
Dedicated near-infrared oximeter to monitor
oxygenation in the superior sagittal sinus in

newborn infants: a research agenda

Gorm Greisen a,b,*
aRigshospitalet, Copenhagen University Hospital, Department of Neonatology, Copenhagen,

Denmark
bCopenhagen University, Institute of Clinical Medicine, Copenhagen, Denmark

Abstract

Significance: Cerebral tissue oximetry is imprecise and confounded by an uncertain and variable
arteriovenous volume ratio. Venous saturation is better grounded in physiology. The superior
sagittal sinus (SSS) is relatively large and placed under the open fontanel on the top of the head
in newborn infants.

Aim: To enable the development of a dedicated near-infrared-spectroscopy-based cerebral
oximeter with sufficient claims on accuracy to be tested for benefit of clinical use.

Approach: To set up a research agenda based on the combination of dedicated, high-fidelity
digital and physical phantoms.

Results: A seven-step path is outlined to identify an optode geometry with high sensitivity to
variation in hemoglobin-oxygen saturation in the SSS, with little confounding by changes in the
optical properties of the skin and scalp or brain tissue, or in the width of the subarachnoidal
space, and that is robust to variations in the placement of the optode.

Conclusion: If an oximeter that is designed after exploration of digital phantoms can produce
measurements in physical phantoms with good agreement with predictions, it will contribute
credibility that cannot be achieved by direct gold-standard validation in newborn human infants.
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1 Introduction

Tissue oximetry by near-infrared light applied to the head has a special opportunity when applied
to newborn and small infants. Due to their thin scalp and skull, a particularly high proportion of
the signal will come from the brain.1 Thus, this can really be called cerebral oximetry.

Furthermore, in the clinical field of neonatology, there is a great need for minimally invasive
methods of oximetry.2 First, sampling of blood must be minimized due to the small circulating
blood volume of the infants. Second, the placement of catheters in blood vessels is difficult due
to their small size and risky due to their poor defenses against infection. Third, cardiopulmonary
support and intensive care are often required during the transition from intra- to extrauterine life.

A large literature describes the clinical research application of cerebral oximetry to elucidate
the physiology and pathophysiology of cerebral blood flow and oxygen metabolism in newborn
infants. Several oximeters are approved for clinical use in this patient group and two large-scale
randomized trials are currently testing the clinical benefits and harms of the combination of
monitoring of cerebral oxygenation and a guideline with suggestions of what to do if the cerebral
oxygenation drops below a hypoxic threshold.3,4
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2 Methodological Problems

The precision of transcranial cerebral oximetry is relatively poor. If the optode is lifted off and
replaced at a slightly different position on the head, the average difference in reading will be
about 5%.5,6 This is high compared to the interindividual standard deviation of cerebral oxy-
genation in normal newborn infants of 8%,7 or compared to the requirement of an absolute root
mean square accuracy of better than 3% for pulse oximetry, another optics-based clinical mon-
itoring technology.8

Tissue oxygenation is not a well-defined concept. The measured value is a weighted average
of the hemoglobin saturation in all blood vessels in the optical field. Since driving pressures on
the venous side of the circulation is much lower than those on the arterial side, veins need to be
larger than arteries and the arterial-to-venous ratio has been estimated to 1:29,10 and to 1:3 and
variable.11

This leads to three problems. First, the question of accuracy is not simple, since there is no
physiological reference comparable to that of pulse oximetry, where co-oximetry on arterial
blood can be considered the gold standard. Calibration and validation of cerebral oximeters
therefore typically use desaturation studies in healthy adult volunteers and are based on an
assumed, fixed arterial-to-venous ratio.12 Perhaps this is one reason why different devices give
widely different values in dynamic blood lipid phantoms13 and during spontaneous deoxyge-
nation in preterm infants.14 Second, if the arterial-to-venous ratio changes during the clinical
course, this may be misinterpreted as a change in cerebral oxygenation.11 Third, it reduces the
sensitivity of tissue oxygenation to decrease in cerebrovenous oxygenation due low blood flow,
e.g., due to hyperventilation, or due to increased oxygen needs, e.g., during seizures, due to
“dilution” of the signal with arterial blood of normal oxygenation.

