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ABSTRACT. Significance: Cellular metabolism is highly dynamic and strongly influenced by
its local vascular microenvironment, gaining a systems-level view of cell metabolism
in vivo is essential in understanding many critical biomedical problems in a broad
range of disciplines. However, very few existing metabolic tools can quantify the
major metabolic and vascular parameters together in biological tissues in vivo with
easy access.

Aim: We aim to fill the technical gap by demonstrating a point-of-care, easy-to-use,
easy-to-access, rapid, systematic optical spectroscopy platform for metabolic and
vascular characterizations on biological models in vivo to enable scientific discov-
eries to translate more efficiently to clinical interventions.

Approach: We developed a highly portable optical spectroscopy platform with a
tumor-sensitive fiber probe and easy-to-use spectroscopic algorithms for multi-
parametric metabolic and vascular characterizations of biological tissues in vivo.
We then demonstrated our optical spectroscopy on tissue-mimicking phantoms,
human subjects, and small in vivo tumor models. We also validated the proposed
easy-to-use algorithms with the Monte Carlo inversion models for accurate and rapid
spectroscopic data processing.

Results: Our tissue-mimicking phantom, human subjects, and in vivo animal stud-
ies showed that our portable optical spectroscopy along with the new spectroscopic
algorithms could quantify the major metabolic and vascular parameters on biological
tissues with a high accuracy. We also captured the highly diverse metabolic and
vascular phenotypes of head and neck tumors with different radiation sensitivities.

Conclusions: Our highly portable optical spectroscopy platform along with easy-to-
use spectroscopic algorithms will provide an easy-to-access way for rapid and
systematic characterizations of biological tissue metabolism and vascular micro-
environment in vivo, which may significantly advance translational cancer research
in the future.
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1 Introduction
Cellular metabolism is highly dynamic and strongly influenced by its local vascular micro-
environment; gaining a systems-level view of cell metabolism and vasculature in vivo is essential
in understanding many critical biomedical problems in a broad range of disciplines.1–4 For exam-
ple, many types of human tumors can flexibly switch between glycolysis and mitochondrial
metabolism under a range of oxygen conditions, which renders some therapies ineffective.5–7

Therefore, capturing both metabolism and vascular microenvironment alterations will be critical
in understanding tumor treatment resistance and recurrence mechanisms. Although several tools
with a variety of length scales were developed to measure the metabolic alterations in tumor cells
or tissues, they cannot detect the transient and dynamic metabolic changes in vivo with easy
access and they have a variety of practical and scientific limitations. Seahorse assay measures
the oxygen consumption rate (OCR) and extracellular acidification rates (ECAR) of in vitro cells
to report cell mitochondrial respiration and glycolysis indirectly.8 Metabolomics can simultane-
ously screen many metabolites and map the metabolic networks from in vitro cells to ex vivo
tissues, but it is destructive.9 Immunohistochemistry (IHC) can quantify vascular endothelial
markers (CD31),10 hypoxia (pimonidazole),11 glucose transporters (GLUT-1),12 and mitochon-
drial biogenesis (PGC-1α)13 but only for ex vivo tissues or in vitro cells. Positron emission
tomography (PET) has been widely used for cancer screening in vivo but primarily for quantify-
ing glucose uptake.14 Magnetic resonance spectral imaging (MRSI) can report on mitochondrial
metabolism and glycolysis via 31P or 13C in vivo,15,16 whereas blood oxygen level-dependent
magnetic resonance imaging (MRI)17 and dynamic contrast-enhanced MRI18 enable vascular
imaging. Although powerful, MRI techniques have relatively low sensitivity. Unfortunately,
none of the existing tools discussed above can quantify glycolysis, mitochondrial function, and
vascular microenvironment together in vivo. Furthermore, most of them are (1) housed in core
facilities that require transporting samples or animals to designated locations, (2) expensive,
(3) time-consuming, and (4) expertise-dependent due to special sample preparation and compli-
cated data processing. These factors all limit their user access to biomedical research. It is
significant to break the limitations of conventional equipment and develop new tools capable
of quantifying tissue metabolism and vasculature together in vivo. To maximize access to bio-
medical research across research labs, it is critical to develop new metabolic tools with high
portability and low-cost footprints.19–22

Optical spectroscopy techniques have great potential to provide point-of-care measurements
of tissue metabolism and its associated vasculature in vivo. Both oxygenated and deoxygenated
hemoglobin have broadband optical absorption spectra, which have been extensively explored by
us to measure vascular oxygenation (StO2)

23,24 and firmly validated with the gold standard, that
is, pO2.

25,26 Autofluorescence of reduced nicotinamide adenine dinucleotide (NADH) and flavin
adenine dinucleotide (FAD) has been explored to report the reduction-oxidation (redox) state of
cells27 by looking at the ratio of the two (FAD/NADH) and then providing an indirect measure of
the balance between glycolysis and OXPHOS. FAD and NADH-based label-free autofluores-
cence techniques (redox ratio, validated by Seahorse Assay27) have been explored by others
to study cancer therapeutics.28 Label-free Raman techniques have also been explored extensively
to report tumor metabolism.29,30 Though these two label-free techniques are promising for tumor
metabolism studies, they are primarily explored for diagnostic studies or therapy response
predictions.28,29 Alternatively, we have exploited a metabolic probes-based approach to measure
tissue glycolysis and mitochondrial function directly and explicitly on small animals in vivo.23

The 2-[N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG) has been
extensively used in cell and animal models to quantify glycolysis.23,31 Although 2-NBDG does
not provide insights into the entire glycolytic pathway, it measures glucose uptake analogous to
clinically accepted FDG-PET imaging.32,33 TMRE has been utilized extensively to measure
mitochondrial membrane potential (MMP) to study OXPHOS.34–36

