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Abstract

Significance: Detection and characterization of coronary atherosclerotic plaques often need
reviews of a large number of optical coherence tomography (OCT) imaging slices to make a
clinical decision. However, it is a challenge to manually review all the slices and consider the
interrelationship between adjacent slices.

Approach: Inspired by the recent success of deep convolutional network on the classification of
medical images, we proposed a ResNet-3D network for classification of coronary plaque calci-
fication in OCT pullbacks. The ResNet-3D network was initialized with a trained ResNet-50
network and a three-dimensional convolution filter filled with zeros padding and non-zeros pad-
ding with a convolutional filter. To retrain ResNet-50, we used a dataset of ∼4860 OCT images,
derived by 18 entire pullbacks from different patients. In addition, we investigated a two-phase
training method to address the data imbalance. For an improved performance, we evaluated dif-
ferent input sizes for the ResNet-3D network, such as 3, 5, and 7 OCT slices. Furthermore, we
integrated all ResNet-3D results by majority voting.

Results: A comparative analysis proved the effectiveness of the proposed ResNet-3D networks
against ResNet-2D network in the OCT dataset. The classification performance (F1-scores ¼
94% for non-zeros padding and F1-score ¼ 96% for zeros padding) demonstrated the potential
of convolutional neural networks (CNNs) in classifying plaque calcification.

Conclusions: This work may provide a foundation for further work in extending the CNN to
voxel segmentation, which may lead to a supportive diagnostic tool for assessment of coronary
plaque vulnerability.
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1 Introduction

Coronary artery calcification (CAC) is associated with major adverse cardiovascular events.1–3

To date, the clinical impact of arterial calcification on local plaque vulnerability remains
unclear,4 but the extent of CAC is associated with worse outcomes in the general population
and in patients undergoing revascularization.5,6 In addition, the presence of calcifications leads
to under-expansion during percutaneous coronary intervention (PCI).7 The previous study dem-
onstrated that severely calcified plaques undergoing PCI were associated with higher procedural
complications and lower success rates.8 Hence, detection of calcified region is important for PCI
treatment. For example, in the heavily calcified lesions, it is hard to cross or dilate a coronary
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stenosis with PCI devices such as balloons or stents.9 However, rotational atherectomy facilitates
delivery or expansion for the treatment of complex calcified lesions. Furthermore, other available
treatment strategies such as cutting and scoring balloons improve vessel compliance by creating
discrete incisions instead of producing small particles to ablate the heavily calcified plaque for
rotablation.4 For above reasons, a cardiologist pays more attention to the calcified lesion when
making a clinical decision. Therefore, accurate identification and quantification of calcified
lesion is crucial when treating patients with advanced coronary atherosclerosis.

The quantitative analysis of calcified lesions is a challenging task for a number of reasons.
The heterogeneous appearance of the lesions including the large variability in location, size,
shape, and frequency makes it difficult to conduct effective and quantitative analysis.10 An im-
aging system containing artifacts such as speckle, motion artifacts makes the image interpreta-
tion challenging to a novice reader. Manual detection is the current approach, but is tedious,
expensive, time-consuming, impractical in larger studies, and it introduces interobserver vari-
ability. Moreover, the lesion is intrinsically a 3D structure and a single slice measurement is
unable to characterize the volumetric nature of the lesion. To decide a particular tissue compo-
nent, a multiple image slices need to be considered. Moreover, the level of expert knowledge and
experience is also an important factor that affects the accuracy. Hence, in clinical routine often
only qualitative, visual inspection, or at best crude measures such as approximate lesion volume
are used.11–13 Therefore, development of an accurate, automatic plaque classification method is
needed to preferentially provide a feedback on the existence of calcification deposits on the
pullback level.

Both intravascular optical coherence tomography (OCT) and intravascular ultrasound
(IVUS) can be used to detect a calcified plaques.14,15 OCT has been proven to be a primary
choice because of its high resolution (10 to 15 μm) in comparison with IVUS.16 Although
IVUS has been widely used to estimate coronary calcification during PCI to date,17 it is not
able to precisely visualize microcalcification. Moreover, IVUS cannot penetrate heavily calcified
plaques in the assessment of coronary calcification. In this study, we developed a 3D convolu-
tional neural network (CNN) for automatic classification of calcification lesion on the OCT pull-
back level. Full fine-tuning, a pretrained ResNet-2D network allowed us to transfer natural image
features to OCT images. Furthermore, we also compared different input slices to evaluate the
ResNet-3D network performance. Finally, a majority voting to integrate all the ResNet-3D net-
works was used to further improve the classification results.