Several attempts have been made to measure cerebrovenous oxygen saturation in newborn
infants by near-infrared spectroscopy. Tilting the head down or occlusion of the jugular veins on
the neck for a few seconds to induce pooling of blood in the cerebral veins has been used to
measure the relative increases in oxy- and deoxyhemoglobin by continuous wave spectroscopy.15

Average values in healthy term newborn infants were 65%,16 close to the average normal values
in healthy adults. These methods, however, do involve manipulation of potentially sick and vul-
nerable newborn infants and are not always successful. Analysis of signal changes induced by
positive pressure ventilation is also possible and has given similar values17 but has not been
explored further, and the analysis of signal changes induced by spontaneous ventilation is often
not possible.18

3 Opportunity

In newborn and small infants, the bones of the skull are not yet fused, and the anterior fontanelle
on the top of the head is patent for the first year of life. Just below the anterior fontanelle, the two
layers of falx cerebri (the fibrous sheath that separates the two brain hemispheres) split into two
before it fuses with the periosteum (the fibrous sheath that covers the inside of the bone). The
triangular space constitutes a sinus that is filled with venous blood flowing from the superior
parts of the hemispheres (Figs. 1 and 2). This sinus can be interrogated at the level of the anterior
fontanel, thus avoiding interposing bone and red bone marrow, or more posteriorly through bone,
as is usually done for cerebral oximetry.

The short distances, the large amount of venous blood, and the well-defined anatomy should
make it possible to obtain a nearly purely venous oxygenation and thereby to circumvent the
three problems delineated above. This approach, however, has not yet been tried.

4 Limitations of In-Vivo Calibration and Validation

It is not ethically permissible to sample blood from the superior sagittal sinus (SSS) in newborn
infants although this was routinely done at the outset of modern neonatology. Even cannulation
of the internal jugular vein cannot be done for a research purpose, and catheterization of veins on
the neck is rarely done for clinical purposes in newborn infants, so opportunistic blood sampling
cannot be planned on a large enough scale to obtain statistically firm estimates of accuracy.
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Fig. 2 Cross-sectional image of the SSS in a 27-week gestation preterm infant at the level of the
anterior fontanel. Although ultrasound can penetrate bone, good images require the fontanel as an
acoustic window. The black layer between the inner surface of the skull/fontanel and the surface of
the brain is unusually wide in this infant, about 7 mm, and is constituted by cerebrospinal fluid in the
subarachnoidal space. The subarachnoidal space separates the two brain hemispheres in a deep
V-shape. The thin line in the middle represents the falc cerebri. On top of this, the triangular SSS is
seen, measuring 2 to 3 mm on each side. It is black on the ultrasound image, since flowing blood,
such as cerebrospinal fluid, gives few echoes to ultrasound.

Fig. 1 The large cerebral veins and sinuses. The sinuses carry venous blood. The sinuses are
formed by dura, the fibrous sheath that covers bone, and the SSS is located just below the bone at
the top of the skull. It drains all venous blood from the upper parts of the brain hemispheres,
whereas the straight sinus drains blood from the basal parts of the hemispheres. The blood flows
from front to back of the head and via the transverse sinuses to the internal jugular vein.
Unfortunately, the internal jugular vein also drains some extracranial tissues, so blood sampled
there is not a perfect measure of cerebrovenous oxygen saturation.19 The approximate location of
the anterior fontanel is indicated by the black diamond (modified from P.K. Sasidharan, CC BY 3.0,
via Wikimedia Commons).
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The brains of experimental animals, such as piglet or lambs, are considerably smaller than the
brain of human infants, and although the anatomy of the SSS is similar, the differences in size
will subtract significantly from the value of validation in these animals.

5 Definitive Role for Phantoms

High-resolution imaging is possible by ultrasound as well as MR, therefore precise three-dimen-
sional anatomy can be defined and used for building physical phantoms as well as in-silico
models of photon propagation (digital phantoms). Only short source–detector distances need
to be examined, so the overall size of the phantoms can be small. Comparison of results from
physical and digital phantoms and exploring and possibly resolving any significant differences
may enhance the trust in the validity of the results.

6 Challenge of Anatomical Variability

One challenge for the translation of results from phantom work to the application of an instru-
ment on patients or research subjects is the anatomical variability. A digital phantom study of the
reliability of frequency-domain NIRS across the age span from birth to adult age used MR
images to model the “superficial layer” (i.e., skin-scalp-bone + subarachnoidal space), subar-
achnoidal space, and brain tissue.1 Compared with children below 1 year of age, with a thin scalp
and skull, a very attenuated response to changes in the absorption coefficient (μa) in brain tissue
was demonstrated in adults and larger children. By chance, perhaps, one of the MR images of a
young child used for this study displayed an open sylvian fissure (a space of subarachnoidal fluid
in the parietotemporal region), just under the row of detectors. The Monte-Carlo simulations
demonstrated how this space attenuated the sensitivity to changes of μa in brain tissue.

