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Abstract

Significance: Screening and early detection of oral potentially malignant lesions (OPMLs) are of
great significance in reducing the mortality rates associated with head and neck malignancies.
Intra-oral multispectral optical imaging of tissues in conjunction with cloud-based machine
learning (CBML) can be used to detect oral precancers at the point-of-care (POC) and guide the
clinician to the most malignant site for biopsy.

Aim: Develop a bimodal multispectral imaging system (BMIS) combining tissue autofluores-
cence and diffuse reflectance (DR) for mapping changes in oxygenated hemoglobin (HbO2)
absorption in the oral mucosa, quantifying tissue abnormalities, and guiding biopsies.

Approach: The hand-held widefield BMIS consisting of LEDs emitting at 405, 545, 575, and
610 nm, 5MPx monochrome camera, and proprietary Windows-based software was developed
for image capture, processing, and analytics. The DR image ratio (R610/R545) was compared
with pathologic classification to develop a CBML algorithm for real-time assessment of tissue
status at the POC.

Results: Sensitivity of 97.5% and specificity of 92.5% were achieved for discrimination of
OPML from patient normal in 40 sites, whereas 82% sensitivity and 96.6% specificity were
obtained for discrimination of abnormal (OPML + SCC) in 89 sites. Site-specific algorithms
derived for buccal mucosa (27 sites) showed improved sensitivity and specificity of 96.3% for
discrimination of OPML from normal.

Conclusions: Assessment of oral cancer risk is possible by mapping of HbO2 absorption in
tissues, and the BMIS system developed appears to be suitable for biopsy guidance and early
detection of oral cancers.
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1 Introduction

According to GLOBOSCAN 2018 reports, 354,864 new cases of oral cancer and 177,384 deaths
have occurred worldwide in 2018,1 and a fifth of this burden is from India.2 The five-year sur-
vival rate for oral cancers is around 50%, regardless of the improvement in diagnostic modalities
and treatment outcomes.3 Early detection of pre-malignant lesions in the oral cavity is the best
way to improve the quality of life of patients, to effectively manage the disease, and to improve
treatment outcomes.4 In oral cancer diagnostics, detection of oral potentially malignant lesions
(OPMLs) is of great significance. OPML such as leukoplakia, erythroplakia, and oral submucous
fibrosis (OSMF) have a risk for malignant transformation of 15% to 39%, 51%, and 7% to 26%,
respectively.5 Recent guidelines recommend an initial biopsy to assess the disease status of
OPMLs.6 Tissue biopsy is known to be the diagnostic gold standard for OPML identification
and analysis.7,8

In low-resource settings, conventional oral examination (COE) with white light is the stan-
dard procedure for evaluating OPMLs.6 The major limitation associated with COE is that it is
subjective; the screening results depend on the expertise of the clinician examining the patient.
Often, malignant tissue changes are discarded by COE,9 and dysplastic tissues can still be
located within healthy oral mucosa.10 Evidence shows that COE is not a good discriminator
of oral mucosal lesions.11 Clinical examination has limited value in detecting the malignant
potential of OPMLs since their macroscopic appearance often does not reflect their histopatho-
logic and molecular features; despite this, evaluation of OPMLs is still largely based on simple
mucosal inspection.12 It is a challenging task even for experienced clinicians to locate the most
malignant site for biopsy, especially in large OPMLs. This anomaly often leads to multiple or
unwanted biopsies, delayed- and under-diagnosis, and patient trauma.13 Because tissue biopsies
are intrusive, labor-intensive, and often take a few days to process and interpret, many OPMLs
are not biopsied, particularly in low-resource settings.14 The existing adjunctive techniques,
including vital tissue staining, brush biopsy, chemiluminescence, and autofluorescence imaging,
do not provide sufficient diagnostic accuracy for the detection of premalignant changes in the
oral mucosa.13,15

Tissue progression from healthy to malignant states is followed by several biochemical, mor-
phological, and structural changes associated with the disease.16 These changes mirror the opti-
cal signatures derived from the interaction of light with tissues. Autofluorescence emanating
from coenzymes, such as nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide
(FAD), and protoporphyrin IX (PpIX), present information on cellular metabolic activity. In
contrast, reflectance spectroscopy can be used as biomarkers of changes in the tissue oxygena-
tion levels and neovascularization.17 A screening device should ideally have the ability to detect
early tissue transformations toward malignancy, enabling better patient care and improved sur-
vival rates.

Several clinical studies have been performed by our group18–21 and other researchers22–26 on
the application of optical techniques for the detection of oral premalignant lesions. These studies
have shown that non-invasive clinical adjuncts based on tissue fluorescence and diffuse reflec-
tance spectroscopy have great potential as screening tools for the detection of oral malignancies.
Our approach utilized the changes in the intensity of oxygenated hemoglobin absorption peaks at
545 and 575 nm, which were noticed in the diffusely reflected white light for classifying oral
malignancies. Initial studies were carried out ex vivo, on surgically excised tissues of oral
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cavity,18 and were later validated through an in vivo clinical study.19 We recorded the diffusely
reflected white light spectra from the oral mucosa with a fiber-optic probe and noticed that the
diffuse reflectance (DR) intensity ratio (R545/R575) was lowest in normal or healthy mucosa
and gradually increased to higher and higher values with increasing grades of oral cancer. The
heme production is low in cancer cells owing to the reduced activity of ferrochelatase enzyme in
the heme cycle, which leads to a build-up of PpIX in the cancer cells.19 By recording the 405-nm
laser-induced fluorescence spectra of oral mucosa with an optical fiber probe, we were able to
detect this increase in PpIX in vivo and discriminate different grades of oral cancer using a
spectral ratio reference standard.20 Later, a widefield imaging configuration was developed with
white light illumination and an external electron multiplying CCD camera to capture DR images
of oral lesions at 545 and 575 nm, and the image ratio R545/R575 was utilized to screen and
detect oral cancers.21

