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ABSTRACT. Significance: The spatial distribution of the photosensitizing drug concentration is
an important parameter for predicting the photodynamic therapy (PDT) outcome.
Current diffuse fluorescence tomography methods lack accuracy in quantifying drug
concentration. The development of accurate methods for monitoring the temporal
evolution of the drug distribution in tissue can advance the real-time light dosimetry
in PDT of tumors, leading to better treatment outcomes.

Aim: We develop diffuse optical tomography methods based on interstitial fluores-
cence measurements to accurately reconstruct the spatial distribution of fluorescent
photosensitizing drugs in real-time.

Approach: A two-stage reconstruction algorithm is proposed. The capabilities and
limitations of this method are studied in various simulated scenarios. For the first
time, experimental validation is conducted using the clinical system for interstitial
PDT of prostate cancer on prostate tissue-mimicking phantoms with the photosen-
sitizer verteporfin.

Results: The average relative error of the reconstructed fluorophore absorption was
less than 10%, whereas the fluorescent inclusion reconstructed volume relative error
was less than 35%.

Conclusions: The proposed method can be used to monitor the temporal evolution
of the photosensitizing drug concentration in tumor tissue during photodynamic
therapy. This is an important step forward in the development of the next generation
of real-time light dosimetry algorithms for photodynamic therapy.
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1 Introduction
Photodynamic therapy (PDT) is a promising approach in cancer treatment.1 It relies on photo-
dynamic action, a dynamic interaction between light, a photosensitizing agent, and oxygen,

*Address all correspondence to Stefan Šušnjar, stefan.susnjar@fysik.lth.se

Journal of Biomedical Optics 015003-1 January 2025 • Vol. 30(1)

https://orcid.org/0000-0001-7925-0624
https://orcid.org/0000-0001-7667-7702
https://orcid.org/0009-0001-4032-6799
https://orcid.org/0000-0003-0912-1282
https://orcid.org/0000-0001-5640-3122
https://orcid.org/0009-0001-2161-5341
https://orcid.org/0000-0002-7025-5725
https://doi.org/10.1117/1.JBO.30.1.015003
https://doi.org/10.1117/1.JBO.30.1.015003
https://doi.org/10.1117/1.JBO.30.1.015003
https://doi.org/10.1117/1.JBO.30.1.015003
https://doi.org/10.1117/1.JBO.30.1.015003
https://doi.org/10.1117/1.JBO.30.1.015003
mailto:stefan.susnjar@fysik.lth.se
mailto:stefan.susnjar@fysik.lth.se
mailto:stefan.susnjar@fysik.lth.se
mailto:stefan.susnjar@fysik.lth.se


resulting in tissue destruction.2 None of these three components is individually toxic, but together
they initiate a photochemical reaction whose product is a highly reactive singlet oxygen. Its
significant toxicity leads to direct tumor cell death via apoptosis or necrosis, damage to tumor
vasculature, and activation of innate and adaptive responses against tumors.3,4 PDT’s minimal
invasiveness and selectivity in killing malignant cells while sparing surrounding tissue make it
effective in treating early-stage tumors and a good choice for inoperable tumors.3 PDT has many
assets that make it suitable for cancer treatment, either as a first option or combined with other
methods (e.g., chemotherapy, radiotherapy, surgery). The light is non-ionizing, and no cumu-
lative toxicity allows repeated treatments of recurrent malignancies.3,5 The short penetration
of this light in tissue has led to the evolution of PDT in two directions: one is the development
of photosensitizers (PSs) activated at wavelengths where light is less attenuated,6 and the other is
the interstitial placement of optical fibers for treating solid tumors deeply embedded into the
body.7–9 It is essential to have access to light dosimetry algorithms to get a favorable response
to PDT.10

The destruction of malignant tissue in PDT depends on the type and dose of PSs used, the
time between their administration and light delivery, total light dose and its fluence rate, and
tumor oxygen concentration.3 Therefore, to improve the light dosimetry during PDT treatments,
information on PS distribution, light fluence rate, and oxygen concentration should be available
in real-time.11–15 Some PSs have the important property to accumulate to a higher degree in
tumors, rather than in healthy tissue.6 Most PSs are fluorescent in nature.7 These properties
of PS enable better tumor localization for dose planning, as well as assessment of treatment
progression.