The variability of the development of gyration of the brain and closure of the Sylvian fissure
is well known. Although there is less variation at the top of the hemispheres, near the SSS, the
width of the subarachnoidal space does differ among infants.20 The width increases with growth
and development of preterm infants, and furthermore, infants born very preterm when 4 to 8
weeks old have wider subarachnoidal space compared to infants with the same biological age,
but born more recently. The average width in the first scan was 1.5 mm, with an upper limit of the
“normal range” of 4 mm, while in the latest follow-up scans the mean value was 3 mm and the
upper limit of the normal range was 6 mm. The head circumference ranged from 220 to 340 mm.

Similarly, the thickness of skin, bone, and the subarachnoidal space has been studied over the
temporoparietal region. The thickness of skin varied from 1 to 3 mm and bone from 1 to 5 mm.21

Digital phantom work has previously demonstrated that superficial layers with a thickness up to
6 mm do not significantly affect the measurement of brain oxygenation.22

7 Phantom Research Agenda

An agenda for developing a device to measure oxygen saturation in the SSS in newborn and
small infants could include the following.

A. A series of “digital phantoms” built to represent the typical anatomy, as well as the variation
in the relative size of the compartments, and the growth in size with age. The subarachnoidal
space and the SSS could be represented as separate volumes, whereas the hemoglobin in the
smaller blood vessels in the superficial layer (skin-scalp-bone), the subarachnoidal space, the
brain, and potentially the red bone marrow of the skull could be included in the optical
properties in the respective compartments. Phantoms representing a range of likely optical
properties must be explored.

B. Source–detector geometries that are parallel with as well as perpendicular to the SSS are
explored in the digital phantom, as regards their sensitivity to changes in the μa in the
SSS as compared to the sensitivity to changes in the μa in the other compartments.

C. The robustness to variation in the optode position is determined.
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D. A sensor geometry is chosen that achieves the optimal balance of sensitivity to changes in μa
in the SSS, minimal bias from changes in μa or scattering coefficients in the superficial and
brain compartments, and robustness to deplacement of the optode.

E. A series of physical phantoms of the same compartments are built to represent the same
variability in proportions and size. The SSS could be connected to a pump that circulates
blood that can be manipulated as regards its oxygen saturation. The brain compartment is
constructed so it can function as a blood–lipid phantom, e.g., using yeast and bubbling of
oxygen to vary the oxygen saturation. The superficial layer can be represented by a slab of
solid material with known optical properties. A similar approach has previously been used to
examine the possibility of estimating the saturation of the blood in the transverse sinus in
adults.23

F. A prototype oximeter built to the specification of the optimal optode geometry, using the best
practice choice of wavelengths and algorithms.

G. Verification of the performance of the oximeter on the physical phantoms using changes in
oxygen saturation in the SSS and the brain compartments, respectively, as well as variation in
optode placement.

8 Next Steps

Gold-standard verification in human infants is impossible, but alternative in-vivo methods are
available. One option is to compare with the results of the methods based on brief obstruction of
venous outflow from the brain, as described above. Many years ago, two different methods of
measuring cerebral blood volume by continuous wave near-infrared spectroscopy revealed sig-
nificant differences.24

Another way is to examine the “construct validity,” i.e., to compare measured responses to
expected responses to stimuli for which there already is good evidence for the magnitude. For
instance, the validity can be examined by comparing the absolute changes between this measure
of cerebrovenous saturation (in %) and arterial blood saturation (in %) as monitored by pulse
oximetry during spontaneous variations in oxygenation, which are common in preterm infant
due to periodic breathing or frank apnea.25 When arterial oxygen saturation stays within the
normal range, compensatory changes in cerebral blood flow or cerebral metabolism of oxygen
are not expected26 and arterial and venous saturation is expected to occur in parallel. This has
been used to measure cerebral blood volume and flow in newborn infants using “oxygen as a
tracer.”15 Also, robustness against changes in venous pressure can be examined. Spontaneous
changes in intrathoracic pressures happen during ventilatory support, and these are expected to
cause passive dilatation of cerebral veins, but not to affect cerebrovenous saturation.

These comparisons, however, will all be far from ideal, and thus the validation obtained by
phantom studies will be of great value, and can potentially contribute significantly to the trust in
a venous oximeter.

9 Conclusion

Good agreement between the performance of an “SSS oximeter” as predicted from digital phan-
tom evidence and actual performance on a series of physical phantoms with realistic variations in
anatomic features and in optical properties could contribute significantly to the credibility of the
accuracy of such an oximeter.

Disclosures

The author has provided advice to manufacturers of cerebral oximeters but has not received any
fees and does not hold any patents or shares in medical device industry beyond what may be
included in his bonds portfolio at any time. The author is employed at a public hospital and as
such wants clinically valuable medical devices available to patients at affordable prices. The
author is the coordinating investigator of the SafeBoosC-project that is testing the clinical value
of commercial cerebral oximeters in newborn infants.
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