Most of the commercially available devices in the market, such as VELscope® (LED Dental,
White Rock, British Columbia, Canada) (20 to 22), Bio/Screen® (Addent, CT), ViziLite PRO®

(DenMat, Lompoc, California), and OralID® (Forward Science), rely on visualization of tissue
fluorescence on excitation with violet/blue light from outside of the oral cavity, whereas
Identafi® (StarDental - DentalEZ, Lancaster, Pennsylvania) is an intraoral device that uses both
tissue fluorescence and reflectance of tissues for oral cancer screening.27–29 However, the main
limitation with these devices is that they are subjective, relying mostly on visual impressions;
however, VELscope, Bio/Screen, and Vizilite PRO® do have options for external camera
attachment.30 Cancerous lesions often show loss of fluorescence and appear as dark areas in
these images, making it impractical for a biopsy guidance application. The detection accuracies
reported by these devices are poor as inflammatory tissues also show loss of fluorescence, and
unwanted biopsies are a major concern. Therefore, these devices did not gain acceptance even in
countries such as India where the prevalence for oral cancer is high. Although, Identafi® is an
intraoral bimodal device, it also is subjective and does not incorporate a camera for image
capture.31,32 Furthermore, the use of an expensive disposable mirror adds to the cost of screening
and makes it unsuited for population-based screening programs.

These limitations motivated us to develop point-of-care (POC) solutions that provide quan-
titative information on tissue status at the POC in real-time. In this paper, we present a hand-held
multispectral wide-field imaging intraoral camera for recording of tissue autofluorescence and
DR that is illumined with multiple LEDs. The monochrome USB camera is controlled through
proprietary software installed on a personal computer. The captured images are processed and
analyzed using a cloud-based machine-learning (ML) algorithm for real-time user feedback.
With the help of pseudo-color maps representing variations in oxygenated hemoglobin absorp-
tion in tissue, we detect tissue abnormalities and locate the most malignant site in a lesion for
biopsy. We also present a representative pilot study results to demonstrate the potential of the
device for screening and early detection of oral cancers and guided biopsies.

2 Materials and Methods

2.1 Instrumentation

A hand-held bimodal multispectral imaging system (BMIS) has been developed [Figs. 1(a) and
1(b)] for wide-field intra-oral screening.33 The BMIS consists of a sub-miniature monochrome
camera (Ximea, GmbH, Model: MU9PM-MH) featuring a 5 MPx CMOS sensor (Aptina
MT9P031) with 2.2-micron pixels and 2592 × 1944 resolution for image capture (Fig. 1).
Light-emitting diodes (LEDs) situated around the camera lens, emitting at violet (405 nm), green
(545 nm), yellow (575 nm), and red (610 nm) wavelengths of light, were used for tissue illumi-
nation. Narrowband interference filters (5-mm diameter, FWHMwidth of 8 nm) centered around
542, 577, and 610 nm were placed over a window covering the respective LEDs to ensure that
their light output matches with the absorption dips ofHbO2 at 542 and 577 nm and that the LEDs
spectral outputs do not overlap. The 610-nm LED acts as a reference standard, in which HbO2

absorption is minimal. The light collection optics included a tailored filter that transmits tissue
autofluorescence and the elastically backscattered light at 542 and 577 nm into the sensor, while
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blocking the 405-nm light from entering the detection system. The patented optical engine also
consisted of crossed polarizers in the light illumination and collection paths to prevent specular
reflections from the tissue surface reaching the sensor. The camera is connected to the USB port
of a tablet or laptop with a 64-bit Windows 10 operating system [Fig. 1(b)]. The BMIS is thus
configured to capture multimodal images of oral mucosa using its integrated hardware and pro-
prietary software. More details on the BIMS imaging system regarding optical configuration,
hardware, and software integration are described elsewhere.33

2.2 Tissue Classification Algorithm

In the present study, we implemented a ratio-metric algorithm (R545/R610) based on the dif-
fusely reflected light intensities of 545 and 610 nm. This was achieved by pixel-by-pixel division
of the monochrome images captured by the camera following illumination with 545- and 610-nm
wavelength LEDs. The DR intensity of tissues (R) is determined by the concentration of HbO2

and Hb in tissues and their effective attenuation coefficients (a1 and a2) at these wavelengths
using the relation:34

lnðRÞ ¼ ða1 � ½HbO2� þ a2 � ½Hb�Þ þ lnðkÞ, where k is a constant term, which can be
removed by calibration, and total hemoglobin concentration (tHb) and oxygen saturation (StO2)
are defined as:

EQ-TARGET;temp:intralink-;sec2.2;116;288tHb ¼ ½HbO2� þ ½Hb�; and StO2 ¼ ½HbO2�∕t½Hb�:

The DR intensity at any two wavelengths can be used to calculate the concentration of HbO2

and Hb so that the total concentration of hemoglobin and oxygenation can be determined. The
wavelength 545 nm belongs to one of the isosbestic points of Hb, where HbO2 and Hb have
strong absorption. At this wavelength, the reflectance intensity is more sensitive to changes in
HbO2 than at other wavelengths in the spectrum. In the 610- to 630-nm wavelength range, the
absorption coefficient of Hb is 7 to 8 times higher than that of HbO2 so that absorption at this
wavelength is primarily due to Hb present in the tissue (Fig. S1 in the Supplementary Material).
Therefore, the extent of malignant transformation can be assessed from the increase in the
R610/R545 ratio in the region of interest (ROI) marked surrounding the lesion, with reference
to the tissue fluorescence image (F405).