Though the measurement of each endpoint is well established by us,36 it will be critical to
integrate all these measurements into one single highly portable device to provide rapid quanti-
fication of these endpoints simultaneously on the same tissue site, which allows one to perform
multi-dimensional metabolic analysis37,38 on tumors that may provide more insights into cancer
biology. Here, we report a novel PEERS (portable, easy-to-use, easy-to-access, rapid, systematic)
optical spectroscopy for metabolic characterizations on biological models in vivo to enable
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scientific discoveries to translate more efficiently to clinical interventions. Specifically, we
developed (1) a highly portable and low-cost optical spectroscopy platform with a tumor-
sensitive fiber probe for diffuse reflectance and fluorescence measurements on biological tissues
and (2) novel easy-to-use spectroscopic algorithms for rapid quantification of metabolic param-
eters on biological tissues in vivo. To demonstrate the proof-of-concept of our reported PEERS
optical spectroscopy techniques, we performed tissue-mimicking phantom studies, human sub-
ject pilot tests, and in vivo animal studies for rapid quantification of vascular and metabolic
parameters. We also validated the easy-to-use algorithms with our previously reported Monte
Carlo (MC) techniques23 for accurate and rapid spectroscopy data processing. Our tissue-
mimicking phantoms, human subjects, and in vivo animal studies showed that our optical spec-
troscopy along with the novel spectroscopic algorithms could quantify the major metabolic and
vascular parameters on biological tissues with high accuracy. Our in vivo animal studies also
captured the highly diverse metabolic and vascular phenotypes of head and neck tumors with
different radiation sensitivities. Our reported novel optical spectroscopy will provide a new way
(PEERS: point-of-care, easy-to-use, easy-to-access, rapid, systematic) for characterizing tumor
metabolism and its vascular microenvironment in vivo, and it will have a broad impact across
many biomedical fields through the lens of tissue metabolism and vascular microenvironment.

2 Materials and Methods

2.1 Portable multi-Parametric Optical Spectroscopy Platform
To minimize the system size and cost, we have identified a Solis™ High-Power white LED
source (SOLIS-3C, Thorlabs) for both fluorescence and diffuse reflectance measurements.
As illustrated in Fig. 1(a), a 450-nm bandpass filter (�12.5 nm) was used to generate light for
2-NBDG (glucose uptake probe) excitation, and a 550-nm bandpass filter (�12.5 nm) was used
to generate light for TMRE (MMP probe) excitation. A neutral density filter (ND = 2.0,
Thorlabs) was used for diffuse reflectance illumination to protect the spectrometer from
over-exposure. A custom-designed fiber optics probe (LEONI Fiber) with two groups of unique
source–detector distances was designed based on our former numerical studies39 to enable tumor-
sensitive metabolic characterizations on small tumor models. A total of 19 illumination fibers
were bundled in the center of the common end for light delivery, whereas a total of 19 fibers
were used for channel 1 light collection, and a total of 22 fibers were used for channel 2 light
collection. The diameter of each fiber is 200 μm. The average source–detector separation for
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Fig. 1 (a) Schematic of the portable optical spectroscopy platform with a custom-designed tumor-
sensitive dual channel fiber probe. (b) Photo of the portable optical spectroscopy platform and
the custom-designed optical switch. The total cost of the major optical components of the system
is ∼10 k USD.
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channel 1 was 1.5 mm, whereas the average source–detector separation for channel 2 was 3 mm.
The max illumination power from the illumination channel can reach up to 2.0 mW at 450 nm
and 1.5 mW at 550 nm, respectively. In the collection end, a custom-designed optical switch
[shown in Fig. 1(b), 2 channels to 1 channel] was used to ensure the signal from the two col-
lection channels can be acquired sequentially by a compact spectrometer (FLAME-T-VIS-NIR,
Ocean Optics). Two long-pass filters (515 nm for 2-NBDG, and 575 nm for TMRE) were
installed in the optical switch for fluorescence measurement to remove excitation light, whereas
no filter was used for diffuse reflectance collection. Once the basic operation was established, the
system was packaged into a small cart [Fig. 1(b)] for future point-of-care measurements.

2.2 Monte Carlo Model and Empirical Methods for Vascular and Metabolic
Parameters Estimation

Our formerly reported MC inverse model23 was adapted with our new spectroscopy system for
both diffuse reflectance and fluorescence data processing.40,41 Briefly, the diffuse reflectance MC
inversion model adaptively fits the measured reflectance spectrum to the simulated spectra until
the sum of squares error between the two is minimized, whereas the fluorescence MC inversion
model extracts the intrinsic fluorescence with the implementation of absorption and scattering
information extracted from the reflectance inversion model.40 The MC-extracted absorption spec-
tra were further fitted with a linear combination of the extinction spectra of oxy-hemoglobin and
deoxyhemoglobin to quantify tissue vascular saturation (StO2) and total hemoglobin concentra-
tion ([THB]).42 The MC model processed fluorescence spectra were used to report the key met-
abolic parameters with the use of fluorescence probes.

To enable rapid and easy quantification of optical metabolic and vascular parameters, we
also explored ratio-metric and equation-based analytical methods for spectral data processing.
Several diffuse reflectance ratios comprised of isosbestic wavelengths have been explored to
estimate [THB],43 whereas the diffuse reflectance ratio at 584 and 545 nm with a narrower band-
width provided a more sensitive measurement of [THB].43 Therefore, the ratio of diffuse reflec-
tance at 584 nm and 545 nm was explored to indicate [THB] in our study. The corrected
absorbance equation 44 has been explored to estimate the tissue vascular StO2 with the use
of proper wavelength bands. Specifically, the corrected absorbance [AðλÞ] can be calculated from
diffuse reflectance [RðλÞ] by Eq. (1) to remove the scattering distortion,

EQ-TARGET;temp:intralink-;e001;114;364AðλÞ ¼ log

�
1

RðλÞ
�
− ðaþm × λÞ; (1)

where the a and m are the intercept and slope of the least square fitted line that can be estimated
using reflectance at the scattering domain band (620 to 680 nm). The corrected absorbance can
also be expressed by Eq. (2)