Real-time dosimetry during interstitial PDT treatments has already been employed in clini-
cal applications.16–19 In prostate cancer treatment, Johansson et al.18 have shown that real-time
dosimetry allows for the delivery of a specific dose of light to the target tissue while sparing the
organs at risk. However, the distribution of the PS drug within the patient tissue should have been
considered during the light dose planning, and the lack of reliable methods for its estimation is
the reason why it still has not been considered. To solve this, the present work aims to develop
methods for real-time monitoring of the PS spatial distribution during the PDT treatment. This
could be beneficial in the future to improve PDT dosimetry algorithms considering additional
factors, such as the fluorescent properties of PS.20 PS distribution and concentration in the tumor
are a major determinant of photochemical oxygen depletion, and as such, knowledge of it is
beneficial for accurately predicting the treatment outcome.21

In this work, we develop diffuse optical tomography (DOT) models and methods for the
real-time reconstruction of the spatial distribution of the PS drug by utilizing its fluorescent prop-
erties, which we will refer to as diffuse fluorescence tomography (DFT). The reconstruction
algorithm we propose here consists of two stages. The first stage (S1) relies on standard tomo-
graphic reconstruction methods22–24 without structural a priori information. The second stage
(S2), presented here for the first time, uses the results from S1 as inputs and significantly reduces
the discrepancy between the reconstructed fluorophore absorption and its ground-truth (GT),
compared to S1. The reconstruction methods are implemented in computer software, then tested
and quantitatively evaluated in numerical simulations, and their limitations and potential
improvements are discussed. Prostate tissue-mimicking phantoms with verteporfin, a PS used
in PDT (excited by light around 690 nm),25 were prepared following the work by Ghauri et al.,26

to provide realistic experimental validation of the developed methods. The measurements are
performed with SpectraCure’s P18 system for interstitial PDT of prostate cancer.8,16 This is,
to the best of our knowledge, the first time a quantitative tomographic reconstruction of the
concentration of the PS verteporfin has been demonstrated on a clinical system for interstitial
PDT of prostate cancer.

2 Model

2.1 Diffusion Equation for Fluorescence
We assume a highly scattering medium, with the absorption coefficient μa, the reduced scattering
coefficient μ 0

s, satisfying μa ≪ μ 0
s, and all the conditions of the diffusion approximation.27 The

diffusion coefficient is defined by D ¼ 1
3μ 0

s
and the effective attenuation coefficient μeff ¼

ffiffiffiffiμa
D

p
.
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We consider not necessarily a homogeneous medium, so the aforementioned coefficients will be
in general dependent on the spatial coordinates: μað~rÞ, μ 0

sð~rÞ, and Dð~rÞ. We distinguish the opti-
cal properties and quantities at excitation from those at fluorescence emission wavelengths, by
adding a letter in the subscript—x for the excitation and m for the fluorescence emission. If the
fluorophore absorption coefficient μaf is defined as the probability of absorption of a photon at
the excitation wavelength, per unit pathlength it has covered, and if the fraction of such absorbed
photons which result in the fluorescent re-emission is γ, known as the fluorescence quantum
yield,28 then the fluorescent yield η can be defined as the product of the two,22

EQ-TARGET;temp:intralink-;e001;117;639ηð~rÞ ¼ γμafð~rÞ; (1)

by assuming γ is independent of the fluorophore spatial distribution. Considering a continuous-
wave (CW) light source q0ð~rÞ, the steady-state diffusion equation for the fluence rate at
excitation wavelength Φx is27

EQ-TARGET;temp:intralink-;e002;117;578ð−∇Dxð~rÞ∇þ μaxð~rÞÞΦxð~rÞ ¼ q0ð~rÞ; (2)

Where we assumed μaf ≪ μax, i.e., the equation is unaffected by the presence of fluorophores.
The source of fluorescence emission qmð~rÞ is defined where the fluorophores exist in space,
and its strength is proportional to the excitation fluence and the fluorescent yield,