It is known that reflectance and light scattering spectroscopy provide information on mor-
phologic and structural changes in tissue architecture and epithelial cell nuclei and polarized
light reflectance spectroscopy provides quantitative information on tissue morphology that could
be used for non-invasive and real-time detection of epithelial neoplasia.35 The tissues of various
anatomical sites of the oral cavity have differing optical and spectral characteristics. Therefore,
we grouped the tissues of different anatomical sites into keratinized and non-keratinized types,

Fig. 1 (a) Schematic of the BIMS system developed for oral cancer screening and (b) prototype of
the BMIS connected to an 8 in. Windows tablet. The inset shows the probe head with narrowband
LED filters mounted on the outer window.
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with the former consisting of gingiva, vermillion border of the lip, dorsal tongue, hard palette,
and lower/upper alveolus and the latter consisting of left/right buccal mucosa, lateral/ventral
tongue, floor of the mouth, inner lip, and gingivo-lingual/buccal sulcus. Therefore, two sets
of R610/R545 ratio algorithms were developed to provide user feedback during the screening
process, based on the site of the lesion. When biopsies are taken from the sites identified as most
malignant, the R610/R545 value associated with the biopsy site is uploaded to the cloud along
with the pathology report. The new ratio values and the corresponding diagnostic results are
merged into the ML algorithm, making it robust over a period of time. When more and more
data sets are incorporated into the algorithm and site-specific algorithms become available, the
accuracy of screening and disease prediction improves.

2.3 Clinical Trials

The BMIS was validated through a multicentric clinical study covering six hospitals (HCG
Hospital, JSS Dental College, SUM Hospital, Govt Dental College Kottayam, Sri Balaji
Dental Hospital, and Dayanand Sagar Dental College). Individual ethical approvals were
obtained from the respective ethics committees of these hospitals, and the trial was registered
prospectively at the Clinical Trial Registry of India with Ref No. CTRI/2017/10/010125 dated
October 18, 2017. The study details were explained in detail to the patients who participated in
the study, and written informed consent was obtained before initiation of any study-related
procedures.

Fig. 2 Schematic diagram showing the working process of the BMIS.
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All clinical measurements using the BIMS probe were carried out in a dark room following
the calibration procedure given in Sec. 2.5. Figure 2 shows a schematic diagram of the steps
involved in the working process of the instrument. The entire screening process takes no more
than 5 mins to complete for a patient. The immediate display of the captured images on the
computer screen helps with image quality checks and recapture when necessary. Once the
ROIs are marked with reference to the tissue autofluorescence image, the software program
locates the pixel with the maximum ratio value in the ROI and assigns the mean value of a
5 × 5 matrix surrounding that pixel as the DR ratio (R610/R545) value for tissue classification
as normal, suspect, or critical based on feedback from the cloud-based ML algorithm. A guided
biopsy shall be taken if required. The graphical user interface (GUI) and work flow are organized
to make the screening process intuitive and straightforward. The screening data is saved in the
local drive of the computer and uploaded to the cloud for backup and algorithm refinement. The
storage and integration of patient data from different screening centers on a single cloud platform
facilitate uniformity in analytics and development of a robust ML algorithm for the benefit of
all users.

2.4 General Description of the Data Set

A total of 336 patients were recruited for this study, out of which 89 patients (118 sites) under-
went biopsy procedures. Multiple sites of the same patient showing different grades of pathology
were included as a separate dataset. Images from 118 intraoral sites were further scrutinized; four
data were excluded due to lack of histopathologic report, six data were removed due to poor
image quality (blurring), and 10 data were excluded due to non-uniformity in light illumination.
Finally, 89 sites from 65 patients were included in the study. The average age (±SD) of the
patients was 51� ð14Þ years. The inclusion criteria incorporated selection of patients presenting
with OPML, such as leukoplakia, erythroplakia, OSMF, dysplasia, and moderate to well-differ-
entiated squamous cell carcinoma (SCC) in the case of malignant tissues. The exclusion criteria
encompassed patients who have undergone prior cancer treatments, have systemic conditions
that contraindicate biopsy, have used any oral medication for at least four weeks, or were not
willing to participate in the study. OSMF cases are mostly diagnosed from their clinical char-
acteristics; hence they are not biopsied as a surgical intervention may induce further disease
progression. Various types of pathological specimens screened using the probe are given in
Table 1.

Table 1 Clinical status of different pathological specimens
included in the study.

Tissue type # of patients

OPML

Carcinoma in situ 1

Lichen planus 2

Fibro epithelial polyp 1

Leukoplakia 27

Hyperplasia 8

Ulcer 1

Malignant lesions

Poorly differentiated SCC 7

Moderately differentiated SCC 14

Well differentiated SCC 28
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2.5 Calibration of the Instrument

The BMIS is calibrated to the ambient (dark/dim) light conditions by positioning the probe head
over the calibration unit that houses a tissue phantom, maintaining a working distance of 2 cm
with the probe tip. The calibration process is initiated by clicking on the calibration/settings
button on the software window. The display shows calibration successful on completion of the
procedure that involves switching on/off of the different LEDs and varying the exposure settings
of the camera for each set of LEDs such that all four images captured by the camera are optimally
exposed during the recording process. This is achieved by limiting the mean pixel intensity of the
four different frames to within 2.5% to 4% of their mean pixel value based on the number of
retries done to successfully calibrate the device. Once calibrated, there is no need to recalibrate
the instrument unless the room lighting conditions change.

