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Abstract

Significance: Circulating tumor cells (CTCs) are important biomarkers for cancer management.
Isolated CTCs from blood are stained to detect and enumerate CTCs. However, the staining
process is laborious and moreover makes CTCs unsuitable for drug testing and molecular
characterization.

Aim: The goal is to develop and test deep learning (DL) approaches to detect unstained breast
cancer cells in bright-field microscopy images that contain white blood cells (WBCs).

Approach: We tested two convolutional neural network (CNN) approaches. The first approach
allows investigation of the prominent features extracted by CNN to discriminate in vitro cancer
cells from WBCs. The second approach is based on faster region-based convolutional neural
network (Faster R-CNN).

Results: Both approaches detected cancer cells with higher than 95% sensitivity and 99% speci-
ficity with the Faster R-CNN being more efficient and suitable for deployment presenting an
improvement of 4% in sensitivity. The distinctive feature that CNN uses for discrimination is cell
size, however, in the absence of size difference, the CNN was found to be capable of learning
other features. The Faster R-CNN was found to be robust with respect to intensity and contrast
image transformations.

Conclusions: CNN-based DL approaches could be potentially applied to detect patient-derived
CTCs from images of blood samples.
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1 Introduction

Breast cancer is one of the leading causes of death with one in eight women expected to be
diagnosed with invasive breast cancer in the United States.1 An estimated 284,200 new cases
are expected to be diagnosed in 2021 alone with about 44,130 deaths due to breast cancer.2

A majority of deaths in breast cancer patients are due to metastasis, where circulating tumor
cells (CTCs) shed from the primary tumor, spread to distant organs, and form secondary
tumors.3,4 Isolating, enumerating, and characterizing these CTCs are therefore valuable means
to monitor disease progression and manage treatment therapies for cancer patients.5–9

The CTCs are present in exceedingly low counts in peripheral blood (1 to 100 CTC s/ml),5

which has resulted in significant efforts to develop methods for isolating and characterizing
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these rare cells. Current CTC isolation techniques may be classified into two broad categories:
affinity-based (labeled) and label-free techniques. Technologies based on the former approach
rely on the interaction of cell-surface receptors on CTCs and specific antibodies, leading to the
isolation of only the CTCs that bind to these antibodies.10–13 In contrast, label-free approaches
isolate CTCs based on physical characteristics, e.g., size,14–16 deformability,17 dielectric proper-
ties,18,19 and density.20

Despite the development of numerous separation methods for isolating CTCs from whole
blood, the enriched CTC samples are almost always accompanied by a large number of white
blood cells (WBCs).21–26 The presence of these background nucleated cells makes it necessary
to use molecular markers and immunostaining to distinguish CTCs from WBCs. However,
the immunostaining process kills CTCs; thus, making it impossible to use them in downstream
assays such as expansion studies or single-cell transcriptomics, all of which require the CTCs to
be alive and functional.27–29 Thus, there is a need for staining-free approaches that can enumerate
live CTCs in a background of WBCs.

Current approaches for detecting stained CTCs range from manual scoring to techniques
based on image processing and machine learning. There is a growing interest in using machine
learning to detect and classify cells in patient blood samples as it eliminates drawbacks of manual
scoring and threshold-based object detection.30–32 For example, recently, Zeune et al.33 devel-
oped a deep learning (DL) network to automatically identify and classify fluorescently stained
CTCs obtained from the blood of metastatic cancer patients with a reported accuracy of over
96%. DL networks are attractive as they do not require any feature engineering but are capable of
automatically discovering the best set of features that discriminate the cells of interest and can
directly identify them from raw input images.34

Given the success of DL models to identify CTCs in stained images, new efforts are emerging
to implement similar approaches in unstained samples. However, since CTCs are quite hetero-
geneous and are present in low counts in patient samples, generating ground truth data is
challenging. Thus, as a first step, DL-based frameworks are being pursued where in vitro cancer
cells are mixed with blood cells, and the efficacy of DL models is being investigated to detect
live cancer cells in a background of blood cells35–38 As shown in Table 1, limited studies have
been conducted on DL-based frameworks for cancer cell identification from a background
of blood cells, with images acquired using quantitative phase, dark-field, and bright-field
microscopy. A notable study of this kind is the study by Wang et al.,35 who demonstrated detec-
tion of live CTCs in the blood of renal cancer patients as well as in vitro human colorectal cancer
cells (HCT-116) using a deep convolutional neural network (CNN) and reported an accuracy
of 88.6%.

In this study, we utilize CNN approaches to demonstrate an automatic, sophisticated detec-
tion model for Michigan cancer foundation-7 (MCF-7) breast cancer cells in bright-field images
of mixed population samples containing MCF-7 cells and WBCs. We develop two CNN models:
(i) the first approach referred to as the “decoupled cell detection” allows us to investigate the
prominent features extracted by CNN to discriminate cancer cells fromWBCs. To the best of our
knowledge, the features CNN uses to discriminate cells have not been explained by previous
studies. (ii) The second approach is based on faster region-based convolutional neural network39

referred to as the Faster R-CNN, which is more efficient and therefore suitable for deployment.
Additionally, we introduce a novel automatic technique to generate the training set for the Faster
R-CNN approach. This algorithm employs the bright-field image and the associated fluorescent
images as ground truth. Additionally, we investigate the effect of image transformation on the
classification accuracy to assess how well the DL model performs when variability is introduced
in image quality. Finally, we discuss avenues for moving beyond the model system studied here
and the challenges that need to be addressed to apply DL techniques to live CTC detection in
patient blood samples.