EQ-TARGET;temp:intralink-;e002;114;291AðλÞ ¼ CHb × εHbðλÞ × hLiþCHbO2 × εHbO2ðλÞ × hLi; (2)

where the AðλÞ is a sum of absorptions contributed by the oxygenated hemoglobin and deoxy-
genated hemoglobin, εHbðλÞ andεHbO2ðλÞ are the molecular extinction coefficient of deoxyhe-
moglobin and oxyhemoglobin42 (knowns), and the hLi is the average optical path length
(unknown). StO2 can then be easily estimated based on the concentrations (CHbO2 and CHb )
of the two molecules using Eq. (3) even though the hLi is unknown:

EQ-TARGET;temp:intralink-;e003;114;208StO2 ¼
CHbO2 � hLi

CHb × hLiþCHbO2 × hLi ¼
CHbO2

CHb þCHbO2

: (3)

To estimate CHbO2 and CHb , at least two wavelengths are required. The wavelengths of 555 and
575 nm were used in our study for StO2 estimation, but other non-isosbestic wavelengths could
also be used for the same purpose.44

We have reported a novel ratio-metric method as illustrated by Eq. (4) for rapid extraction of
intrinsic fluorescence by dividing the fluorescence spectra by diffuse reflectance intensities
recorded at excitation and emission peaks with a pair of system-dependent power (α; β):45

EQ-TARGET;temp:intralink-;e004;114;99FcorrðλÞ ¼
FrawðλÞ

½Rex�α½Rem�β
: (4)
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Relying on this foundation, we further explored the ratio-metric method for intrinsic fluorescence
extraction from fluorescence measured from biological tissues using our new optical spectros-
copy platform. The MC inversion model served as a benchtop reference to validate the proposed
easy-to-use ratio-metric and analytical methods for metabolic and vascular parameter quan-
tifications.

2.3 Tissue-Mimicking Phantoms and Human Subject Pilot Test
Tissue-mimicking phantom studies were used to verify the optical spectroscopy system along
with various spectroscopic data processing methods for accurate quantification of the intrinsic
fluorescence signal, absorption, and scattering as described previously.25,45–47 These phantoms
were also used to validate the ratio-metric techniques and equation-based analytical methods
against the MC model for accurate quantification of the key metabolic and vascular parameters.
Careful validation of the optical platform and data processing methods using proper tissue-
mimicking phantoms is necessary to ensure the new techniques are applicable to the range
of conditions under which they will be deployed. To ensure the tissue-mimicking phantoms cover
the optical properties of biological tissue samples in this study, the optical properties of the phan-
toms were designed based on the optical properties of mice flank tumor models.41 Turbid
medium phantoms (a mixture of DI water, polystyrene spheres, and human hemoglobin) with
various reduced scattering and absorption levels41 were created to characterize the system for
accurate measurement of absorption and scattering. Two groups of tissue-mimicking phantoms
with different initial reduced scattering levels (10 and 20 cm−1 on average between 400 and
600 nm) were prepared. Within each group of phantoms, seven increasing concentrations of
hemoglobin were added to generate average absorption coefficients of 1.0 to 7.5 cm−1 (on aver-
age between 400 and 600 nm). Hemoglobin concentration was increased by adding aliquots of
the stock hemoglobin solution with a known absorption coefficient spectrum that was determined
by a spectrophotometer. After each addition of hemoglobin stock solution, diffuse reflectance
spectra were measured from the phantom. On the other hand, tissue-mimicking fluorescence
phantoms with a 2-NBDG concentration of 2 to 6 μM, and a TMRE concentration ranging from
30 to 90 nM were created to characterize the system for accurate measure of intrinsic fluores-
cence signals for 2-NBDG and TMRE at biologically relevant concentrations.45 The tissue-
mimicking fluorescence phantoms had the following average absorption coefficients and reduced
scattering coefficients (400 to 600 nm): μa = [1.5, 3.0, 4.5] cm−1 and μ 0

s = [10, 20] cm−1 that will
cover the mice skin or flank tumor optical properties.45 The tissue-mimicking fluorescence phan-
toms were also used to identify the system-dependent power values (α; β) for in vivo biological
tissue fluorescence data correction. The optimal parameter set for the pair of powers [α, β] are the
ones that could converge the fluorescence spectra from different absorption-scattering combi-
nations, but the same fluorophore concentration for the selected correction wavelengths. The
nonlinear multivariable optimization function, fminsearch from the Matlab optimization toolbox,
was used to find the optimal parameter set [α, β]. This procedure has been detailed in our former
publication but uses a different optical spectroscopy platform in purely phantom studies.45 To
evaluate the equation-based analytical method for rapid quantification of tissue StO2 in vivo,
human-subject pilot tests were also conducted. Specifically, four healthy volunteers’ fingertips
were measured using the proposed optical spectroscopy to report the tissue StO2 . Five measure-
ments on each subject’s fingertips were conducted to get the average tissue StO2 for each subject.

2.4 Animal Study
To demonstrate the feasibility of the optical spectroscopy system for in vivo measurements of
tumor metabolism and vasculature, a pilot test on a total of 14 mice was conducted according to a
protocol approved by the University of Kentucky Institutional Animal Care and Use Committee
(IACUC). Male or female athymic nude mice (nu/nu, Jackson Laboratory) with an age of 8 to 10
weeks were used for these studies. All mice were housed in an on-site housing facility with
ad libitum access to food and water and standard 12-h light/dark cycles. Animals were assigned
to a (1) radio-resistant tumor group (rSCC-61, n ¼ 7) and (2) radio-sensitive tumor group (SCC-
61, n ¼ 7). Mice assigned to tumor groups received a subcutaneous injection of rSCC-61 or
SCC-61 cells (1 × 106 to 2 × 106 cells in 100 μL PBS with Matrigel) in the flank under anes-
thesia with inhaled isoflurane (1% to 2% v/v) in room air. The radio-resistant cells (rSCC-61)
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were generated by introducing multiple courses of low-dose RT on their parental radio-sensitive
cells (SCC-61).48,49 After the tumor cell injection, mice were returned to the cage and monitored
for 4 weeks. On day 10 after the tumor injection or the tumor diameter reached ∼7 mm, the
tumors were characterized using the quantitative optical spectroscopy platform under isoflurane
anesthesia.