2.6 Image Acquisition and Analysis of the Tissue Characteristics

During patient enrollment, in addition to patient name and contact details, mandatory infor-
mation related to age, habits, and visual/clinical impressions are collected, whereas the medical
record number is autogenerated [Fig. 3(a)] in the patient information section of the software
program. The patients are seated comfortably on a dental chair and are examined following the
sequence shown in Fig. 2. An oral rinse with water followed by saline wash or antibacterial
mouthwash is recommended. The lesion photo is captured on a mobile phone camera for refer-
ence. The screening probe is now wiped cleaned with isopropyl alcohol and covered with a
thin and transparent plastic cling wrap film (Polyvinyl Films, Inc, Massachusetts, Model:
Kirkland stretch-tite or equivalent food wrap film) to maintain hygiene and prevent probe con-
tact with the oral cavity. The room light is set to the ambient dark conditions used for cal-
ibration. On powering the probe, the violet LED is switched on. This light is used to observe
tissue abnormalities, locate OPMLs by tissue autofluorescence, and identify areas for detailed
examination.

The software has provisions for marking the suspicious sites for detailed investigation in an
anatomical diagram based on visual observation. On selecting the imaging mode, a live view of
the oral cavity is possible in a new window [Fig. 3(d)] in monochrome (grayscale) or pseudo
color to locate the lesion spread and visually assess the extent of tissue health. The software has
provisions for video and image capture. During screening, care should be taken to minimize
specular reflection from oral mucosa by keeping the mucosal surface dry with cotton swab and
holding the probe at an angle to the imaging surface. Once the OPML is located, the camera is
focused by varying the distance between the probe and the tissue, and four monochrome images
are captured sequentially by a single press of the capture button on the device or the software
window. The quality of the images displayed on the screen [Fig. 3(e)] is checked to ensure that
all four images are sharp without motion artifacts due to patient or probe movement and are free
of any bright spots due to reflection from saliva, explorer probe mirror, or illumination non-
uniformity. Although the image capture takes <90 s, probe movement can be minimized by
resting the hand holding the probe on the patient’s body or some other stationary object. If the
images are not focused or intensity saturation is noticed in any region, the captured images can
be discarded and a fresh set of images recaptured.

The four images captured sequentially and illuminated with four different LEDs emitting at
405, 545, 575, and 610 nm are designed at F405, R545, R575, and R610. All four monochrome
images are displayed on screen along with the R610/R545, R610/R575, and R545/R575 ratio
images in monochrome/pseudo color [Fig. 3(e)]. The outer border of the OPML or malignant
lesion is marked as the ROI using the mouse pointer or stylus pen on the touch screen based on
the extent of the pseudo color map (PCM) of tissue fluorescence. In addition, an apparently
healthy region that is free of tissue inflammation is marked on the same anatomical region
adjoining the lesion with a low R610/R575 ratio value36 [Fig. 3(f)]. The software program
automatically determines the mean DR image ratio (R610/R545 and R610/R575) in the
ROIs of healthy mucosa and the highest ratio value in the ROIs of R610/R545, R545/R575,
and R610/R575 in the OPML. The DR ratio values along with the processed and captured
images are now pseudo color mapped to visualize variations in the DR ratio across the lesion.
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The extent of color coding can be altered by up or down movements of the cursor on the PCM
adjuster located beside the image display window. The screening result is presented in a color-
coded display diagram (CDD), with the pointer showing the highest R610/R545 ratio value in
the ROI, representing the most malignant site in the OPML. Green color in the CDD represents
healthy/normal tissue, yellow represents suspect (OPML), and red represents critical (malignant)
lesions.

Fig. 3 Different modules of BMIS software for image capture and analysis. (a) Opening window for
patient registration; (b) patient study window to select patient for screening; (c) patient history
window for viewing/editing of captured images; (d) video recording window; (e) image capture
and display window; (f) window for ROI marking of patient normal and abnormal areas; (g) PCM
of R610/R545 image ratio for biopsy guidance, and the CDD for tissue status assessment, with
green representing normal, yellow representing OPML (Suspect), and red representing SCC
(Critical); and (h) report page with features for biopsy result entry, data upload to the cloud server,
and report sharing.
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Based on the variance of the R610/R545 ratio value representing the most malignant site in
the ROI with respect to the mean ratio value of an adjoining healthy region, it would be possible
for the clinician to decide on whether a biopsy is required or habit cessation and follow-up would
suffice. On completion of the screening process, the value of DR ratios, such as R610/R545,
R545/R575, and R610/R575, are populated in an excel file, and the captured images and data
files are pushed to the cloud automatically on internet connectivity. Later, when the ROI is
remapped or the pathology reports and lesion photos are uploaded, the cloud data also are
refreshed automatically.