2 Sample Preparation, Image Acquisition, and Data Sets

In this section, we discuss the methods for culturing cancer cells, isolating WBCs, and how we
generated the image data sets of pure cell populations and mixed cell populations. We also
clearly outline the image data sets used in developing our machine learning methods.
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2.1 Cell Culture

The breast cancer cell line MCF-7 was obtained from the American Type Cell Collection
(Manassas, Virginia). MCF-7 cells were cultured in Dulbecco’s Modified Eagle Medium
(Gibco, Gaithersburg, Maryland) containing 10% fetal bovine serum (Gibco, Gaithersburg,
Maryland), 1% penicillin/streptomycin (Gibco, Gaithersburg, Maryland) and 1% sodium
pyruvate (Gibco, Gaithersburg, Maryland). The cell culture media were prepared according
to the manufacturer’s protocol. The cells were incubated at 37 in a 5% CO2 environment.

2.2 MCF-7 Cell Staining

The cells were labeled with CellTracker™ Green CMFDA (Invitrogen™, Waltham,
Massachusetts). The dye was prepared according to the manufacturer’s protocol to make a stock
solution of 10 mM. A working solution of 1 μM was made by diluting the stock solution in
serum-free media. This working solution was added to the tissue culture flask containing cells
followed by an incubation step for 45 min at 37. After incubation, the cells were washed with
phosphate buffer saline (Gibco, Gaithersburg, Maryland) three times to get rid of any excess dye.
The cells were further trypsinized, resuspended in fresh media, and stained with the nuclear
stain 4′,6-diamidino-2-phenylindole (DAPI, Molecular Probes, Eugene, Oregon). A working
concentration of 100;000 cells∕ml was used for the experiments.

2.3 WBC Isolation and Staining

Normal human whole blood was ordered from BioIVT (Hicksville, New York) for isolation
of WBCs from whole blood. 1 ml of whole blood was lysed using ammonium–chloride–potas-
sium (ACK) lysing buffer (Quality Biological, Gaithersburg, Maryland) for isolation of WBCs.
WBCs were stained with the nuclear stain DAPI. Aworking concentration of 3.6 × 106 cells∕ml

was used for the experiments.

2.4 Pure Cell Population Images

Slides of MCF-7 cells were prepared by adding 10 μl of working solution of MCF-7 cells on the
cover glass (Richard-Allan Scientific, Kalamazoo, Michigan) equipped with 10 mm × 24 mm

spacers on the edges. This solution was then sandwiched using another cover glass and imaged
using Olympus IX81 microscope (Massachusetts). The microscope is equipped with a Thorlabs
automated stage (New Jersey) and a Hamamatsu digital camera (ImagEM X2 EM-CCD,
New Jersey) controlled by SlideBook 6.1 (3i Intelligent Imaging Innovations Inc., Denver).
Bright-field and fluorescence images were acquired using 20× objective (0.8 μm∕pixel,
512 × 512 pixels) with the fluorescent filters DAPI and fluorescein isothiocyanate (FITC).
Exposure times between 30 and 200 ms were used for image acquisition.

Similarly, slides of WBCs were prepared by adding 10 μl of working solution of WBCs
on the sandwiched cover glass equipped with spacers. Bright-field and fluorescence images
were acquired using 20× objective (0.8 μm∕pixel, 512 × 512 pixels) and the fluorescent
filter DAPI. Exposure times use for the WBC pure cell training set image acquisition were
30 to 100 ms.

2.5 Mixed Cell Population Images

Slides for imaging of mixed cell populations were prepared by mixing 5 μl of WBC working
solution with 5 μl of MCF-7 working solution. This 10 μl solution was added to the cover glass
and imaged using the similar sandwich method as described previously.40,41 Bright-field and
fluorescent (DAPI, FITC) image acquisition was done at 20× magnification (0.8 μm∕pixel,
512 × 512 pixels). Images were acquired between 30- to 200-ms exposure times. Cell body and
nucleus of MCF-7 cells were fluorescently labeled using CellTracker™ Green CMFDA and
DAPI, respectively, whereas those of WBCs were only labeled with DAPI, enabling distinction
of the two cell types under fluorescence imaging.

Moallem et al.: Detection of live breast cancer cells in bright-field microscopy images containing. . .
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2.6 Image Data Sets

The bright-field images of MCF-7s and WBCs were accompanied by ground truth DAPI
and FITC fluorescent images for exploration, training, and evaluation of DL models used in
this study. We acquired 22 pure MCF-7 cell images and 21 pure WBC images totaling
1700 MCF-7 cells and 11,518 WBCs. For the mixed cell population, we acquired 592 images
that contained 4722MCF-7 cells and 12,314WBC cells. Figures 1(a) and 1(b) show examples of
pure cell and mixed cell bright-field images along with their associated fluorescent counterparts.
Figure 2 shows the details and statistics of the image sets that are used in the following sections.