2 Related Works

Various studies have assessed the efficacy of the quantification and characterization of calcified
plaques using machine learning based on OCT images.18–20 Most of these researches have
emphasized segmentation of the calcified plaques using the traditional machine learning meth-
ods on a single OCT slice. The atherosclerotic plaque segmentation has not been adequately and
fully performed because it needs to manually select the slices with a calcified deposit in advance.
For this reason, plaque segmentation should be the next important step, and the feedback on the
existence and characteristics of calcium deposits on the pullback level should be the priority.21

Furthermore, deep learning has once again become a state-of-the art learning algorithm in the
image classification. Compared to the traditional machine learning, deep networks naturally inte-
grate low-, mid-, and high-level image features.22 Machine learning focuses on mining prior
knowledge in the data and converting it to corresponding regularization constraints or artificial
design features. Deep learning is weak on the prior knowledge of the data. It is expected to learn
the data through stacking of hierarchical expressions. The intrinsic regularity of this makes this
kind of separability or discriminative feature as much as possible to weaken the complex design
of the classifier and achieve the purpose of simplicity, novelty, and universality. Recently, there
has been increasingly more attention on deep learning based on the intravascular OCT images for
detection and characterization atherosclerotic plaque. Abdolmanafi et al.23–25 studied the CNN
application in the OCT slices and confirmed the feasibility and effectiveness of deep learning in
detection and characterization of atherosclerotic plaque. They successfully classified the coro-
nary artery layers in pediatric patients using the powerful feature representation abilities of CNN
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models. In addition, they also compared three common deep learning models (e.g., Alexnet,
VGG-19, and Inception-v3) for tissue characterization of intracoronary pathological formations.
The results demonstrated that deep learning models are robust for automatic interpretation of the
OCT slices. Furthermore, they designed a diagnostic model about coronary artery lesions using
multisteps strategies based on the above studies. These studies demonstrated successful appli-
cations of the pretrained CNN networks on OCT dataset. However, it had shown that a custom
network could obtain a more effective and robust result in the characterization of OCT slices.
Kolluru et al.26 classified three tissue types (fibrocalcific, fibrolipidic, or others) by A-line using
the customized CNN and fully connected artificial neural network. In addition, the hybrid model
such as the restructure pretrained model based on the specific task could improve the network
performance. Gessert et al.21 executed a multipath network architecture based on the ResNet
network and achieved an accuracy of 91.7%, a sensitivity of 90.9%, and a specificity of
92.4%. Lee et al.27 developed a fully automated semantic segmentation model of atherosclerotic
plaques for OCT images. The sensitivities/specificities against manually annotated clinical data-
set were 87.4%/89.5% and 85.1%/94.2% for pixelwise classification of lipid and calcified
plaque, respectively. They also used hybrid features, including the deep features, handcrafted
features and lumen morphological features to characterize atherosclerotic plaque in OCT image.
All the above studies were based on a single OCT slice, which reduced the training time but
limited the further performance improvement. Even though single OCT slice provided the local
and global information of the plaque, considering the fact that a coronary lesion is intrinsically a
3D structure, 3D CNN may be a better approach.

One important aspect of CNNs is the “transferability” of knowledge embedded in the pre-
trained CNNs. Recent research conducted by Tajbakhsh et al.28 consistently demonstrated that
fine-tuning was better than trained from scratch for deep networks. Moreover, layerwise fine-
tuning is an alternative optimal choice to reach the better performance for the limited medical
image dataset. Several studies have demonstrated that a pretrained CNN could be adapted to the
medical image classification.29–31 For instance, Christodoulidis et al.30 fine-tuned different CNN
layers for classification of interstitial lung diseases. Their studies suggested that the ensemble
learn could help for the unbalance medical images. In another study, two pretrained networks,
VGG 16 and Inception V4, were employed to class the Alzheimer’s disease from MRI images.31

The labeled MRI data were used to train the fully connected layers while keeping the rest net-
work layer fixed. Different from the previous approaches, Miyagawa et al.29 transferred the
knowledge from other tasks based on OCT images to the classification of vascular bifurcation,
and this method yielded promising results.