EQ-TARGET;temp:intralink-;e003;117;517qmð~rÞ ¼ ηð~rÞΦxð~rÞ: (3)

The fluence rate at fluorescence emission wavelength Φm is found from the following
diffusion equation 7,29

EQ-TARGET;temp:intralink-;e004;117;468ð−∇Dmð~rÞ∇þ μamð~rÞÞΦmð~rÞ ¼ ηð~rÞΦxð~rÞ: (4)

Assuming μaf ≪ μam, the emission light fluence from Eq. (4) can be obtained by

EQ-TARGET;temp:intralink-;e005;117;431Φmð~rÞ ¼
Z
V
Φxð~r 0Þηð~r 0ÞGmð~r; ~r 0Þd~r 0; (5)

where Gmð~r; ~rsÞ is Green’s function—solution of Eq. (4) when a source term is replaced by a
unitary source δð~r − ~rsÞ. In a special case of an infinite, homogeneous medium, the analytical
expression for Green’s function is27

EQ-TARGET;temp:intralink-;e006;117;359Gð~r; ~rsÞ ¼
expð−μeff j~r − ~rsjÞ

4πDj~r − ~rsj
: (6)

One possible way of modeling the spatial dependence of the optical properties is the imple-
mentation of the finite element mesh, where each element is a region of small volume and
its specific optical properties. This method is known as the finite element method (FEM), see
Sec. 2.2.

2.2 Calculation of Fluence by Finite Element Method
The whole space (V) considered is divided into a finite number (Ne) of elements of finite volume.
Every element is defined by its vertices—nodes of the finite element mesh. The elements are
usually tetrahedrons or cubes, in this work, we will use tetrahedrons; therefore, every element
will have four nodes. Adjacent elements share one triangular face with three common nodes.
However, it is also possible that two elements have one shared segment (two common nodes)
or even only one shared vertex (one common node). Elements can not have other intersections,
apart from a trivial empty set. The fluence Φ in any point (~r) of the medium is approximated by
its finite element representation Φhð~rÞ, as a weighted sum of fluences in mesh nodes Φj

30–32

EQ-TARGET;temp:intralink-;e007;117;151Φð~rÞ ≈Φhð~rÞ ¼
XNn

j¼1

ujð~rÞΦj; (7)

whereNn is the number of nodes. The weights ujð~rÞ depend on the geometrical relations between
~r and node coordinates ~rj, and they are basis functions which span the whole space V. A function
ujð~rÞ corresponding to node j should be chosen in such a way that it is equal to one in that node,
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i.e., ujð~rjÞ ¼ 1, and equal to zero in all other mesh nodes, ujð~riÞ ¼ 0 for i ≠ j. A set of coor-
dinates ~r where a basis function ujð~rÞ is different from zero is limited (it is said that these basis
functions have limited support).

To solve for the finite element representation of the fluence Φh, we start from the diffusion
equation [Eq. (2)], omitting the subscripts for the wavelength

EQ-TARGET;temp:intralink-;e008;114;673ð−∇Dð~rÞ∇þ μað~rÞÞΦhð~rÞ ¼ q0ð~rÞ: (8)

Multiplying both sides by some function vð~rÞ (Galerkin method33) and integrating over the
whole space volume V gives

EQ-TARGET;temp:intralink-;e009;114;623

Z
V
vð~rÞ½−∇Dð~rÞ∇þ μað~rÞ�Φhð~rÞdV ¼

Z
V
vð~rÞq0ð~rÞdV: (9)

After exploiting mathematical identities and theorems to transform the derivative of the
product, volume integral into a surface integral and applying the Robin boundary condition,27,34

Eq. (9) (when Φhð~rÞ is expanded), for specific vð~rÞ ¼ uið~rÞ becomes
EQ-TARGET;temp:intralink-;e010;114;550XN
j¼1

�Z
V
Dð~rÞ∇uið~rÞ∇ujð~rÞdVþ

Z
V
μað~rÞuið~rÞujð~rÞdVþ 1

2A

I
S
uið~rÞujð~rÞdS

�
Φj ¼

¼
Z
V
uið~rÞq0ð~rÞdV; (10)

where the closed surface S is defined by the boundaries of volume V and A is the effective Fresnel
coefficient.27,34 Writing analogous equations for all basis functions uið~rÞ, i ¼ 1; : : : ; Nn, the
system of equations is obtained32