3 Results and Discussion

In this study, we investigated two CNN-based approaches to detect MCF-7 cancer cells from a
background of WBCs. In the first approach, referred to as decoupled cell detection, all cells are
localized using the maximally stable extremal regions (MSER) algorithm,42 and then classified
using a trained CNN, i.e., the cell localization and identification tasks are carried out in two
distinct steps. The benefit of the decoupled approach is that it allows investigation of the
distinctive features that convolutional layers extract to distinguish MCF-7 cells and WBCs.

Fig. 1 Representative images and size distribution of MCF-7 cancer cells and WBCs. (a) Bright-
field and the corresponding fluorescent images of live MCF-7 cells. (b) Bright-field and correspond-
ing fluorescent images of a mixed-cell population of MCF-7s and WBCs. White arrows denote
an MCF-7 cell, which can be co-localized in the ground truth fluorescent FITC and DAPI images.
Yellow arrows denote a WBC, which can be co-localized in the DAPI image but not in the
FITC image. (c) Size distribution of MCF-7 cells, n ¼ 2071. (d) Size distribution of WBCs,
n ¼ 8575.

Fig. 2 Image sets used in this study. (a) Set I contains only pure cell population images and is
used in developing the framework of the decoupled approach. (b) Set II includes mixed cell pop-
ulation images and is used in the training and testing of the optimized decoupled approach and the
Faster R-CNN approach. This set is also used to compare the performance of the two approaches.
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Additionally, in the decoupled approach, one can differentiate the localization and classification
error rates.

In the second approach, we detect MCF-7 cells using a Faster R-CNN model. In this
approach, the cell localization and identification tasks are integrated without having separate
access to the output of the localization step or the input of the classification step. As a result,
it is difficult with Faster R-CNN model to understand the features being used to discriminate
cells. However, due to its speed and efficiency of execution, the Faster R-CNN approach is better
suited for deployment.

Below, we discuss the results from our investigations with these two approaches to detect
MCF-7 cells in a background of WBCs. We note that the network performance is reported in
terms of accuracy, sensitivity, and precision.43 Here, true positives (TPs) were defined as the
number of detected MCF-7 cells. False negatives (FNs) were defined as the number of MCF-7
cells missed in the detection procedure, and false positives (FPs) were defined as the number of
detections that did not correspond to MCF-7 cells.

3.1 Decoupled Cell Detection

In this approach, the MCF-7 cells are detected in two decoupled modules: cell localization and
cell identification modules. To detect the MCF-7 cells in a given bright-field image: (1) the
bright-field image is fed to the localization module to localize the cells using the MSER algo-
rithm, and (2) tiles of localized single cells are provided to the identification module to distin-
guish MCF-7 cells employing a trained CNN. The architecture and training details of the CNN is
discussed in the following sections. As noted earlier, one of the purposes of developing this
framework was to study the distinctive features that convolutional layers extract to distinguish
MCF-7 cells and WBCs. Therefore, it was essential to have access to the input of the CNN
classifier in order to solely study and evaluate its performance.

To develop the decoupled cell detection approach, we first designed and tested a shallow
CNN using tiles of individual MCF-7 cells and WBCs. Subsequently, we evaluated the promi-
nent cell features that allows successful classification with this trained CNN. Next, we optimized
the CNN architecture to improve the detection of MCF-7 cells. Finally, we applied the decoupled
cell detection approach to mixed cell images, i.e., individual images that contained a mixture
of MCF-7 cells and WBCs, i.e., Fig. 2(b). The results from this systematic investigation are
discussed below.

3.1.1 Shallow CNN efficiently discriminates MCF-7 cells from WBCs

To generate the training and testing set for the shallow CNN, the MSER algorithm was applied to
localize the cells in the “pure” bright-field images in set I, i.e., images containing only MCF-7
cells or WBCs. For each localized cell, a 36 × 36 tile was cropped with the cell at the center. The
tile size was determined based on the MCF-7 estimated cell size distribution [Fig. 1(c)] and
image resolution. This process ensured that bothWBCs and MCF-7 cells were contained entirely
in the cropped tiles. The tiles were carefully inspected, verified, and labeled manually employing
the FITC and DAPI masks. Those tiles with a complete WBC located in the center of the cor-
responding tile were labeled “WBC.” Similarly, tiles with a complete MCF-7 cell positioned in
the central region of the corresponding tile were tagged “MCF7.” Set I-training set was formed
by creating balanced classes of “WBC” and MCF7 tiles, each class comprising 1190 tiles. Set I-
testing set contained 510 tiles per class.