2.5 Optical Measurements and Data Analysis
All tissue-mimicking phantoms were measured using the optical spectroscopy introduced
in Fig. 1. Diffuse reflectance spectra (integration time: 8 ms) were acquired from 450 to
650 nm. Fluorescence spectra (integration time: 800 ms) were acquired from 520 to 600 nm
for 2-NBDG and from 565 to 650 nm for TMRE. In human-subject pilot tests, only diffuse
reflectance measurements were taken using the same optical configurations. In animal studies,
all mice were fasted for 6 h and anesthetized with 1% to 2% v/v isoflurane for optical spectros-
copy study. Optical measurements on small animals were conducted using the exact same optical
configurations that are used in tissue-mimicking phantom measurements so one can directly use
the phantom studies’ established models to process the animal data. All mice received a tail-vein
injection of TMRE (100 μL of 100 μM) first and then a tail-vein injection of 2-NBDG (100 μL
of 6 mM 2-NBDG) with a 20-min delay.23 Prior to any injection, baseline diffuse reflectance and
fluorescence spectra were measured from the tissue. Optical measurements were obtained by
placing the fiber probe gently on the tumors. All measurements on each mouse were acquired
continuously for a period of 80 min in a dark room.

All diffuse reflectance and fluorescence spectra were calibrated using a 20% reflectance
standard (Spectralon, Labsphere) and a fluorescence standard (USF 210-010, LabSphere),
respectively. Both MC models and the easy-to-use analytical methods were used for spectral
data processing to estimate the relevant vascular and metabolic endpoints. The extracted optical
parameters from phantom studies were compared with their corresponding true values. The proc-
essed diffuse reflectance spectra from human subjects or mice were used to estimate vascular
parameters using either MC models or equation-based analytical methods. The fluorescence
spectra from mice were processed using either the MC model or equation-based analytical meth-
ods to estimate metabolic parameters. The 2-NBDG and TMRE kinetic uptake curves for the
mice were created from the mean data for the peak band (emission peak wavelength �10 nm)
based on the fluorescent spectra taken at different time points. Because of the 20-min delay
between TMRE injection and 2-NBDG injection, the 2-NBDG uptake at 60 min post-2-
NBDG injection (2-NBDG60) and the TMRE uptake at 80 min post TMRE injection
(TMRE80) that measured at the same time point were used to report final 2-NBDG and
TMRE uptake. The metabolic parameters, StO2, and [THB] between experimental groups were
compared using a Student’s t-test. A p-value less than 0.05 was statistically significant.
Pearson’s correlation coefficients and p-values were calculated to assess the relationship between
variables among different experimental groups. MATLAB (Mathworks, United States) was used
to perform all statistical analyses.

3 Results

3.1 Ratio-Metric Method for Easy and Accurate Estimation of Total Hemoglobin
Concentrations in Tissue-Mimicking Phantoms

Figure S1 in the Supplementary Material shows that our new optical spectroscopy along with
the MC inversion model can accurately quantify the absorption and scattering properties of turbid
medium. The high agreement between the MC simulated and the measured spectra shown in
Figures S1(c) and S1(d) in the Supplementary Material enables the accurate estimate of absorp-
tion and scattering levels of the tissue-mimicking phantoms. Figures S1(e) and S1(f) in the
Supplementary Material show the comparison between the MC extracted and the corresponding
expected absorption coefficients with an average percent error of 5.7% and 5.2%, respectively,
for the two channels. Figures S1(g) and S1(h) in the Supplementary Material show the compari-
son between the MC extracted and the expected reduced scattering coefficients with an average
percent error of 4.6% and 7.1%, respectively, for the two collection channels. Based on the MC
extracted absorption information, one can easily estimate the [THB] as shown in Figs. 2(a) and
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2(b). As expected, the MC model can accurately estimate the [THB] from the tissue-mimicking
phantoms for the two channels. Figures 2(c) and 2(d) show the performance of the simple ratio-
metric method for the estimation of [THB]. As shown in Figs. 2(c) and 2(d), the ratios of diffuse
reflectance at 584 nm and 545 nm can indicate the [THB] with comparable accuracy compared
with the MC model using either collection channel. Figures 2(e) and 2(f) show the performance
of the analytical method [Eq. (1)] for the estimation of [THB]. As illustrated, the analytical
method can also accurately estimate the [THB] from the tissue-mimicking phantoms using either
of the two channels.

3.2 Analytical Method for Easy and Accurate Estimation of Tissue Oxygen
Saturation on Human Subjects and Tissue-Mimicking Phantoms

Figures 3(a)–3(d) show representative reflectance spectra measured on volunteers’ fingertips and
the corresponding StO2 estimated using the MC inverse model or the equation-based analytical
method. Figures 3(a) and 3(b) show the representative diffuse reflectance spectra measured on
the four subjects using the two collection channels, whereas Figs. 3(c) and 3(d) show the StO2

estimated from the diffuse reflectance spectra using the MC inverse model and equation-based
method for all subjects. The StO2 values estimated by the equation-based methods are almost
identical to the StO2 values estimated by the MC model for all four subjects as shown in
Figs. 3(c) and 3(d). Figure 3(e) shows the analytical method estimated StO2 values from
diffuse reflectance spectra measured on phantoms with various scattering and absorption levels
[Figs. S1(a) and S1(b) in the Supplementary Material]. The results showed that StO2 values
estimated from low-scattering phantoms are almost identical to those from high-scattering
phantoms. The StO2 values estimated by the analytical method are comparable to those estimated
by the MC model and are consistent with formerly published data from turbid phantoms with
similar oxygen conditions.50