3 Results

Fluorescence visualization of homogenous leukoplakia in the right buccal mucosa of a patient
with violet light illumination is depicted along with the PCM of the corresponding autofluor-
escence and the DR image ratio (R610/R545) in Figs. 4(a)–4(d). The PCM of tissue fluorescence
and DR ratio maps can be visually enhanced as per user perspective to locate the lesion spread.
Figures 5(a)–5(d) show the PCM images tissue fluorescence, the DR image ratio R610/R545
representing malignant transformations, R610/R575 representing tissue inflammation, and the
photo of the oral cavity of the patient with speckled leukoplakia on the left buccal mucosa. The
ROI of the lesion is marked on the fluorescence image outlining the lesion, while the ROI rep-
resenting patient normal is marked in an adjoining area belonging to the same anatomical site,
carefully avoiding areas of tissue inflammation with high R610/R575 values. Once the ROI is
marked, the user can visualize the most malignant site in the lesion for biopsy from the PCM of
the R610/R545 ratio that represents the absorption changes due to HbO2 in tissue. The corre-
sponding ratio value with respect to the most malignant site also is displayed on the screen along
with the mean value of the DR image ratio from the adjoining site marked as patient healthy. As
the mouse pointer has a ratio drop-down display feature, the DR ratio values across the lesion can
be explored by moving the mouse cursor across the lesion to review and locate if any malignant
sites of the oral cavity went unnoticed during the ROI marking process.

Fig. 4 Homogenous leukoplakia on the right buccal mucosa: (a) photo of the lesion, (b) live view
with violet light, (c) PCM of tissue fluorescence, and (d) PCM of R610/R545 image ratio.
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3.1 Machine Learning Algorithm Development

To classify the various tissue types involved in the study, we utilized the ratio (R610/R545) of the
diffusely reflected light from squamous epithelium at 610 nm (R610) and 545 nm (R545).
Figure 6 shows scatter plot diagrams representing the DR image ratio (R610/R545) versus
patient number for discriminating potentially malignant (OPMLs) and abnormal tissues involv-
ing OPMLs and SCC, from apparently healthy tissues in patients. The tissues included in the
algorithm were of varied morphology and structure, covering all anatomical locations in the oral

Fig. 5 Screening results of a 59-year-old patient with speckled leukoplakia on the left buccal
mucosa: (a) PCM of tissue fluorescence, (b) PCM of R610/R545 image ratio with the tissue status
displayed on the CDD, (c) image ration R610/R575 representing tissue inflammation, and
(d) lesion photo. The lesion border is marked on the screen based on visual impression and
PCM of tissue fluorescence. The software program locates the site with the highest ratio value,
inside the white ROI marked on the PCM of R610/R545 ratio, as the most malignant site for biopsy.

Fig. 6 Scatter plot ratio (R545/R610) algorithm for classifying abnormal and OPML tissues of the
oral cavity from patient normal tissues, with the red discrimination line drawn at the mean of (OMPL
+ SCC) ratio values and the patient normal ratio values and the orange line drawn at the mean of
OPML and patient normal ratio values.
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cavity (Table S1 in the Supplementary Material). The DR ratio values of healthy tissues relate to
the mean R610/R545 ratio of the adjoining healthy region marked in the patient mucosa belong-
ing to the same anatomical site, with no or minimal signs of tissue inflammation.36

The mean DR intensity ratio (R610/R545) for healthy samples was found to be 1.56, whereas
for OPML sites it was 3.03 and for SCC tissues the value was higher at 3.44. This shows that the
DR image intensity ratio (R610/R545) increases with the increase in malignancy, with the lowest
values for normal/healthy mucosa and increasing to higher and higher values as the tissue trans-
formation takes place from OPML to SCC. The discrimination threshold lines shown in Fig. 6
were drawn at the mean values of the data sets involved. For instance, the discrimination thresh-
old line between healthy tissues and OPML was calculated and drawn at the mean of the average
ratio values of patient healthy and OPML data sets. In Fig. 6, the discrimination threshold lines
were drawn at 2.028 and 2.501, respectively, for classifying OPML and abnormal (OPML+SCC)
tissues from patient normal tissues covering all anatomical sites of patients that underwent a
guided biopsy procedure.

3.2 Diagnostic Accuracy

Table 2 represents the diagnostic ability of the device obtained with the DR ratio (R610/R545)
algorithm for discriminating OPML and abnormal tissues (OPML + SCC) from all anatomical
sites with adjoining normal tissues from the same anatomical site. Table 2 also presents the
improvement in diagnostic accuracy when healthy volunteer data are used instead of patient
normal tissues in the R610/R545 ratio algorithm for buccal mucosal malignancies. To evaluate
the diagnostic accuracy, we implemented the discrimination threshold as a cutoff value for dif-
ferentiating healthy tissues from the different tissue pathologies involved. The algorithm shown
in Fig. 6 for discriminating OPML from patient normal tissues with a cut-off value at 2.03
resulted in a sensitivity of 97.5% and specificity of 92.5% with positive predictive value
(PPV) and negative predictive value (NPV) values of 0.93 and 0.97, respectively, whereas for
discrimination of patient normal tissues from abnormal tissues, a sensitivity of 82% and speci-
ficity of 96.6% were obtained with the cutoff value at 2.5 and PPVand NPV values of 0.96 and
0.84, respectively.

The receiver operator characteristic-area under the curve (ROC-AUC) was also computed to
evaluate the diagnostic performance of the R610/R545 ratio algorithm for tissue discrimination.
The ROC-AUC values (Fig. 7) were found to be 0.987 and 0.989, respectively, for discrimination
of OPML tissues and abnormal (OPML + SCC) tissues from patient normal tissues. The

Table 2 Diagnostic ability of R610/R545 ratio for differentiating patient normal tissues from
OPML lesions and abnormal tissues (OPML and SCC).