We initially designed and trained a shallow CNN with two convolutional layers followed by a
fully connected layer to classify the tiles into WBC and MCF7 categories. The convolutional
layers had 5 × 5 kernel sizes followed by a 2 × 2 pooling layer to minimize the encoding depth
due to the relatively small size of the tiles. The trained CNN was found to achieve satisfactory
performance with a training accuracy of 99.51% and a test accuracy of 99.54%. These perfor-
mance metrics justified the use of the relatively shallow architecture of the CNN as it achieved
a high accuracy level without overfitting. In addition, the class probability histograms showed
the network’s high confidence level of above 99% on classification decisions. We concluded that
the trained CNN successfully performed the discrimination task.
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3.1.2 Identifying the discriminatory cellular features

We investigated the cellular features that enabled the successful classification by the shallow
CNN. Since in Figs. 1(c) and 1(d) we observed that the mean diameter of MCF-7 cells is approx-
imately twice as large as the mean diameter of WBCs, we hypothesized that cell size could be a
distinguishing feature. To test this hypothesis, we made the size of WBCs similar to MCF-7 cells.
This was achieved by doubling the size of set I-testing WBC tiles, which doubled the size of
the WBCs contained in them, and then they were cropped to make them compatible with the
network input. When we tested the trained CNN, i.e., the model trained on non-modified MCF7
and WBC tiles, on the newly generated WBC tiles, we observed a deterioration of 61% in the
classification accuracy, which suggested that the trained CNN indeed relied on the size feature to
make the classification decision. In other words, a logical explanation for why the network
decided that resized WBCs look less like WBCs and more like MCF7s was because it learned
to use size as the main feature of distinction.

Next, we hypothesized that in addition to cell size, the shallow CNN could extract other
geometric and photometric features such as texture of the cell to perform the classification task
successfully. To test this hypothesis, we eliminated the size difference between the cell types and
trained our CNN in two ways. (i) We doubled the size of set I-training WBC tiles and used them
together with set I-training MCF7 tiles to train the CNN. In doing so, we achieved a 99.33%
training accuracy and a 98.14% testing accuracy. (ii) Alternatively, set I-training MCF7 tiles
were halved in size and combined with set I-training WBC tiles to train the CNN. The new
network designed to carry out this experiment processed 15 × 15 (not 36 × 36) input images.
To meet this requirement, MCF7 tiles were simply resized by a factor of 0.5 and WBC tiles were
cropped. This resulted in a 98.32% training and a 96.86% test accuracy. Note that in each case,
set I-testing tiles were modified the same way as set I-training tiles.

The high training and testing accuracy suggest that although size is a prominent discrimi-
natory feature used by the designed CNN, the network does utilize other features such as texture
to perform cell classification with a high, albeit reduced, level of accuracy if necessary. This
result helps explain the model’s ability to distinguish the two cell types, even when there is
an overlap in the cell size distributions [Fig. 1(c) and 1(d)].

3.1.3 Optimizing the CNN architecture

The training was carried out on two different CNN architectures, one with two and the other with
three convolutional layers while keeping the kernel sizes as 5 × 5 and pooling layer as 2 × 2.
To boost the TP detection rate of the CNN, we tuned the MSER parameters to maximize the
localization of MCF-7 cells at the expense of a proportional increase in the overall number of
tiles that were output by the MSER module. The classification task was then recast as a two-class
problem in which one class represented MCF-7 cells, and the second represented all non-MCF-7
objects that included WBCs and debris. The results showed that the CNN with three convolu-
tional layers had testing sensitivity and precision of 98.8%, outperformed the CNN with two
layers by more than 3%. We therefore used the CNN with three convolution layers in subsequent
studies for classification in the decoupled cell detection approach.

So far, our investigations were focused on the pure cell images in set I to develop and opti-
mize a shallow CNN and identify cellular features that enable classification. Next, we trained and
evaluated the decoupled cell detection approach, as shown in Fig. 3, on images containing both
MCF-7 cells and WBCs, i.e., set II images as described in Fig. 2(b). For training purposes,
60% of set II images were randomly chosen and used, which hereafter will be referred to as
the “training images.” The remaining 40% of set II images were used to evaluate the developed
framework, i.e., the “testing images.”

In the cell localization module, i.e., module 1, the MSER algorithm is applied to the input
image to localize the objects. The MSERs are those connected regions that do not change in size
and morphology as one incrementally thresholds the image over a wide range of thresholding
values. There are three parameters to be adjusted for the MSER algorithm: (1) size range, i.e.,
smallest and largest extremal regions to be selected, (2) stability testing range, i.e., minimum
number of thresholding iterations that results in a stable extremal region, and (3) maximum
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variation, i.e., the maximum size variation that is allowed for the region to be counted as stable.
To detect the MSERs, the image is iteratively binarized at different thresholding levels and con-
nected regions are estimated. The detector selects any connected region that is within the size
range and exhibits less area variation than the maximum variation parameter within the specified
stability testing range. In this framework, the size range was set based on the lower and upper
bounds of the MCF-7 size distribution to maximize the localization of MCF-7 cells. Specifically,
this parameter was set to [lower bound −5%, upper bound þ5%]. Outputs from the localization
module are 36 × 36 tiles centered on the corresponding objects. The tile size was calculated
based on the upper bound of the MCF-7 cell size distribution and image resolution.

In the cell identification module, i.e., Module 2, the cropped tiles are fed to the trained CNN
model that, as described above, consists of three convolutional layers and a fully connected layer.
The convolutional layers have a 5 × 5 kernel size, followed by a 2 × 2 pooling layer. The fully
connected layer outputs a two-dimensional vector containing the MCF7 and “non-MCF7” class
prediction scores.