3.3 Ratio-Metric Method for Easy and Accurate Estimation of Intrinsic
Fluorescence Signal in Tissue-Mimicking Phantoms

Figure S2 in the Supplementary Material shows attenuation corrections for TMRE and 2-NBDG
fluorescence spectra using our empirical ratio-metric model. Diffuse reflectance at the excitation
source peak and the emission peak with optimized power function values were used for the
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Fig. 2 Comparison of MCmodel extracted and expected [THB] for channel 1 (a) and channel 2 (b);
comparison of ratio-metric method extracted [THB] indicator and expected [THB] for channel 1
(c) and channel 2 (d). Comparison of analytical method extracted [THB] indicator and expected
[THB] for channel 1 (e) and channel 2 (f).
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fluorescence corrections. The graphs in Fig. S2 in the Supplementary Material show significant
distortions on the TMRE or 2-NBDG fluorescence spectra caused by either absorption or scatter-
ing, whereas the ratio-metric method can effectively correct these distortions for both TMRE and
2-NBDG using the two collection channels. Figure 4 shows the quantitative comparison between
the ratio-metric method corrected fluorescence peak intensities and true TMRE or 2-NBDG con-
centrations. The linear fit of the corrected fluorescence peak intensities versus the fluorescence
probe concentrations yielded high coefficients of determination (R2) indicating the high perfor-
mance of the ratio-metric technique for both TMRE and 2-NBDG corrections. Specifically, an R2

of 0.99 and 0.98 was achieved for TMRE correction using the two channels. An R2 of 0.97 and
0.98 was achieved for 2-NBDG correction using the two channels. The p-value for all deter-
mination coefficients was less than 0.001. The power function values of [α; β] optimized from the
phantom studies will be used for future in vivo data correction.

3.4 Optical Measure of Vascular Parameters of Tumors In Vivo
Figure 5 shows the optically measured vascular parameters for both SCC-61 and rSCC-61 tumors
in vivo. These parameters were estimated from the diffuse reflectance spectra processed by the
MC inversion model or the equation-based method. The equation-based method provided similar
StO2 values compared to that estimated by the MC model for the two collection channels as
shown in Figs. 5(a) and 5(b). Figure 5(a) shows that channel 1 measured rSCC-61 and
SCC-61 tumors had comparable StO2 values, whereas Fig. 5(b) shows that channel 2 measured
rSCC-61 tumors had lower StO2 values (not statistically significant) compared to SCC-61
tumors. Figures 5(c) and 5(d) show [THB] of head and neck tumors estimated by the MC model
or the ratio-metric method. Generally, the ratio-metric method yielded lower [THB] values com-
pared with that estimated by the MC model, whereas the trends of [THB] between the two tumor
lines characterized by the two techniques are the same. Specifically, channel 1 measured rSCC-
61 tumors had comparable [THB] compared with that in SCC-61 tumors, whereas channel 2
measured rSCC-61 tumors had lower [THB] compared with SCC-61 tumors.

3.5 Optical Measure of Metabolic Parameters of Tumors In Vivo
Figure S3 in the Supplementary Material shows the 2-NBDG uptake kinetic profiles and TMRE
uptake kinetic profiles characterized using the raw fluorescence spectra, MC model processed
fluorescence spectra, and the ratio-metric method processed fluorescence spectra. The top panel

(a)

(b)

(c)

(d)

MC
Equation

MC

Equation

Low-scattering by equation

MC control

High-scattering by equation

Phantoms(e)

Fig. 3 Representative measured diffuse reflectance spectra on the four human subjects’ fingertips
using channel l (a) and channel 2 (b); The StO2 values estimated by the MC model and equation-
based method for all four subjects using the spectra collected by channel l (c) and channel 2 (d).
(e) The StO2 values estimated by the equation-based method for tissue-mimicking phantoms with
various reduced scattering (10 and 20 cm−1) and absorption levels (1.0 and 7.5 cm−1).
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Fig. 5 StO2 values estimated by the MC model and equation-based method for all SCC-61 and
rSCC-61 tumors using reflectance spectra collected by channel 1 (a) and channel 2 (b). The [THB]
values estimated by the MC model and ratio-metric method for all SCC-61 and rSCC-61 tumors
using reflectance spectra collected by channel 1 (c) and channel 2 (d).
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Fig. 4 Empirical model with a pair of single wavelengths for accurate attenuation correction in
TMRE and 2-NBDG signals. Comparison between the corrected fluorescence peak intensities and
the true TMRE concentrations along with the corresponding Bland–Altman plot for channels 1 and
2 (a) and (b). Comparison between the corrected fluorescence peak intensities and their
corresponding true 2-NBDG concentrations along with the corresponding Bland–Altman plot for
channels 1 (c) and 2 (d).
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of Fig. S3 in the Supplementary Material shows that rSCC-61 tumors had significantly different
2-NBDG kinetic profiles and intensities, but similar TMRE kinetic profiles and intensities when
the raw fluorescence data was used. The middle panel of Fig. S3 in the Supplementary Material
shows the MC model was able to remove the distortions on the fluorescence signals, thereby
highlighting the 2-NBDG and TMRE differences between rSCC-61 tumors and SCC-61 tumors.
The bottom panel of Fig. S3 in the Supplementary Material shows the ratio-metric model can also
correct the fluorescence distortions and enhance the 2-NBDG and TMRE differences between
rSCC-61 tumors and SCC-61 tumors.

