supervised classification method that allows rapid mapping of the degree of
similarity between image spectra and reference spectra. Smaller angles represent closer matches
to the reference spectra.15 This simple classification tool is often used as a first approach to the
hyperspectral data and reliable when images have brightness shifts and other spectral artifacts
present compare to other classification algorithms. The appropriate reference spectra were
selected from five training samples according to H&E to train SAM classifier. Then, the trained
SAM classifier was used to diagnose 24 new samples for model verification, and histopatho-
logical results served as the “gold standard” for assessment of the diagnostic effect of HSI
technique.

3 Results and Discussion

3.1 Hyperspectral Images

A hyperspectral image, known as a hypercube, contains three-dimensional block data that pro-
vide spatial information along with spectral information for each pixel in each image, as shown
in Fig. 1(a). A hyperspectral image is made up of 168 contiguous wavebands for each pixel. Each
pixel in the hyperspectral image has a sequence of intensities in different wavelengths, as shown
in Fig. 1(b), which constructs the spectral signature of that pixel. The resulting spectrum acts like
a fingerprint, reflecting the composition of a certain pixel. The difference in spectral signature
between the cancerous and the normal tissues can be distinguished. Hyperspectral images allow
for the visualization of biochemical constituents of each pixel, separated into particular areas
since similar spectral properties have similar chemical composition.18

Fig. 1 HSI hypercube diagram. (a) Hypercube data including spectral and spatial dimensions.
(b) Reflectance spectrum of the pixel (i ; j) (red dot).
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3.2 Characteristic Spectra

Figure 2 shows mean spectra and standard deviation of the reflectance of the pixel from the
normal and cancerous regions. Red solid and blue lines represent the mean spectra of cancerous
and normal pixels, respectively. The rest are the standard deviations that are nearly constant
during the whole spectral range, which suggests the spectra are highly reproducible.

Comparing the mean spectra, a distinctly observed feature useful for recognition of cancer-
ous and normal tissues is that the reflectance level of cancerous tissue is higher than those of
normal tissue during the whole wavelength region. This is probably due to the physical surface
properties, such as color, shape, and texture. A similar result was observed by Liu et al.19

detecting tongue cancer in medical hyperspectral images. Cancerous and normal tissues show
different spectral shapes according to their different chemical structure and composition. The
most prominent absorption bands occurring in the NIR region are related to overtones and com-
binations of fundamental vibrations of C-H, N-H, O-H, and S-H functional groups.20

According to Fig. 2, the spectral difference can be clearly identified in three regions (950 to
1050 nm, 1150 to 1250 nm, and 1400 to 1500 nm). By inspecting cancerous mean spectra, it was
found that the major absorption peaks were observed around 975, 1215, and 1450 nm. The most
intensive absorption band around 1450 nm is related to O-H stretching first overtone.21 The
moderate absorption band around 1215 nm is attributed to C-H stretching second
overtone.22 The weak absorption band around 975 nm is assigned to O-H stretching second
overtone.21 The whole spectrum is a mixture of the spectral signature of many tissue compo-
nents, including water, lipids, proteins, and carbohydrates.23,24

Yi et al. have investigated the application of near-infrared (NIR) spectroscopy equipped with
a fiber-optic probe for differentiation gastric cancer. Major spectral differences were observed in
the C-H stretching first overtone, combination band, and second overtone regions.25 By the use
of unsupervised pattern recognition, all spectra were classified into cancerous and normal tissue
groups with high accuracy. Similar discrepancy of NIR spectrum for the diagnosis of pancreatic
and colorectal cancer has been reported by Kondepati et al.23,24 The similarity indicates the
coherence of carcinoma differentiation by NIR. These results show the high discriminating
power of the NIR spectrum extraction from hyperspectral image in the identification of cancer-
ous and normal tissue spectral attributes.

3.3 PCA and Optimal Wavelengths

Figure 3(a) shows the PC eigenvalue plot. The horizontal axis represents the eigenvalue number
and the vertical axis represents the eigenvalue. The number of PC can equal the score of bands in
the original images; however, only the first few PC contain the majority of uncorrelated
information.14 The first PC contains the largest percentage of data variance, the second PC

Fig. 2 Mean spectrum (red dash line) and standard deviation (green dash lines) of cancerous
pixels, mean spectrum (blue solid line) and standard deviation (yellow solid lines) of normal pixels.
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contains the second largest percentage of data variance, and so on. The last PC appears noisy
because it contains very little variance, much of which is due to the noise in the original spectral
data. The relative weights of PCs were calculated by dividing their eigenvalues in the eigenvec-
tor. PC1 and PC2 explain 94.22% and 3.28% of original variance, respectively.