The training and testing set label assignment workflow for developing the decoupled cell
detection framework is shown in Fig. 4. In this workflow, first, MSER was applied to each input
image, and tiles of localized objects were generated. Afterward, the cropped tiles were manually

Fig. 4 Training and testing set label assignment strategy for developing the framework of the
decoupled cell detection approach. As demonstrated, the objects in the input image are localized
employing the MSER algorithm. Then, the generated tiles of the localized objects are manually
categorized based on their corresponding signatures in the FITC and DAPI filters.

Fig. 3 The framework of the decoupled cell detection approach. As shown, the cell detection is
performed in twomodules: cell localization and cell identification. The localization module localizes
the cells present in the input bright-field image. The CNN-based identification module then iden-
tifies the MCF-7 cells among the localized cells.
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categorized based on their corresponding signatures in DAPI and FITC masks. Every localiza-
tion depicting a signature in both DAPI and FITC masks was labeled as MCF7 since cancer
cells were live stained with both a nucleus (DAPI) and a cell body (FITC) marker, whereas
tiles lacking any signature in the FITC mask were annotated as non-MCF7. The input to this
workflow is the training or testing images, i.e., Fig. 2(b), and the generated training or testing
set is a collection of cell tiles, each associated with a label.

We used the training images to generate the training set containing 2760 MCF7 tiles and
2760 tiles in the non-MCF7 class. The CNN was trained using the ADAM optimizer for
35 epochs. The training process took 74 s on an Nvidia TITAN RTX. The trained classification
CNN achieved 98.99% training sensitivity and 99.8% training precision.

3.1.4 Performance of the decoupled cell detection approach

We evaluated the decoupled approach on the generated testing set, i.e., a set of 1962 MCF7 tiles
and 1962 non-MCF7 tiles, using three performance metrics: sensitivity, precision, and average
execution time per image as shown in Table 2. Overall, the decoupled approach performed with
95.5% accuracy, 95.3% sensitivity, and 99.8% precision, which indicates its ability to success-
fully achieve the MCF-7 identification task. Figure 5 shows representative examples of TPs, FPs,
and FNs observed during the analysis. In the decoupled approach, MCF-7 cells localized and
correctly classified were counted toward TPs [Fig. 5(a)]. The combination of (i) the MCF-7 cells

Table 2 The performance statistics of the two CNN approaches used in this study on the testing
images.

Approach TPs

FNs FPs

Sensitivity
(%)

Precision
(%)

Average
inference time
per image (s)Module1 Module 2

Non-MCF7
objects

Extra
detections

Decoupled Cell
Detection

1869 71 22 3 1 95.3 99.8 0.6

Faster R-CNN
Cell detection

1945 17 4 0 99.1 99.8 0.3

Fig. 5 Representative examples of TP, FP, and FN outcomes from the decoupled cell detection
approach. (a) TPs are those MCF-7 cells that are localized and correctly identified as MCF-7 cells
by the model. (b) FNs are MCF-7 cells that are not localized and therefore the model is not able to
reach the identification stage (c) FNs can also be MCF-7 cells that are localized, but incorrectly
classified by the model as non-MCF7. (d) FPs are the non-MCF-7 objects that are localized and
classified as MCF7. (e) Additional examples of FNs.
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not localized [Fig. 5(b)] and (ii) the MCF7 tiles labeled as “non-MCF7” [Fig. 5(c)] were counted
as FNs. Lastly, the non-MCF7 tiles categorized into the MCF7 class were considered as FPs
[Fig. 5(d)].

We further investigated the source of FNs. As shown in Table 2, the MSER localization
module is unable to localize 71 MCF-7 cells, whereas the identification module misclassifies
22 MCF-7 cells. Therefore, the localization errors are responsible for more than 75% of the FNs.
The majority of FNs encountered during identification are MCF-7 cells whose contrast, shape,
and size differ from an average MCF-7 cell [see examples in Fig. 5(e)]. These two observations
indicate that the convolutional layers of the CNN classifier were able to grasp the common
features of MCF-7 cells for identification. As observed, the decoupled nature of this approach
enabled us to trace back the missed detections of the CNN classifier and study them to gain
insights into the discriminatory power of features that convolution layers extract in classifying
MCF-7 cells versus WBCs.

3.2 Faster R-CNN Cell Detection

The decoupled cell detection approach performs the MCF-7 localization and identification in
two steps. However, the sensitivity of this approach is being affected by the large number
of FNs due to localization errors. We therefore explored a Faster R-CNNmodel, which integrates
these two steps without having separate access to the output of the localization step or the input
of the classification step. The Faster R-CNN model takes a bright-field image as input and out-
puts a bounding box (BB) for every MCF-7 cell present in the input image (Fig. 6). Two major
modules underlie the Faster R-CNN model: (1) a localization module, i.e., a region proposal
network (RPN) that discovers regions in the input image that are likely to include an MCF-
7 cell; and (2) a classification module, i.e., Fast RCNN that labels the region proposals, which
essentially include an MCF-7 cell and estimates a BB that properly confines the cell.