Figure 6 shows delivery corrected 2-NBDG60 uptake51 and TMRE80 uptake in rSCC-61
tumors and SCC-61 tumors. These metabolic parameters were estimated from the fluorescence
spectra processed by the MC inversion model or the ratio-metric method. The trends of the two
metabolic parameters between the two tumor lines characterized by the two data processing
techniques are the same. Figures 6(a) and 6(e) show that channel 1 measured rSCC-61 tumors
had higher 2-NBDG60∕RD (not statistically significant) compared to SCC-61 tumors, whereas
Figs. 6(b) and 6(f) show that channel 1 measured rSCC-61 tumors had significantly higher
TMRE80 uptake (p < 0.05) compared with SCC-61 tumors. Figures 6(c) and 6(g) show that
channel 2 measured rSCC-61 tumors had significantly higher 2-NBDG60∕RD (p < 0.05)
compared with SCC-61 tumors, whereas Figs. 6(d) and 6(h) show that channel 2 measured
rSCC-61 tumors had higher TMRE80 uptake (not statistically significant) compared with
SCC-61 tumors.

3.6 Multiple-Dimensional Data Analysis Provides New Information for Cancer
Biology

Simultaneous measurement of several vascular and metabolic endpoints on the same tumor site
allows us to investigate the potential relationship between tumor metabolism and the associated
vasculature. Figure 7 shows scatter plots of the relationship between different combinations of
the four functional endpoints measured using optical spectroscopy. All the data shown here are
processed by the MC model. However, it should be noted that the ratio-metric processed data
points also yielded similar trends for all data shown in Fig. 7. All the 2-NBDG60∕RD and
TMRE80 values were normalized to the highest global value, that is, the highest 2-NBDG60∕RD

and TMRE80 across all tumors. The top panel of Fig. 7 shows the correlations among the meta-
bolic and vascular endpoints for head and neck tumors characterized by channel 1. Figure 7(a1)
shows that channel 1 measured baseline StO2 levels in both two tumor lines are positively cor-
related with [THB], but only statistically significant for rSCC-61 tumors (r ¼ 0.78, p ¼
0.04). Figure 7(a2) shows that the channel 1 measured 2-NBDG60∕RD was negatively correlated
with TMRE80 (r ¼ 0.79, p ¼ 0.04) for rSCC-61 tumors, whereas it appears that there was a
weak correlation between the two metabolic endpoints for SCC-61 tumors. Figure 7(a3) shows

Monte CarloMonte Carlo Monte CarloMonte Carlo

p=0.09 p=0.04 p=0.07
p=0.03

Ratio-metricRatio-metric Ratio-metricRatio-metric

p=0.10 p=0.02
p=0.10p=0.04

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6 Delivery corrected 2-NBDG60 uptake and TMRE80 uptake quantified from the MC model
processed fluorescence on head and neck tumors measured by the two channels (a)–(d). Delivery
corrected 2-NBDG60 uptake and TMRE80 uptake quantified from the ratio-metric method proc-
essed fluorescence on tumors measured by the two channels (e)–(h). Comparison of the mean
intensity of 2-NBDG60∕RD and TMRE80 across animal groups was performed with two sample
t -tests using the MATLAB (Mathworks, United States) statistics toolbox. Delivery rate (RD) is
defined as 2-NBDGpeak/Timepeak as reported previously.51
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that the channel 1 characterized metabolic ratio (the ratio between 2-NBDG60∕RD and TMRE80)
was negatively correlated with StO2 for SCC-61 tumors (r ¼ 0.80, p ¼ 0.03) but not for rSCC-
61 tumors. Figure 7(a4) shows that channel 1 characterized metabolic ratio was not correlated
with [THB] for both tumor lines. Figure 7(a5) shows scatter plots of metabolic endpoints along
with baseline StO2 represented as different-sized symbols for all tumors. Figure 7(a5) shows
that SCC-61 tumors with lower StO2 tend to have lower TMRE80 but higher 2-NBDG60∕RD,
whereas no clear trend between the metabolic endpoint and StO2 was observed for rSCC-61
tumors.

The bottom panel of Fig. 7 shows correlations for head and neck tumors characterized by
channel 2. Figure 7(b1) shows that channel 2 measured baseline StO2 levels in rSCC-61 tumors
are positively correlated with [THB] (r ¼ 0.73, p ¼ 0.06), whereas it appears that there was a
weak correlation between the two vascular endpoints for channel 2 measured SCC-61 tumors. In
contrast, Fig. 7(b2) shows that channel 2 measured 2-NBDG60∕RD was positively correlated
with TMRE80 (r ¼ 0.76, p ¼ 0.05) for SCC-61 tumors, whereas it appears that there was a weak
correlation between the two metabolic endpoints for rSCC-61 tumors. Figure 7(b3) shows that
channel 2 characterized metabolic ratio was negatively correlated with StO2 for SCC-61 tumors
(r ¼ 0.59, p ¼ 0.16) but not for rSCC-61 tumors. Figure 7(b4) shows that the channel 2 char-
acterized metabolic ratio was positively correlated with [THB] for rSCC-61 tumors (r ¼ 0.77,
p ¼ 0.04) but not for SCC-61 tumors. Figure 7(b5) shows that there was no clear correlation
between the metabolic endpoint and StO2 for both SCC-61 and rSCC-61 tumors, whereas it
appears that TMRE uptake was positively correlated with 2-NBDG60∕RD (r ¼ 0.65,
p ¼ 0.01) when we combine all metabolic data measured on the two types of tumors.