Diagnostic
parameters

All anatomical sites Buccal mucosa

Patient
normal

versus OPML

Patient normal
versus abnormal
(OPML + SCC)

Patient
normal

versus OPML

Healthy
volunteer

versus OPML

Healthy
volunteer versus

abnormal

Sample size (n) 40 89 27 27 43

Cut-off value 2.028 2.501 2.214 2.112 2.287

Sensitivity (%) 97.5 82.02 96.3 96.3 95.34

Specificity (%) 92.5 96.63 96.3 100 100

Positive predictive
value (PPV)

0.929 0.961 0.963 1.00 1.00

Negative predictive
value (NPV)

0.974 0.843 0.963 0.964 0.955

ROC-AUC 0.987 0.989 0.995 1.00 1.00
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diagnostic accuracies given in Table 2 establish the significance of utilizing a DR ratio (R545/
R610) algorithm, using the intensity of the HbO2 absorption peak at 545 nm to that of the non-
absorbing wavelength of 610 nm, for the detection of tissue pathologies using our non-invasive
bimodal imaging system implemented on a multispectral imaging platform.

3.3 Significance of Interquartile Range Values

The spread of DR intensity ratios in clinically healthy, potentially malignant, and malignant
lesions can be explained in terms of median and interquartile range (IQR) values. In the present
study, clinically healthy tissues showed a median value of 1.41 for the R610/R545 image ratio
and IQR of 0.55 (0.765 to 2.524), and no outliers were identified (range: 0.452 to 2.636).

For potentially malignant, the median was found to be 2.53 and the IQR was 0.98 (1.94 to
4.69). In the case of potentially malignant tissues, there are no outliers (1.055 to 4.985). For
malignant tissues, the median was 3.589 and the IQR was 1.07 (2.132 to 8.189). About 5/49
of the malignant cases fall above the maximum range (2.29 to 5), indicating that these tissues
may be more aggressive or have a poor prognosis. As compared with an earlier report, the
median and IQR values in the present study are slightly higher but are within the desired range.19

3.4 Site-Specific Algorithms and Effect on Diagnostic Accuracy

Previous studies have demonstrated significant differences in the spectral properties between
different anatomical sites in the oral cavity.37,38 Improvements in the tissue classification param-
eters such as PPVand NPV were observed when site-specific classification was used to discrimi-
nate head and neck SCC.39 To test this hypothesis on existing patient data, we collated data of
patients with buccal mucosal abnormalities. We also recorded the DR ratio (R610/R545) from
the left and right buccal mucosa of healthy volunteers with no history of alcohol, smoking, or
tobacco usage. This data set was used to replace the patient data in the site-specific (buccal
mucosa) scatterplot algorithm (Fig. 8) developed for discrimination of OPML and abnormal
sites from patient normal data sets. The R610/R545 algorithm developed for buccal mucosa
using healthy volunteer data instead of patient normal is shown in Fig. 9.

Table 2 shows the number of patients in each category, the discrimination line (DL) cut-off
values, sensitivity, specificity, NPV, PPV, and the corresponding ROC-AUC values achieved for
both cases. The improvement in the diagnostic accuracy observed on substitution of patient nor-
mal data with healthy volunteer buccal mucosa data was primarily an improvement in the speci-
ficity value from 96.3% to 100%with a concomitant increase in the PPV from 0.96 to 1 (Table 2),
which was primarily due to the lowering of the DL from 2.214 to 2.112. The corresponding ROC-
AUC curves for discrimination of OPML in the buccal mucosa of these patients are plotted in
Fig. 10. The ROC-AUC values increased from 0.995 to 1 when healthy volunteer data were used
instead of patient normal for detection of OPML sites in the buccal mucosa.

Fig. 7 ROC-AUC using R610/R545 intensity ratios for classifying (a) patient normal versus
OPML sites and (b) patient normal versus abnormal (OPML + SCC) tissues in the oral cavity.
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4 Discussions

In recent times, there has been an increased interest in applying optical spectroscopy and im-
aging techniques for tissue diagnostics. These optical techniques are mostly non minimally or
minimally invasive in nature, use non-ionizing radiation without any contrast agents, and have
the ability to monitor patients over a period of time. The study results demonstrate the ability of
using BMIS for screening and detection of OPMLs in the oral cavity. In addition, it can be used
as a tool for guided biopsies by locating the most malignant site in the lesion for tissue biopsy
and pathological confirmation of the grade of cancer with improved accuracy. This could poten-
tially avoid multiple biopsies, minimize patient trauma, and reduce treatment costs. Furthermore,

Fig. 9 Scatter plot algorithm of R610/R545 ratio for classifying OPML (n ¼ 27) and abnormal
(OPML + SCC) tissues (n ¼ 43) of the buccal mucosa with healthy volunteer data from buccal
mucosa. The red line discriminates abnormal tissues from healthy normal, and the brown line
discriminates OPML from healthy normal.