3.2.1 Automated dataset label assignment procedure

For training or evaluating a Faster R-CNN model, every image must be accompanied by a BB
associated with each MCF-7 cell present in the image. The manual generation of BBs can be a
tedious, subjective, and labor-intensive task. Here, we propose a technique for generating the
BBs automatically (see Fig. 7). In this technique, the MCF-7 cell signatures in the FITC mask are
first localized utilizing the circular Hough transform algorithm.44 The FITC mask background is
less noisy and complex than its corresponding bright-field image and, therefore, a better option

Fig. 6 The Faster R-CNN cell detection approach. The Faster R-CNN detection model consists of
two main integrated modules: (i) a RPN that generates the region proposals (indicated by the
orange bounding boxes in the image) that are most likely to include an MCF-7 cell, and (2) a
Fast RCNN that labels the generated region proposals and outputs a BB for each detected
MCF-7 cell. In the output image, the yellow boxes give the estimated bounding boxes assigned
to the MCF-7 cell and the red boxes depict the corresponding ground truth.
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to use for localization. For every localization, if not touching the image boundaries, the corre-
sponding region in the DAPI mask is screened. If a signature exists in the screened region, then
the corresponding localization is added to the MCF-7 binary mask. Lastly, for every blob in the
MCF-7 binary mask, a 36 × 36 BB is generated and centered on that blob.

With this technique, 613 mixed population and pure cell images were annotated in less than
117 s, which is a significant improvement compared to manual annotation taking more than
100 s per image on average using MATLAB’s Image Labeler tool. Additionally, this technique
produced equal-sized BBs that are centered on the cells; an outcome that is difficult to achieve
manually. Consequently, the proposed automatic dataset label assignment algorithm is a fast,
efficient, and consistent technique to generate BB annotations for MCF-7 bright-field images.

For the Faster R-CNN cell detection approach, we utilized the same training images used in
the decoupled cell detection approach. Utilizing dataset label assignment framework demon-
strated in Fig. 7, we generated a training set comprising the 355 training images with a total
of 2760 MCF-7 BBs. We employed the ResNet5045 as the back-bone CNN for the Faster
R-CNN model. The negative and positive overlap ranges were set to [0,0.5] and [0.6,1], respec-
tively. The model was trained for 30 epochs on an Nvidia TITAN RTX in 285 min. The model’s
performance on the training set indicated an average intersection-over-union (IoU) of 80.3% and
a prediction score of 99.6%. The trained model achieved 99.6% training sensitivity and 99.18%
training precision.

For the Faster R-CNN detection approach, the TPs, FNs, and FPs were defined in the same
way as the decoupled approach, however they were interpreted differently due to the dissimi-
larities in the mechanism of the two approaches. All MCF-7 cells assigned a BB having
IoU > 50% with respect to the annotation BB were counted toward TPs [Fig. 8(a)]. An
MCF-7 cell missing an estimated BB was considered a FN [Fig. 8(b)]. There were two kinds
of FPs as shown in Figs. 8(c) and 8(d): (1) redundant BBs assigned to a single MCF-7 and
(2) non-MCF7 objects assigned a BB.

3.2.2 Performance comparison of the two approaches

As discussed in the previous sections, we developed two different frameworks that detect MCF-7
cells in the mixed cell population images. The first developed approach, i.e., decoupled cell

Fig. 7 Training and testing set label assignment procedure for the Faster R-CNN cell detection
approach. For every bright-field image, the MCF-7 cells are first localized in the corresponding
FITC mask using the circular Hough transform. Then, each localization, if not touching the image
boundaries, is screened in the DAPI mask. If the localized region has a signature in the DAPI
mask, then it is added to the MCF-7 binary mask. Finally, a BB is generated for every blob in
the MCF-7 binary mask.
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detection, performed with 95.3% sensitivity and 99.8% precision on testing images. To achieve a
better sensitivity rate, we pursued and presented an alternative cell detection approach, i.e.,
Faster R-CNN detection approach. Table 2 gives the statistical measurements and corresponding
performance metrics of the two cell detection approaches on the testing images. Both approaches
exhibit a comparable precision, whereas the sensitivity of the Faster R-CNN approach is better
than the decoupled approach, indicating that the Faster R-CNN approach is less likely to miss
MCF-7 cell detections. It is worth noting that unlike the decoupled approach, we cannot trace
back the missed detections (FNs) specifically to the localization or classification modules in the
Faster R-CNN model.

Comparing the performance of both approaches indicate that the Faster R-CNN cell detection
approach is preferred because it provides better overall performance in detecting MCF-7 cells
in roughly half the time. Finally, the cell detection framework proposed by Wang et al.35 is
comparable to our decoupled cell detection approach in that it too is comprised of cell locali-
zation and cell identification modules. However, their work does not offer feature analysis,
nor do they assess the performance of each module independently. Moreover, our proposed
deployed detection model, i.e., Faster R-CNN model, outperforms Wang et al.’s detection
framework.