4 Discussion
Optical spectroscopy is well-suited for rapid in vivo tissue functional characterization23 by
getting an overview of tissue status via probing a tissue volume.52–54 Though it lacks the capabil-
ity to capture spatial heterogeneity information, optical spectroscopy is well suited for frequent
and long-term longitudinal in vivo biomedical studies. Moreover, optical spectroscopy can pro-
vide multi-parametric measurements of tumor metabolism and its associated vasculature in vivo.
Our previous work23,24 and independent studies52–54 showed the great potential of optical
spectroscopy to provide valuable dynamic information about the metabolic status of the tissue,
with important implications for different biomedical studies. However, existing quantitative
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Fig. 7 Correlations between StO2 and [THB] for two types of tumors for channel 1 (a1) and chan-
nel 2 (b1). Correlations between delivery corrected 2-NBDG uptake and TMRE uptake for two
types of tumors for channel 1 (a2) and channel 2 (b2). Correlations between metabolic ratio and
StO2 for two types of tumors for channel 1 (a3) and channel 2 (b3). Correlations between metabolic
ratio and [THB] for two types of tumors for channel 1 (a4) and channel 2 (b4). Scatter plots of
metabolic endpoints along with baseline StO2 for all tumors in one graph for channel 1 (a5) and
channel 2 (b5). Baseline SO2 levels are represented by marker size. Larger markers indicate an
increased SO2. All metabolic values were normalized to their own global highest value, that is, the
highest 2-NBDG60∕RD and TMRE80 intensity across all tumors. Pearson’s correlation coefficients
and p-values were calculated using the MATLAB (Mathworks, United States) statistics toolbox.
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spectroscopy techniques use the MC inversion model24 or lookup table 54 to extract functional
parameters, neither support real-time quantification and they are highly expertise-dependent. To
enable rapid optical metabolic parameters quantification and make the data processing easy to
use, we reported novel spectroscopic algorithms for near real-time quantification of metabolic
parameters on biological tissues in vivo. To maximize the ease and accessibility in obtaining in
vivo tissue metabolism and vasculature measurements, we reported a highly portable and low-
cost optical spectroscopy platform with a tumor-sensitive fiber probe for both diffuse reflectance
and fluorescence measurements on biological tissues in vivo. Then, we performed tissue-mim-
icking phantom studies, human subject pilot tests, and in vivo animal studies to demonstrate the
capability of our techniques for rapid quantification of vascular and metabolic parameters.

To minimize the spectroscopy system size and cost, we have used a Solis™ high-power
white LED source (SOLIS-3C, Thorlabs) for both fluorescence and diffuse reflectance measure-
ments. Our studies showed that the proposed portable optical spectroscopy system has sufficient
sensitivity for both diffuse reflectance and fluorescence measurements. Due to the use of the new
LED light source and compact spectrometer, the cost and size of our optical spectroscopy plat-
form has been significantly reduced compared with our previously reported spectroscopy
platforms.23 A custom-designed fiber optics probe with two groups of unique source–detector
distances was implemented with our optical spectroscopy platform. The average source–detector
separation for the two designs was 1.5 and 3 mm, respectively. This unique design will provide
some level of flexibility in optical sensing depth for tumor biology study. The channel with a
smaller source–detector separation can be used to detect shallow tumors such as epithelial can-
cers, whereas the channel with a larger source–detector separation may be used to detect slightly
deeper tumors such as flank tumors. In the current study, the two channels were tested on the
flank tumors to probe the different regions of the same tumor. It is interesting to notice that the
two channels have captured different vascular and metabolic parameters of the same tumors,
which suggests the volume heterogeneity of tumor vasculature and metabolism.

Our tissue-mimicking phantom studies demonstrated that our ratio-metric methods can
accurately quantify [THB] and intrinsic fluorescence signals with similar accuracy compared
with the MC inversion model. Our tissue-mimicking phantoms cover a wide range of absorption
and scattering levels that will ensure our techniques will be applicable to various biological mod-
els that have optical properties within this range. The fluorescence phantoms with biologically
relevant optical properties were used to determine the system-dependent power values for fluo-
rescence data processing. Given these power values are system-dependent, we believe new phan-
tom studies may not be needed for other tumor models using the same optical spectroscopy
platform. However, if new samples’ optical properties are significantly away from the tissue
phantoms covered range, new phantom studies with comparable tissue optical properties to the
target sample are always encouraged to ensure the best accuracy for fluorescence correction.

MC model has been explored as the most accurate technique for the estimation of tissue
absorption and scattering coefficients and intrinsic fluorescence from diffuse reflectance and
fluorescence spectra. Then, one can easily quantify tissue vascular and metabolic parameters
from the absorption and intrinsic fluorescence measurements. However, it is difficult to adapt
the MC technique for real-time data processing due to the time-consuming fitting processing.
Moreover, the MC technique is relatively expertise dependent which makes it challenging for
users who do not have any relevant background. To address these challenges, here we demon-
strated the ratio-metric or analytical methods for rapid estimation of tissue vascular parameters
([THB] and StO2) and intrinsic fluorescence of metabolic probes. Due to the ratio-metric or
equation-based nature, our techniques will be easy to use with minimal expertise requirements
and can facilitate near real-time data processing for future translational applications. However, it
should be noted that the easy-to-use ratio-metric or analytical techniques have some limitations
including the incapability of estimating absorption and scattering properties of tissue samples,
requiring proper system calibrations with tissue-mimicking phantoms to ensure high accuracy.

To use the ratio-metric method for rapid estimation of [THB] in biological tissues, a
calibration between the diffuse reflectance ratios and true [THB] has been established using
tissue-mimicking phantoms. Specifically, two groups of tissue-mimicking phantoms with two
initial reduced scattering levels (10 and 20 cm−1) were used for this calibration purpose.
Within each group of phantoms, seven increasing concentrations of hemoglobin were added
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to generate hemoglobin concentrations from 0.9 to 6.3 mg/mL. These 14 phantoms were used to
generate the calibration curves for all subsequent tissue data processing for the rapid estimation
of [THB]. Given our phantoms cover a wide range of absorption and scattering levels, we believe
that the calibration curve generated in Fig. 2 will have great robustness for estimating [THB] in
biological tissues as demonstrated in this study. However, the presence of other tissue compo-
nents (such as other types of tissue absorbers) may affect the performance of the ratio-metric
method for rapid estimation of [THB] using the calibration curves determined in this study,
which will be explored in our future study using phantoms with multiple types of absorbers.