3 Methods

Figure 1 shows the flowchart of the methodology. A trained expert reviewed each pullback inde-
pendently and labeled each slice with calcified plaque and noncalcified plaque. According the
expert consensus, calcium components are well-delineated heterogeneous regions in the arterial
wall with less signal attenuation,32 as can be seen in Fig. 2.

3.1 OCT Dataset

The OCT images were acquired using a commercially available Fourier Domain OCT system
(2.7F C7-XR, St. Jude Medical, St. Paul, Minnesota) and Dragonfly catheter (St. Jude). A total of
24 patients were taken from Affiliated Drum Tower Hospital, Nanjing University between
December 2016 and December 2018. All participants provided a written informed consent prior
to the enrollment, and the study protocol was approved by the institutional ethics committee.

It is worth noting that each patient had one pullback, and each pullback contained unequal
number of images. All images of each pullback were used in this study. The training set consisted
of 18 pullbacks, in which 2 pullbacks were for validation and the remaining 4 pullbacks were the
test set (Fig. 1). Each experiment repeated 10 runs for different pullbacks, and the means were
reported as the experimental results. The quantification of evaluation criteria was calculated
based on the test set.
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3.2 OCT Image Preprocessing

The polar representation was used in the study. The original polar image in this study had a
resolution of 504 × 976. Given the input size of ResNet-2D network, we resized the images
to a resolution of 256 × 256. It is important to note that the input of ResNet-2D network needs
color images, thus we transferred the gray polar images to color images as shown in Fig. 2.
According to the input size of ResNet-3D networks, an original pullback dataset can be
expended as

Fig. 2 The polar representations of OCT images. (a) Preprocessed calcified image, (b) prepro-
cessed noncalcified image. (a1, b1) gray image, (a2, b2) RGB image, (a3, b3) augmentation
image with flip along the depth axis, and (a4, b4) augmentation image with cycle translation along
the depth axis.

24 OCT pullback in 24 Patient

OCT pullback Labeling of OCT pullback

Test set
4 OCT pullback

(800 slices)

Validation set
2 OCT pullback

(344 slices)

Trained
classifiers

ResNet
classifier

Transfer
learning

Binary
classification

ResNet-3D
3D bottleneck
Input: three, five, seven slices
Data augmentation
One-phase training
Result fuse: Majority voting

Training set
18 OCT pullback

(4000 slices)

randomization

10 Runs

OCT pullback classification

Resnet-2D
2D bottleneck
Input: one slice
Data augmentation
Two-phase training

Zeros padding 
Non-zeros padding

calcified plaque Non-calcified plaque

Non-calcified plaque

calcified plaque

Fig. 1 Flowchart of the methodology. 2D, two dimension; 3D: three dimension.
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EQ-TARGET;temp:intralink-;e001;116;735Xexpand ¼ fxc1; x1; x2; : : : ; xN; xcNg; (1)

EQ-TARGET;temp:intralink-;e002;116;701c ¼
8<
:

1 d ¼ 3

2 d ¼ 5

3 d ¼ 7

; (2)

where x1; x2; ; : : : ; xN are the OCT slices in one pullback, N is the total number of images in a
pullback, c is the number of slices that needs to be expanded, and d is the number of slices.

Data augmentation is considerably important for increasing dataset, strengthening the gen-
eralization capability of the model, and preventing overfitting.33 Given the image characteristics
of polar representation, two effective data augmentation, cycle translation with 1-256 pixels, and
flip along the depth axis were used (see Fig. 2). For the ResNet-2D networks, data augmentations
were applied to the single OCT slice. In case of 3D CNNs, each volume was processed as a
single entity using the same data augmentations.