3.3 Impact of Image Intensity Transformations on the Faster R-CNN
Approach

Amajor factor determining the effectiveness of a trained DL model is how well it performs when
exposed to images with variations in the background intensity and contrast, as well as intensity
variations within cells and cell boundaries. Such variations are not uncommon in experimental
images due to variability in cell sample preparation and imaging conditions (e.g., focus position
and exposure times). To understand the effect of such variations on the performance of Faster
R-CNN model, we performed image transformations and assessed the performance of the Faster
R-CNN approach on the transformed images. In addition to sensitivity and precision, F1-score
was used to evaluate the overall performance of the Faster R-CNN detection model in the
presence of image transformations. F1-score is defined as the harmonic average of recall and
precision, evaluating the overall changes in the performance of the detection model, when
deployed on a dataset.

We performed image transformations and calculated the aggregate intensity distribution of a
dataset by averaging the accumulated intensity distributions of all the images in the correspond-
ing dataset. The intensity histogram of every image, hðIÞ, was altered in the following three
ways:

1. Shift the image intensity histogram to generate a brighter version of the image. The offset
(B1) added to every pixel intensity is randomly drawn from a uniform distribution with

bounds ½meanðhðxÞÞ
4

; meanðhðxÞÞ
2

�. The altered image is modeled with IIntðx; yÞ ¼ Iðx; yÞ þ B1

with corresponding hIntðIÞ. This transformation increases the mean of hðIÞ by 25% to
50%. The upper limit was set to avoid any pixel intensity saturation. The aggregate of
all generated hIntðIÞ is represented by HI.

Fig. 8 Representative examples of (a) TP (b) FN and (c) and (d) FP from the Faster R-CNN
approach. The arrow in each image and the bottom right inset highlights these examples. The
yellow boxes give the estimated bounding boxes assigned to the MCF-7 cell and the red boxes
depict the corresponding ground truth.
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2. Increase the image contrast through stretching the image intensity distribution, hðIÞ,
around the mean (increase the intensity variance). For this purpose, the offset (B2) is
chosen so that hðIÞ is centered in the [0, 255] range. This offset is added to every pixel
intensity value. Afterward, a random value (A2) is chosen from a uniform distribution with
bounds [1.5, 2.5] and multiplied to every pixel value. This results in a darker version of
the image with higher contrast. The altered image and its corresponding histogram are
represented with IICðx; yÞ ¼ A2 × ðIðx; yÞ þ B2Þ and hICðIÞ, respectively. By this trans-
formation, the variance of hðIÞ has an increase between 125% to 525%. The aggregate of
all generated hICðIÞ is represented by HIC.

3. Invert the pixel intensity values to generate the negative of the corresponding image.
The altered image and its corresponding histogram are represented with INðx; yÞ ¼ 255 −
Iðx; yÞ and hNðIÞ, respectively. The aggregate of all generated hNðIÞ is represented byHN.

In addition to the above three transformations that were performed on the original image sets
discussed in the previous sections, we also generated a new experimental image set by altering
the focus and exposure time during image acquisition. The aggregate intensity distribution for
this new data set is denoted by Hnewexpt.

In Fig. 9(a), we show the aggregate intensity distribution HTR and HTS for training and test-
ing sets, respectively. As expected, the intensity distributions have similar mean and variance
indicating that the detection framework is trained on a similar distribution as the testing set. In
contrary, as shown in Figs. 9(b), 9(c), and 9(e),HI ,HIC, andHnewexpt have different mean values
compared to HTR. Additionally, Fig. 9(c) shows notable differences in the variance of HIC and
HTR. Note that Fig. 9(d) displays a mirroring effect betweenHTR andHN . This property suggests
that, in contrast to the original training images, the cells in the negative images appear brighter
than the background.

Table 3 compares the performance of the Faster R-CNN approach on the original testing set,
the altered versions of the original testing set, and the new experimental dataset. As shown, the
detection model manifests its best performance, i.e., achieves highest F1-score, on the original
testing set. This observation is rather intuitively comprehensible since the original testing dataset
has a similar distribution as the original training set, and so, the detection model is trained for the
images in the original testing set. Taking the performance of the model on the testing set as the
reference, for 25% to 50% intensity variation and 125% to 525% variance or equivalently con-
trast change, the F1-score was decreased to <0.1% and 0.2%, respectively. These observations
indicate that the Faster R-CNN approach robustly responds to the intensity and contrast varia-
tions. Note that the degradation in the performance of the Faster R-CNN approach extends as the
transformed intensity distribution further deviates from the intensity distribution of the original
training set. Based on the preceding observations, it can be fairly concluded that the detection
model extracts features that are relatively robust to intensity and contrast variations.

Fig. 9 Impact of image transformations on the aggregate intensity distributions. (a) An original
testing image and the corresponding aggregate intensity distribution, HTS (b) Intensity altered
image and the corresponding aggregate intensity distribution HI (c) Intensity and contrast altered
image and the corresponding aggregate intensity distribution H IC (d) Negative image and the cor-
responding aggregate intensity distribution HN (e) New experiment image and the corresponding
intensity distribution Hnewexpt. Each of the altered intensity distributions are compared with the
intensity distribution HTR from the original training set.
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For the negative testing set, the precision noticeably decreased (−28.7%), causing the F1-
score to drop 16.8%, which shows that the model is considerably less robust to transformations
that reverse the intensity map of the objects with respect to the background. However, when we
retrained the Faster R-CNN model on training images and their negative versions and tested the
retrained detection model on the negative of testing images, the performance recovered to 99.1%
sensitivity, 97.3% precision, and F1-score of 98.2%. Thus, the detection model tends to show
vulnerability toward contrast reversal transformations. However, if trained on both the image and
its negative version, the detection model manages to learn features of the cell that are indepen-
dent of the cell versus background contrast.