EQ-TARGET;temp:intralink-;e011;114;443

�
KþCþ 1

2A
B
�

· Φ ¼ A · Φ ¼ Q; (11)

where K ¼ ½Kij�, C ¼ ½Cij�, B ¼ ½Bij�, and A ¼ ½Aij� are Nn × Nn matrices with entries defined
by
EQ-TARGET;temp:intralink-;e012;114;381

Kij ¼
Z
V
Dð~rÞ∇uið~rÞ∇ujð~rÞdV;

Cij ¼
Z
V
μað~rÞuið~rÞujð~rÞdV;

Bij ¼
I
S
uið~rÞujð~rÞdS;

Aij ¼ Kij þCij þ
1

2A
Bij; (12)

while

EQ-TARGET;temp:intralink-;e013;114;254Φ ¼ ½Φ1 Φ2 : : : ΦNn
�T; (13)

and

EQ-TARGET;temp:intralink-;e014;114;217Q ¼
� R

V u1ð~rÞq0ð~rÞdV
R
V u2ð~rÞq0ð~rÞdV : : :

R
V uNn

ð~rÞq0ð~rÞdV
�
T

(14)

are Nn × 1 column vectors.
Numerical computation of the integrals in Eqs. (12) and (14) is performed within element

volumes, exploiting the limited support of basis functions, which results in non-zero integrands
only within certain elements. Therefore, all matrices K, C, B and the resulting system matrix A
are sparse. For calculating the source vector, depending on the coordinate of the point source ~rs,
the element which contains that source is found (here we consider only point sources; in FEM in
general, sources can be distributed as well). The barycentric coordinates of ~rs are found with
respect to the tetrahedron nodes, and finally, the corresponding integrals are calculated. The flu-
ence vector Φ is computed using fast numerical methods for the inversion of sparse matrices.7

Šušnjar et al.: Two-stage diffuse fluorescence tomography for monitoring of drug. . .

Journal of Biomedical Optics 015003-4 January 2025 • Vol. 30(1)



To calculate the fluence of the fluorescent light, Eq. (5) is used, where first the fluence Φx is
computed. The Green’s function Gmð~r; ~r 0Þ is computed similarly, just finding Gmð~r 0; ~rÞ instead,
which is computationally faster, because the source is fixed at ~r, and the result is the same
because of the reciprocity theorem.35–37

Now, we have the methods to solve the forward problem—calculating light fluence at exci-
tation and fluorescent wavelengths at arbitrary positions in the medium, knowing the optical
properties.

2.3 Inverse Model
We assume to know the optical properties of the background medium—absorption coefficients
μað~rÞ and reduced scattering coefficients μ 0

sð~rÞ. Our goal is to reconstruct the fluorescent yield
ηð~rÞ everywhere in the medium, starting from the fluorescent signal measurements. The meas-
urement data is collected by n interstitially placed optical fibers, and the light is delivered through
the same fibers. When light is emitted from one fiber to the medium, the other n − 1 are collect-
ing, and that is repeated for every fiber delivering light. In this way, all nðn − 1Þ source-detector
pairs are covered, and the light is detected at both—the excitation and the fluorescent wave-
lengths. To cancel out the experimental uncertainties, such as the source power, or collection
efficiency of a fiber, we express the measurements in the form of the normalized Born
ratio38—the ratio between the signals detected at the fluorescent and the excitation wavelengths,
respectively. Therefore, we have Nm ¼ nðn − 1Þ measurement points, defined as Born ratios,
every measurement point corresponding to one source-detector pair. The forward model,
expressed in terms of a vector of finite element mesh nodal values of fluorescent yields,
η ¼ ðη1; η2; : : : ; ηNn

Þ, gives the expression for the measurements from the source with index
s and the position ~rs, and the detector with index d, at the position ~rd