From the plot of wavelengths versus the loadings of the first and second PCs, it was decided
to select those wavelengths situated at the maxima or minima at each plot, as shown in Fig. 3(b).
Five wavelengths (i.e., 975, 1075, 1215, 1275, and 1450 nm) were selected from PC1 and only
one wavelength (i.e., 1390 nm) was selected from PC2. A total of six wavelengths were then
extracted as optimal wavelengths that can be used to discriminate cancer from normal.18 These
optimal wavelengths not only reflect the physical/chemical information but also maintain the
robust diagnosis and classification efficiency.26

In this case, PCAwas employed to reduce the dimensionality of the datasets from 168 spec-
tral dimensions to only six dimensions. Moreover, these optimal wavelengths, which later may
be implemented in a real-time multispectral imaging system, will decrease image acquisition and
processing time significantly.18

3.4 SAM and Supervised Classification

Figure 4 shows some selected images, which comprise the conventional RGB images [Fig. 4(a)],
ROI images [Fig. 4(b)], binary images [Fig. 4(c)], masked images [Fig. 4(d)], and gastric cancer
diagnosis by training SAM [Fig. 4(e)].

Figure 4(a) shows the conventional RGB image of gastric tissues with impalpable distinction
in color. It is not a small challenge for clinicians to distinguish where it is normal and abnormal
using conventional reflectance endoscope.4 Figures 4(b)–4(d) show the processing results of
hyperspectral images for spectral extract and analysis. Figure 4(e) shows the diagnosis result
image with training SAM. The red regions are cancerous pixels and the rest are normal ones
in Fig. 4(e). The classification result is clear and obvious, which offers great assistance to
clinicians.

Figure 5 shows the conventional RGB image [Fig. 5(a)] and gastric cancer diagnosis result by
trained SAM [Fig. 5(b)] for 24 new samples. In Fig. 5(b), cancerous regions were colored with
red and the normal ones were colored with blue. For assessment of the effect of HSI technique,
histopathological results served as the “gold standard.” Accuracy is given by the ratio of (TP +
TN)/(TP + FP + TN + FN), where TP and FN are the number of the true positive (cancer) and
false negative results and TN and FP are the number of true negative (normal) and false positive
results, respectively.27 While comparing the classification results in Fig. 5(b) with H&E results,
the accuracy is up to 90%, which testifies SAM classification algorithms are relatively effective
for cancer diagnosis with HSI.4 The diagnostic effect with SAM is better than other algorithms’
according to the accuracy,7,8 because SAM is insensitive to illumination and albedo effects, spec-
tral angle will be relatively insensitive to changes in pixel illumination, increasing or decreasing
illumination does not change the direction of the vector, only its magnitude.28

Fig. 3 PCA and optimal wavelengths: (a) PC eigenvalue plot and (b) a total of six wavelengths
(i.e., 975, 1075, 1215, 1275, 1390, and 1450 nm) selected as optimal wavelengths.
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On one hand, using NIR (900 to 1700 nm), including tissue window29 as working wave-
lengths instead of visible-light region (400 to 800 nm),6–8 will improve the tissue penetration
depth and get more diagnostic information,5 which could detect lesions in the submucosa of the
tissue. On the other hand, using the six optimal wavelengths as input endmember have tremen-
dously decreased the spectral processing time nearly up to real-time requirement with relatively
high accuracy. Furthermore, this work and other studies6–10 using HSI without time-consuming
stains show that HSI technology may provide a new tool for histological analysis, which could
improve both morphometric and biochemical analysis at the same time.

4 Conclusions

Hyperspectral images of gastric tissues were captured using an NIR-HSI system. Characteristic
spectra of cancerous and normal tissues were extracted. Major spectral differences were
observed around 975, 1215, and 1450 nm. Moreover, PCAwas used to compress the data dimen-
sions and select the optimal wavelengths. A total of six wavelengths (i.e., 975, 1075, 1215, 1275,
1390, and 1450 nm) were selected as optimal wavelengths that can be used to discriminate
between cancer and normal. Furthermore, SAM was utilized to classify cancerous and normal
tissues, and the accuracy is up to 90% according to H&E results. These results further suggest
that NIR-HSI has the potential for gastric cancer diagnosis and classification with PCA and
SAM. Since sample excision and processing are not required for optical diagnosis, a more
complete examination in situ of the ROI can be achieved than with excision biopsy or cytology.

Fig. 5 Representative images of gastric tissues by trained model: (a) conventional RGB images
and (b) classification map (cancerous regions colored with red and the normal ones colored with
blue) with trained SAM for new specimens.

Fig. 4 Five representative images of gastric tissues for model training, comprising (a) conventional
RGB images, (b) ROI images selected by ENVI ROI tool, (c) binary images, (d) masked images,
and (e) gastric cancer diagnosis result by training SAM.
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The most important application for optical diagnosis is the possible use for real-time guidance
during surgical intervention and treatment.
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