3.3 Convolutional Neural Networks

3.3.1 Network architectures

We employed one of state-of-the-art architectures from the natural image domain, 50-layer
ResNet-2D as an initial network model in the experiment. The 50-layer ResNet-2D has an
obvious hierarchical structure and powerful output with representational ability. In addition,
a large amount of downsampling was used, which significantly improved the gradient propa-
gation efficiency. Batch normalization and global average pooling for regularization speeded up
the training of the network. Furthermore, the network utilized the bottlenecks to reduce network
parameters. Here, a 1 × 1 convolution first downsampled and then upsampled the tensor along
the feature map dimension. Then, the normal 3 × 3 filter embedded on the lower input/output
dimension. The 2D bottleneck is shown in Fig. 3(b). To realize the ResNet-3D architecture, we
directly expended the 2D bottleneck to the 3D bottleneck [Fig. 3(c)]. Both main architectures
were the same, whereas the convolution kernel of the bottleneck part was different. The basic
bottleneck block in the Resnet-3D consisted of three convolutional layers, and the kernel sizes
of the first and the third convolutional layers were 1 × 1 × 1, whereas it was 3 × 3 × 3 for the
second layer.

3.3.2 Loss function

It is important to choose an appropriate loss function on the pullback level. With the rise of deep
learning, cross entropy loss function becomes a recognized effective loss function, especially in
the field of image classification.34 Assume that X1; : : : ; XN1 is a set of N1 training samples and
y1; : : : ; yn ∈ f1; : : : ;Mg (M is the class number) are the corresponding class labels. Cross
entropy loss function is defined as

EQ-TARGET;temp:intralink-;e003;116;241Li ¼
XM
j¼1

yi;j logðpi;jÞ; (3)

where yi;j is the number of the class, and yi;j is 1 if the sample Xi belongs to class yi (j ¼ yi) and
0 otherwise. pi;j is the class probabilities that is normalized by the softmax function. Cross
entropy loss with softmax function is commonly used as the output layer, which could provide
a classification probability distribution.

3.3.3 Training

The ResNet-2D network was trained on the ImageNet dataset, consisting of 1.2 million training
images, with 1000 classes of objects. It is unwise to directly apply the pretrained ResNet-2D
network to the OCT datasets because of the significant differences between nature images and
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OCT images. Therefore, we replaced image mean of the pretrained network with OCT images
before the retraining started using the OCT dataset in our ResNet-2D models. Then, we simul-
taneously set the fully connected layer to have the same size as the number of classes in the OCT
dataset. Accordingly, we also replaced the final layer with a new classification output layer
where the classes were default to automation. To further investigate the effects of different trans-
fer learning strategies, we accurately froze different weights layers. Compared to the ResNet-2D
models, the training of ResNet-3D models is intuitively more difficult because of more param-
eters and expensive computational time. With the availability of the trained ResNet-2D model, it
is a natural choice to utilize the trained ResNet-2D model parameters to initialize the ResNet-3D
models. However, the sizes of both convolution kernels often do not match. In order to solve the
problem, we assume H ∈ Rcin×cout×3×3 is the trained ResNet-2D network convolutional filter
where Cin and Cout are the channel numbers of the input and output, respectively.
According to the assumption, we implemented non-zeros padding and zeros padding to pad
the 3D convolution filter D ∈ Rcin×cout×3×3×3 as

EQ-TARGET;temp:intralink-;e004;116;163Dnon-zeros padding ¼
8<
:

Dð0Þ ¼ HCin×Cout×3×3

Dð1Þ ¼ HCin×Cout×3×3

Dð2Þ ¼ HCin×Cout×3×3

; (4)

EQ-TARGET;temp:intralink-;e005;116;91Dzeros padding ¼
8<
:

Dð0Þ ¼ 0Cin×Cout×3×3

Dð1Þ ¼ HCin×Cout×3×3

Dð2Þ ¼ 0Cin×Cout×3×3

; (5)

Fig. 3 The network architectures that were employed with our dataset. In each ResNet input and
output block, the number of output feature maps was given. /2 denotes spatial downsampling with
a stride of two. pr denotes a retraining point for transfer learning. Left of the retraining point,
weights are freezed, right of the retraining point, weights are retrained.
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where the subscript of D is the depth of ResNet-3D convolution. By design, the initialized
ResNet-3D model is based on a trained ResNet-2D model, which may achieve at least the same
performance as the ResNet-2D model.