3.4 Application of Deep Learning Techniques to Live Patient-Derived CTC
Detection

Our results show that the DL-based Faster R-CNN model can successfully classify live in vitro
breast cancer cells in a background of WBCs. This outcome parallels the success that DL models
are achieving in the fields of biomedical image analysis and clinical diagnostics.46,47 These
advances have led to successful efforts in applying DL to detect patient-derived CTCs in
fluorescently stained blood samples.33,35 Applying similar techniques for detecting live CTCs
in unstained patient blood samples would open new opportunities (e.g., ex vivo expansion of
CTCs for drug screening and molecular analysis). However, application of DL techniques for
label-free detection of patient-derived CTCs presents challenges as we discuss below.

For supervised machine learning-based models, generation of valid ground truth data is
essential. In the case of patient-derived CTCs, generation of ground truth images requires
live-cell fluorescent markers that are specific to CTCs but do not stain blood cells. However,
tagging CTCs with live-cell fluorescent labels has been a challenge in the field, although some
progress is being made. For example, Wang et al. used carbonic anhydrase 1× PE-conjugated
antibody along with a live cell dye, calcein acetoxymethyl ester to detect live CTCs in metastatic
renal cell carcinoma patients.35 In another study, a group of near-infrared (IR) heptamethine
carbocyanine dyes were used to identify viable CTCs recovered from prostate cancer patients.48

These dyes were shown to actively tag cancer cells in xenograft models and have since begun to
be used as live markers to further improve cancer prognosis and treatment efficacy.49 Recently,
positive selection approaches involving the use of cell surface markers, such as HER2 (human
epidermal growth factor receptor-2), EpCAM (epithelial cell adhesion molecule), and EGFR
(epidermal growth factor receptor) have also been implemented to recover viable CTCs.50

Another challenge for generating ground truth images is the heterogeneity of patient-derived
CTCs. During the metastatic cascade, primary tumor cells that are of epithelial origin become
migratory acquiring a mesenchymal phenotype.11,51,52 Studies with cancer patient blood show
that some of the isolated CTCs have high epithelial marker expression while others have high
mesenchymal marker expression or a combination of both.53–56 This heterogeneity in marker
expression requires multiple fluorescent labels to tag live CTCs and capture the diversity present
in patient blood and generate ground truth data.

Finally, machine learning-based approaches often require large data sets for training. Since
CTCs are present in extremely low counts in patient blood, generating large, annotated data sets

Table 3 The performance of the Faster-RCNN approach on the original testing and transformed
datasets.

Dataset Histogram Sensitivity (%) Precision (%) F1-score (%)

Original testing images HTS 99.1 99.8 99.45

Intensity-altered testing images HI 98.9 99.9 99.40

Intensity- and contrast-altered testing images H IC 99 99.5 99.25

Negative testing images HN 98.8 71.1 82.70

New experimental image set Hnewexpt 99.4 97.3 98.34
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requires access to many patients’ blood samples. Collecting blood samples from a large patient
population can be a time-consuming, expensive, and a logistically challenging task.

A potential avenue to address these challenges in label-free live detection of CTCs is to
develop robust DL-based approaches to detect blood cells in patient samples and score the
remaining non-blood cells as prospective CTCs. This negative selection-based approach will
at least help in quickly screening, which patient blood samples are of most interest for further
scrutiny.

5 Conclusions

In this work, we proposed an automated framework for label-free detection of MCF-7 breast
cancer cells in a background of WBCs in bright-field images. An effective Faster R-CNN-based
detection model was developed for detecting MCF-7 cells in the acquired bright-field images.
The proposed model demonstrated 99.1% sensitivity and 99.8% specificity, and an average IoU
of >80%. The MCF-7 cell detection model analyzed each bright-field image in <0.3 s, more
than 300× faster than a human labeler. Also, we introduced a novel fully automated technique for
training set label assignment.

Additionally, we conducted multiple studies to investigate the discriminatory features that an
effective CNN derives and employs to differentiate MCF-7 cells and WBCs. These studies
showed that the size of the cells was the main distinctive feature that the CNN used to distinguish
MCF-7 cells from WBCs. However, in the absence of the size feature, the CNN was still capable
of learning other features to perform the identification task, with an acceptable, yet decreased,
accuracy level.

Finally, we examined the performance of the detection model in the presence of numerous
image intensity transformations. The results demonstrated that for intensity and contrast varia-
tions, the F1-score of the detection model was reduced by < 0.2%. Therefore, the MCF-7 cell
detection model was sufficiently robust with respect to intensity and contrast image transforma-
tions. These observations inform that the detection model uses intensity- and contrast-invariant
features to perform the detection task.

The results in this work indicate that DL approaches could be potentially applied to detect
CTCs in the blood of cancer patients. In the future, challenges related to live-cell and multi-
marker fluorescent labeling of patient-derived CTCs and community-wide access to large,
labeled datasets need to be addressed.
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