Fig. 8 Scatter plot algorithm of R610/R545 ratio for classifying OPML (n ¼ 27) and abnormal
(OPML + SCC) tissues (n ¼ 43) of the buccal mucosa with patient normal. The red line discrim-
inates abnormal tissues from patient normal, and the brown line discriminates OPML from patient
normal.
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the BIMS can be used to enhance the ability of the surgeon to locate the tumor margins, such that
complete resection of the lesion is possible by providing enough margins during surgical inter-
ventions and minimizing functional deficits. The wavelength (405 nm) used in this study to
estimate tissue abnormalities from autofluorescence matches with the Soret band of PpIX, which
is a precursor in the heme production cycle. Since the ferrochelatase enzyme is inhibited in
cancer cells, there is an increase in PpIX fluorescence from cancer cells. However, other bio-
chemical constituents present in tissue that absorb at this wavelength, such as FAD and NADH,
also absorb this light, and their concentration changes during cancer development could alter the
overall emission characteristics of OPMLs.

The green LED light at 545 nm overlaps with the prominent absorption band of oxyhemo-
globin located at 542 nm. The red LED (610 nm) emission is at a non-absorbing wavelength for
HbO2 and belongs to a region where scattering predominates and Hb has a higher absorption.
Therefore, the diffusely reflected image of oral mucosa at 610 nm serves as a reference stan-
dard to map HbO2 absorption, as compared with using diffusely reflected light intensity at
575 nm.18,19,34 To confirm this, for the same set of data shown in Table 3, we plotted the scat-
terplot algorithm for the R545/R575 ratio and got a sensitivity of 37.5% and specificity of
86.2%, with a PPV of 0.556 and NPV of 0.75 for classification of patient normal from OPML,
with a cutoff values of 1.561 (Table S2 in the Supplementary Material). In comparison, the
sensitivity and specificity obtained for the R610/R545 ratio algorithm were 97.5% and 92.5%,
respectively, (Table 2) for discrimination of OPML from patient normal.

To test whether the high diagnostic accuracy for OPML is attributed to the large number
of leukoplakia cases (14) involved in sample size (Table S1 in the Supplementary Material),
we plotted the R610/R545 and R545/R575 ratio algorithms separately for leukoplakia cases
involved in the study. It was seen that leukoplakia cases alone can be discriminated from normal
with a sensitivity of 87.5% and specificity of 100% with the R610/R545 ratio algorithm as com-
pared 97.5% and 87.5% for the algorithm covering all OPML cases with leukoplakia also
included (Table S2 in the Supplementary Material).

Since tissue progression from normal tissues to OPML and SCC is accompanied by changes
in tissue metabolism, structure, and morphology, these biochemical and morphological changes
are manifested in the diffusely reflected spectral signatures derived from the tissue.40 We strongly
believe that the wavelengths used in the present study, viz., 545 and 610 nm, correlate to the
changes in tissue vasculature and scattering during cancer development.

In the present study, apparently normal tissues of patients were taken as control. Also, the
region contralateral to that of the diseased region or a few centimetres away from the OPML and
free of inflammation was taken as control. The primary cause for malignancies in the head and
neck region include smoking, alcohol consumption, and betel-quid chewing.41,42 The carcino-
gens associated with the development of malignancies in the head and neck region are known to
not only induce alterations in the tumor site but also affect the entire organ site.43 This phenome-
non is referred to as field cancerization (FC), and the changes manifested in the tissue due to FC
include changes in tissue microvasculature, alterations in the nuclear size, and density.44,45 One
of the issues attributed to the decreased diagnostic ability is the FC effects in the oral cavity of
patients. To validate this, we compared the DR ratio (R610/R545) values from the buccal mucosa
of healthy volunteers for the discrimination of potentially malignant lesions and noticed that the
specificity values improved from 96.3% of 100% when healthy volunteer data were used instead
of patient normal for buccal mucosal tissues (Fig. 9). The results are in agreement with our
previous study, in which we implemented and established algorithms for all of the sites

Table 3 Showing the variation among intensity ratios using median and IQR.

Tissue characteristics Q1 Q3 Median IQR (Min–Max)

Healthy 1.27 1.82 1.41 0.55 (0.77–2.52)

Potentially malignant 2.53 3.51 3.04 0.98 (1.94–4.69)

Malignant 3.11 4.18 3.59 1.07 (2.13–8.19)
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combined and an algorithm specifically for the buccal mucosa.19 The diagnostic ability of the
algorithm specific to buccal mucosa was steadfastly higher for discriminating benign, dysplastic,
and malignant lesions. In a similar study, Hu et al.39 reported an increase in PPVand NPV when
using tissue-specific classification algorithms, which resulted in the false-positive rates declining
by 34%. The results from the present study indicate that site-specific algorithms implemented for
the detection of lesions in the oral cavity increase diagnostic accuracy, which in turn reduces the
number of false-negative rates. We also noticed that ulcers of the oral cavity show R610/R545
ratio values in the range of 2 to 2.6 (data not shown in Fig. 6), well below the malignant range
(>3.6), which helps us to avoid unwanted biopsies from traumatic ulcers.

OSMF is characterized by oral inflammation, increase in submucosal collagen, and forma-
tion of fibrotic bands in the oral cavity that increasingly limit mouth opening. Increasing fibrosis
causes blanching of oral mucosa, which results in a marble-like appearance. During the present
study phase, nine OSMF cases were also screened, but they were excluded from the DR ratio
algorithm and analysis as biopsies were not taken for histopathology. OSMF is a potentially
malignant disorder with FC characteristics and biopsies usually taken only when clinical obser-
vations warrant it. The cases investigated had DR ratio (R610/R545) values ranging from 1.425
to 3.713 with a mean value of 2.51, which corresponds to the premalignant range in our ML
algorithm (Fig. 6).