Training with original imbalance dataset makes it impossible for deep network to favor
minority class through entire pullbacks. To overcome the difficulty, a two-phase training method
was implemented. In the first phase training, the labels of the dataset were rigorously equiprob-
able by oversampling. In the second phase, the original and imbalance data were used to fine-
tune the output layer and keep the kernels of all others fixed.

In the study, we used the Adam algorithm35 with a starting learning rate of 10−4. To find the
optimal schedule, we reduced the learning rate by a factor of two when the validation error
saturated. A batch size of Batchnorm = 64 was used for all models. In addition, early stop
of the training could also happen when the classification accuracy on the validation set did
not improve. All analyses were conducted using Matlab R2019b and related toolboxes
(MathWork®, Natick, Massachusetts): Image Processing™ and Parallel Computing™ toolboxes
and Deep Learning™ toolboxes. We also implemented our models using GPU to speed up the
training.

3.4 Evaluation Metrics

The most widely used evaluation of a classifier performance in the classification task is overall
accuracy. However, it has some significant limitations, particularly in the imbalanced datasets.36

In particular, when the test set is imbalanced, the trained model tends to favor the majority
classes, and the overall accuracy may facilitate overexpressing the classes that lead to highly
misleading evaluations in some cases. Therefore, in this paper, we selected the precision, recall,
and F1-score to evaluate imbalanced dataset metric.37 These metrics were calculated by the
follow criteria.

True positive (TP) is the correct classification of the positive class. True negative (TN) is
the correct classification of the negative class. False positive (FP) is the incorrect prediction
of the positives. False negative (FN) is the incorrect prediction of the negatives. Precision mea-
sures the percentage of the positively label samples that are actually positive. Precision is sen-
sitive to class imbalance because it considers the number of negative samples incorrectly labeled
as positive:

EQ-TARGET;temp:intralink-;e006;116;350Precision ¼ TP
TPþ FP

: (6)

Recall is not affected by imbalance because it is only dependent on the positive group.
Recall does not consider the number of negative samples that are misclassified as positive,
which can be problematic in problems containing class imbalanced data with many negative
samples:

EQ-TARGET;temp:intralink-;e007;116;259Recall ¼ TP
TPþ FN

: (7)

The F-measure or F1-score combines precision and recall using the harmonic mean to adjust
the relative importance of precision versus recall:

EQ-TARGET;temp:intralink-;e008;116;192F1-score ¼ 2
Precision × Recall
Precisionþ Recall

: (8)

4 Results

The ResNet-2D classification results of fine-tuning parameters at different levels are shown
in Table 1. The pr ¼ 1 represents fine-tuning all parameters before this node (as can be seen
in Fig. 3). To keep consistent for all experiment conditions, no data augmentation is shown in
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Table 1. The result shows that the higher the F1-score, the more the fine-tuning parameter layers.
This result is consistent with a previous study.28

To investigate the effect of imbalance dataset, we not only compared the one-phase and two-
phase training but also set two other contrastive experiments, with and without data augmenta-
tion. The comparison results are shown in Table 2, which was based on the fine-tuning parameter
pr ¼ 4. In both methods, the data augmentation and two-phase training improved the classi-
fication results. Comparatively, it was found that the two-phase training method was slightly
better than the data augmentation method for the performance improvement.

As described in the previous section, we initialized ResNet-3D model parameters by the
trained ResNet-2D model (superscript a in Table 2). Here, we compared ResNet-2D and
ResNet-3D models convergence using cross-entropy loss on the validation set (Fig. 4). As can
be seen, both models converged quickly, which indicated that the model parameters were suit-
able. In addition, a considerable gap was observed between the ResNet-2D model and the
ResNet-3D model, which implied that the ResNet-3D model performed better than the trained
ResNet-2D model. Although the loss curves fluctuated greatly when the epoch was less than 10,
it became stable when the epoch was more than 15.