To validate the analytical method for rapid and accurate StO2 estimation, we conducted both
tissue-mimicking phantom studies and pilot human subject tests. Wewere not able to measure the
true StO2 values in the tissue phantoms or human subject tissues due to the lack of resources, we
can still validate the analytical method against the MC model as the MC model has been well
validated by pO2 as reported before.25 Our pilot human subject tests showed that the equation-
based spectroscopic technique had comparable accuracy compared with the well-established MC
model for StO2 estimation, whereas the equation-based spectroscopic method will be less exper-
tise-dependent and near real-time. The StO2 values of human subject fingertips measured by us
ranged from 60% to 80%, which are consistent with previously published human subject data55,56

using similar optical spectroscopy techniques. Our preclinical in vivo animal studies using a
matched model of radiation resistance for head and neck tumors further demonstrated that our
new spectroscopic algorithms could quantify the key metabolic and vascular parameters of in
vivo tumors rapidly and accurately. Our studies captured different functional endpoints of the
radio-resistant and radiosensitive head and neck tumors, which suggested that both vasculature
and metabolism changes are highly associated with radiation resistance development in head and
neck tumors. All these studies demonstrated that our proposed spectroscopic algorithms may
potentially offer new ways (easy-to-use, rapid) for optical spectroscopic data processing to quan-
tify the key metabolic and vascular parameters.

Our in vivo animal studies showed that channel 1 probed vascular parameters (shallow
region) are comparable between SCC-61 and rSCC-61 tumors, whereas the channel 2 probed
vascular parameters (deeper region) are different between the two tumor lines. Specifically, the
rSCC-61 tumors measured by channel 2 had lower StO2 and lower [THB] compared with SCC-
61 tumors as shown in Fig. 5. This interesting phenomenon suggested that the shallow region of
the two tumors may have a similar vascular microenvironment, whereas the deeper region of
rSCC-61 tumors has heavier hypoxia and less blood supply compared with that of SCC-61
tumors. We also observed the high diversity of the vascular parameters for two tumor types,
suggesting the high heterogeneity of the tumor vascular microenvironment. The metabolic
parameters quantified by both two channels showed that rSCC-61 and SCC-61 tumors had differ-
ent metabolic phenotypes. Specifically, rSCC-61 tumors had both increased 2-NBDG60∕RD and
TMRE80 compared with SCC-61 tumors as reported in Fig. 6. Former in vitro cell studies
showed that rSCC-61 cells had higher glucose uptake while decreased mitochondrial activities
compared with SCC-61 cells.49 This different mitochondrial functionality between our in vivo
studies and former in vitro cells might be due to the inherent different tumor microenvironments.
Both increased glycolytic and mitochondrial activities in rSCC-61 tumors suggested that the
radio-resistant head and neck tumors might be metabolically adaptable.57 It has been well-
explored that the radiotherapy failure might be primarily attributed to hypoxia.58,59 However,
increasing evidence including our own studies here shows that metabolic reprogramming may
also be responsible for the development of radio resistance in cancers.60 This metabolic rewiring
not only provides an unparalleled advantage to tumor cells to survive, grow, and metastasize
under a hypoxic and nutrient-poor environment but also endows these cells with unlimited
plasticity to adapt and escape immunosuppression and cancer treatment.61,62 Because both
metabolism and vascular microenvironment alterations play a key role in the understanding
of tumor treatment resistance and recurrence, it becomes crucially significant to create an inno-
vative technology that can accurately track metabolic and vascular reprogramming in tumor cells
for combating this intractable disease.

Simultaneous measurement of the key vascular and metabolic endpoints on the same tumor
site provides us the opportunity to further explore the potential relationship between tumor
metabolism and the associated vasculature. Figure 7(a1) showed that baseline StO2 levels in
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both two tumor lines are positively correlated with [THB], which is expected as the [THB]
reflects the blood supply capability to the tumor region. Figure 7(a2) showed that the channel
1 measured 2-NBDG60∕RD was negatively correlated with TMRE80 (r ¼ 0.79, p ¼ 0.04) for
rSCC-61 tumors but not for SCC-61 tumors. Figure 7(a5) showed that SCC-61 tumor shallow
region with lower StO2 tend to have lower TMRE80 but higher 2-NBDG60∕RD, whereas no clear
trend between the metabolic endpoint and StO2 was observed for rSCC-61 tumors. These differ-
ent correlations between the two different tumor lines further suggested the metabolic adaptabil-
ity of rSCC-61 tumors compared with SCC-61 tumors. The correlations among the different
parameters measured by channel 2 are slightly different compared with that measured by channel
1, which suggested that different regions of one same tumor may have different metabolic
responses to various vascular micro-environments. Nevertheless, our preclinical study demon-
strated the capability of our optical spectroscopy technique to provide rapid quantification of
several key metabolic and vascular endpoints simultaneously (systematic) on the same tissue
site, which allows us to perform multi-dimensional metabolic analysis on tumors that may pro-
vide more insights into cancer biology. In summary, our study demonstrated a novel PEERS
(portable, easy-to-use, easy-to-access, rapid, systematic) optical spectroscopy for metabolic
characterizations on biological models in vivo to enable scientific discoveries more efficiently.
Our technology will have a broad impact across many biomedical fields through the lens of tissue
metabolism and vascular microenvironment.

5 Conclusion
This work reported a highly portable optical spectroscopy platform with a tumor-sensitive fiber
probe and novel easy-to-use spectroscopic algorithms for multi-parametric metabolic character-
izations of biological tissues in vivo. We demonstrated our optical spectroscopy on tissue-
mimicking phantoms, human subjects, and small in vivo tumor models. We also validated the
easy-to-use algorithms with the Monte Carlo inversion models for accurate and rapid spectro-
scopic data processing. Tissue-mimicking phantom, human subjects, and in vivo animal studies
showed that our optical spectroscopy along with the novel spectroscopic algorithms could
quantify the major metabolic and vascular parameters on biological tissues with high accuracy.
We also captured the highly diverse metabolic and vascular phenotypes of head and neck tumors
with different radiation sensitivities. Our optical spectroscopy will provide a new way (PEERS:
point-of-care, easy-to-use, easy-to-access, rapid, systematic) for characterizing in vivo tumor
metabolism and vascular microenvironment, and it will have a broad impact across many
biomedical fields.
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