Previously, various techniques based on optical spectroscopy and imaging have been evalu-
ated to detect malignancies in the oral cavity.46–49 Cals et al.50 investigated the application of
Raman spectroscopy for the intraoperative assessment of tumor margins in the prognosis of oral
SCC. Linear discriminant analysis was used as a diagnostic algorithm to discriminate against
healthy tissue types and oral SCC. One of the disadvantages of Raman spectroscopy is that the
Raman effect is an extremely weak process in which 1 in 106 to 108 photons are Raman
scattered.51 This weak phenomenon makes it extremely difficult to obtain a high-quality spec-
trum with the decreased integration times required for in vivo applications. Also, Raman spectro-
scopic approach requires high excitation power, extremely narrow bandwidths, and bulky and
expensive instrumentation.52,53 Recently, a multimodal endomicroscopy incorporating hyper-
spectral and confocal imaging using a single foveated objective was developed and tested
on ex vivo oral cancer samples.54 However, details regarding the diagnostic accuracy were not
presented in the study. In the present study, we implemented a simple ratio-metric approach on
the diffusely reflected light using the image intensity ratio R610/R545 that maps changes in
oxygenated hemoglobin absorption in tissue for the detection of tumors in oral malignancies.
The findings of the present study indicate a strong association between the increase in the
red/green DR image ratio (R610/R545) and different types of oral precancers. With the use of
site-specific algorithms and larger data sets, the diagnostic accuracy of the algorithms used for
detection of OPMLs of the oral cavity would improve over time.

Furthermore, we believe that utilization of an ML algorithm provides a more reliable assess-
ment of the cancer grade such that screening and diagnosis of cancer at the POC in real-time
would become a reality. Additionally, the system incorporates fluorescence excitation at 405 nm,
which can be used as an additional tool for locating the tumor margins. Previous studies have
established marked differences in the fluorescence emission profile with 400- to 410-nm exci-
tation and were able to correctly identify 20 out of 22 samples investigated.55 The increase in the
emission intensity at wavelengths greater than 600 nm noticed in this study can be credited to
PpIX, which is accumulated in cancer cells owing to the reduced activity of the ferrochelatase
enzyme in cancer cells.20 In yet another study, an optical imaging system with excitation at
405 nm was implemented for detection of precancerous lesions in the oral cavity.56 The changes
associated with tissues during progression of neoplasia at this excitation wavelength include
neovascularization in the stromal region and loss of auto-fluorescence due to the breakdown
of collagen matrices. The use of optical fluorescence imaging or staining with toluidine blue
may increase the number of lesions detected compared with oral visual examination alone and
may increase border distinction at a subjective level.57 This technique will also be helpful in
patients who are reluctant to have biopsy but are anxious to know the stage of their lesion.
Overall, the results of this study indicate that the wide-field multimodal imaging incorporating
fluorescence and DR will be of great significance in the screening of oral malignancies at the
community level.
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5 Conclusion

The storage of data on a single cloud platform has multiple benefits. In addition to providing data
safety, security, and ease of access to the screening centers, it facilitates compilation of screening
data from different centers into anML algorithm that provides real-time feedback to the device or
the caregiver during the screening process. We believe that quantitative information on tissue
status made available by the BMIS at the POC would lead to improved prognosis and patient
management.

Different anatomical sites such as buccal mucosa, vermillion border of the lip, lateral and
dorsal tongue, upper palate, and gingiva have different tissue structures, morphology, and reflec-
tance characteristics. The light penetration and DR properties of various anatomical sites is dif-
ferent and could alter the sensitivity and specificity for detecting cancer at these sites. Therefore,
site-specific algorithms, instead of one that incorporates data from all sites, will generate a higher
diagnostic accuracy for screening of OPMLs. This has been validated in the case of patients
under different stages of cancer in the buccal mucosa.

Although the BMIS was used to screen the oral cavity of around 350 people through this
multicentric clinical trial, the clinical data presented relate to cases in which a biopsy was per-
formed. In most cases in which a biopsy is not warranted or is ethically non-essential, the patients
were advised to withdraw from their habits of pan or tobacco use and maintain oral hygiene.
Since only two LEDs were used for each of the four wavelengths of light in the present design,
uniformity of illumination was a major concern when the camera was to be used intraorally at
short working distances from the tissue. Owing to this, the captured images were overexposed at
some parts of the image, and the image data had to be discarded, despite repeated measurements.
This was overcome by use of smaller form factor LEDs in a redesigned version of BMIS, cur-
rently being marketed by Sascan Meditech as OralScan®. Based on user feedback, the GUI of
proprietary software and its features were upgraded in this version of the device to provide an
improved user experience. Since we are using an ML algorithm, more and more data are collated
into the algorithm with the increasing number of users. We hope that in time we will be able to
evolve site-specific algorithms and facilitate early detection of oral precancers with improved
accuracy. We believe that only through mass screening and early detection of OMPLs of the oral
cavity will it be possible to lower the high rates of mortality associated with the disease. The
ability of the device to guide the clinician to the most malignant site in a lesion for tissue biopsy
will minimize false negatives, unnecessary multiple biopsies, and unwanted treatments, leading
to lower costs for disease management and reduced patient trauma.

Disclosures

The authors SN, SA, RP, SM, and RS are employees of Sascan Meditech, and SN, SM, and RS
own stock in the company. SN also sits on Sascan’s Board of Directors. However, the data

Fig. 10 ROC-AUC plots derived from the diagnostic accuracy values obtained from the R610/
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