The impact of the number of input slices on the ResNet-3D model performance was inves-
tigated. The classification results of different methods are shown in Table 3. For both non-zeros
padding and zeros padding, a similar phenomenon was observed in terms of the F1-score per-
formance. The five slices achieved the best result followed by the three slices and seven slices.
Moreover, majority voting obtained the best results not only for the zeros padding but also for the
non-zeros padding, respectively. The performance for zeros padding was better than non-zeros
padding with the same number of input slices.

Figure 5 shows a 3D visualization of the classification results of ResNet-2D model (super-
script a in Table 2) and ResNet-3D models (superscript a and b in Table 3) on the pullback level.
Compared to the ResNet-2D, the misclassification rate of the ResNet-3D dramatically decreased.
In addition, the misclassification results of ResNte-3D models mainly concentrated in the con-
secutive slices.

Table 2 Results for plaque classification using the ResNet-2D model. One-phase represents
using the original data distribution as model inputs.

ResNet-2D Recall (mean ± std %) Precision (mean ± std %) F1-score (mean ± std %)

No data aug. One-phase 97.3� 6.1 82.5� 8.4 82.3� 5.5

Two-phase 98.8� 5.2 82.4� 8.4 84.9� 4.8

Data aug. One-phase 95.3� 6.0 85.4� 7.9 85.1� 4.9

Two-phasea 97.4� 3.8 84.0� 7.0 90.2� 4.8

aThe classification result was the best.

Table 1 Fine tuning of different weight layers. pr denotes the point of weight freezing in the net-
work (see Fig. 3).

Recall (mean ± std %) Precision (mean ± std %) F1-score (mean ± std %)

pr ¼ 1 96.6� 6.2 82.9� 9.1 81.2� 5.1

pr ¼ 2 95.4� 8.3 82.8� 9.1 80.7� 5.0

pr ¼ 3 97.0� 8.3 81.6� 9.0 79.6� 4.8

pr ¼ 4 96.2� 9.0 81.9� 8.4 78.5� 4.9

All 97.3� 6.1 82.5� 8.4 82.3� 5.5
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The recently published state-of-the-art method by Gessert et al.21 analyzed the different trans-
fer learning strategies and network architecture and demonstrated that two-path architecture
could provide a more effective feature differentiation. In addition, their study also demonstrated
that pr ¼ 3 was the optimal option compared to the other stages. Table 4 shows that the com-
parison of the ResNet-3D model with the two-path model on the OCT data. The advantages of
our method are clearly demonstrated.

5 Discussion

This study presented ResNet-3D CNN models for an automatic classification of plaque calci-
fication from OCT pullback dataset. The benefits of the transfer learning strategies included a
decrease in the computational cost as well as the number of trainable parameters. We proposed
an efficient solution for processing large image dataset by adopting the trained parameters based

Table 3 Results for the ResNet-3D model, which was initialized by trained ResNet-2D model with
non-zeros padding and zeros padding.

ResNet-3D
Precision

(mean ± std %)
Recall

(mean ± std %)
F1-score

(mean ± std %)

Non-zeros padding ResNet-3D (three slices) 89.1� 3.8 87.4� 6.9 88.4� 5.7

ResNet-3D (five slices) 97.2� 3.6 87.0� 6.8 92.6� 5.9

ResNet-3D (seven slices) 95.3� 2.4 86.1� 6.5 90.9� 5.2

Majority votinga 89.0� 2.2 99.0� 5.4 94.3� 4.5

Zeros padding ResNet-3D (three slices) 98.2� 3.8 86.3� 6.1 92.6� 5.3

ResNet-3D (five slices) 90.1� 3.3 88.8� 6.1 94.3� 5.0

ResNet-3D (seven slices) 96.8� 2.2 87.3� 6.0 91.5� 4.2

Majority votingb 96.9� 1.3 97.7� 3.4 96.1� 3.4

aThe classification result was the best of the non-zeros padding.
bThe classification result was the best of the zeros padding.
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Fig. 4 Comparisons of trainings with transfer learning between ResNet-2D and ResNet-3D mod-
els in terms of cross-entropy loss (means) on the OCT pullback dataset. Note that the metrics were
better when the loss was smaller.
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on the ResNet-2D model as the initialization parameters of the ResNet-3D models, alleviating
one of the main computational limitations of a 3D CNNs. Furthermore, we also considered the
majority voting as a postprocessing step to refine the network’s output, a method that has also
shown its advantage for processing 2D images.38 It is important to note that the entire process
was fully automatic, and no manual intervention and complicated image preprocessing algorithm
were involved. In addition, our work could be expanded into a detailed classification system for
the clinical classification of plaque morphology in coronary disease, and it may lead to a number
of possibilities for future online clinical support system.

The results in Table 1 show that there is a difference in classification performance between
both scenarios that full fine-tune network achieves a better classification performance. These
results are consistent with the previous research28 that suggests that if the target domains are
significantly different from source domains, full fine-tune should be performed. In addition,
the classification performance of the two-phase method is better than the data augmentation,
whereas the time required for the two-phase training is more than data augmentation. In the
future, more optimization experiments should be executed to compare them. The results in
Table 3 show that the classification performance of zero padding was generally better than
the non-zeros padding. The possible reason may be that the adjacent slices provide the

Table 4 Comparison of our implemented method with the method by Gessert et al.21 on our
dataset.

ResNet-3D Precision (mean ± std %) Recall (mean ± std %) F1-score (mean ± std %)

Zeros padding 96.9� 1.3 97.7� 3.4 96.1� 3.4

Gessert et al.21 92.3� 4.2 83.7� 7.0 90.1� 6.1

Fig. 5 Qualitative results of a pullback using different models. (a) The original pullback with
ground-truth labels; (b) predicted results of ResNet-2D model along the pullback; (c) predicted
results of ResNet-3D model of non-zeros padding along the pullback; (d) predicted results of
ResNet-3D model of zeros padding along the pullback. The red color indicates regions without
calcified plaque and the green color indicates regions of calcified plaque.
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complementary information in the ResNet-3D models. In addition, we considered 3, 5,
and 7 consequent slices as the ResNet-3D models input. The results suggest that it is better
to refer to the five consecutive slices when we label the OCT images. Moreover, it would
also be helpful to combine complementary methods through ensemble learning for a best
performance.39,40 A majority voting improved the classification result up to 10% for
ResNet-2D model, 3% and 5% for non-zeros padding and zeros padding for ResNet-3D.
In future research, more research could be extended to investigate the impact of the number
of slices on network performance.

The generic nature of our methods allows its straightforward application to different lesion
classification tasks without major adaptations. To our knowledge, ResNet-3D network combined
with majority voting achieved the highest classification accuracy on an OCT pullback. Gessert
et al.21 reported that the best classification accuracy, sensitivity, and specificity were 92%, 91%,
and 93%, respectively. Table 4 shows that the ResNet-3D model outperforms their two-path
model. It is important to note that their work focused only on images excluding stents, whereas
our study has shown capable of classifying an entire OCT pullback. Moreover, the work
described in this article may be extended to other applications for future research. For example,
we can start with three 2D networks trained for lateral and coronal sections, and then initialize
the 3D network. Also, we could consider 3D voxels segmentation and use the spatial information
between adjacent slices to segment OCT voxels.

Although neural networks seem promising for OCT image classification, further work is
required to make the inference process more interpretable. This would improve our understand-
ing when the network fails, an important aspect in biomedical applications. Although the
ResNet-3D network needed one-hour training time, an optimal and simple network may further
speed up the convergence.

6 Conclusion

A Resnet-2D model based on each OCT slice was implemented to meet the challenges of auto-
mated classification of plaque calcification in coronary artery. Then, we established an automatic
classification model on the OCT pullback level by expanding the ResNst-2D model to the
ResNet-3D model. We compared non-zeros padding and zeros padding methods to convert the
2D convolutional filter to 3D. The result demonstrated that zeros padding was more suitable for
the ResNet-3D model. We further implemented a majority voting algorithm by incorporating a
contextual slice integration scheme for accurate lesion classification. Our study demonstrated
that ResNet-3D models with effective training mechanisms could be employed to solve com-
plicated medical image classification problems, even with a limited training dataset. Further
investigations can be focused on integrating supervised information into our networks to further
enhance the discrimination capability and explore more applications.
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