22,26

EQ-TARGET;temp:intralink-;e015;117;445Fs;dðηÞ ¼
1

Gxð~rd; ~rsÞ
XNn

i¼1

Gxð~ri; ~rsÞGmð~ri; ~rdÞηiΔV; (15)

where ηi is the fluorescent yield in node i, with a spatial coordinate ~ri, ΔV is the element volume,
and Gx and Gm are Green’s functions solutions at the excitation and fluorescent emission wave-
lengths, respectively, as in Sec. 2.1. These solutions Gx;mð~ρd; ~ρsÞ are obtained by computing the
corresponding fluence at ~ρd when the unitary source is placed at ~ρs. Note that this Eq. (15)
follows from Eq. (5) when the normalization to the excitation signal is done and after numerical
implementation of the integration over all the elements of the finite element mesh.

The arranged pairs ðs; dÞ of source and detector indices are mapped to a set of integer
numbers from 1 to Nm. The mapping function is the following: fðs; dÞ ¼ d − 1þ
ðn − 1Þðs − 1Þ þ pðs; dÞ, where pðs; dÞ ¼ 0 if s < d and pðs; dÞ ¼ 1 if s > d. The forward
model vector of the estimated Born ratios is then obtained

EQ-TARGET;temp:intralink-;e016;117;281FðηÞ ¼ ðF1ðηÞ; : : : ; FiðηÞ; : : : ; FNm
ðηÞÞ; where i ¼ fðs; dÞ: (16)

The same mapping is done on measurement points, creating the measurement vector M,
which contains all Nm Born ratios of the detected fluorescent and excitation light signals.
The discrepancy between the measurements and the forward model is the error vector
δðηÞ ¼ M − FðηÞ.

The inverse problem can be formulated as estimating the vector of fluorescent yields η such
that the error vector δðηÞ is minimal in some metrics. A standard metrics is the Euclidean or
2-norm, which we denote as kδk. The number of unknowns Nn (components of vector η) is
usually much greater than the number of measurements Nm (Nn ∼ 104 ≫ Nm ∼ 102), so the
problem is ill-posed, and a regularization should be added to its formulation. A common
approach is Tikhonov regularization,32,39 where a quadratic term with the 2-norm of the vector
of unknowns is included in the objective function. The goal is to minimize the following22,26

EQ-TARGET;temp:intralink-;e017;117;123ΩðηÞ ¼ kM − FðηÞk2 þ λkLðη − η0Þk2; (17)

where λ is the regularization parameter, L is the regularization matrix (dimensions Nn × Nn), and
η0 is the initial estimate (guess) for the vector of unknowns η.
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If η is the parameter that minimizes the cost function ΩðηÞ, then the first derivative ∂ΩðηÞ
∂η is

equal to zero, which implies

EQ-TARGET;temp:intralink-;e018;114;712−2
∂FðηÞ
∂η

T

ðM − FðηÞÞþ 2λLTLðη − η0Þ ¼ 0: (18)

Defining the Jacobian as Nm × Nn matrix J ¼ ∂FðηÞ
∂η , we can write

EQ-TARGET;temp:intralink-;e019;114;658JTðM − FðηÞÞ ¼ λLTLðη − η0Þ: (19)

If ηi and Ji are the estimates vector and the Jacobian of iteration i, then, the forward model
calculated for the iteration iþ 1 can be, using the Taylor expansion, approximated as

EQ-TARGET;temp:intralink-;e020;114;609Fðηiþ1Þ ≈ FðηiÞ þ Jiðηiþ1 − ηiÞ; (20)

where it is assumed that the estimates vectors of successive iterations ηiþ1 and ηi are close
enough to have a good approximation by keeping just the first order term. Rewriting Eq. (19)
for the next iteration ηiþ1 while exploiting the forward model linearization around ηi in Eq. (20)
gives

EQ-TARGET;temp:intralink-;e021;114;538JTi ðM − FðηiÞ − Jiðηiþ 1 − ηiÞÞ ¼ λLTLðηiþ 1 − η0Þ; (21)

which can be rewritten as

EQ-TARGET;temp:intralink-;e022;114;502JTi δðηiÞ − JTi Jiðηiþ 1 − ηiÞ ¼ λLTLðηiþ 1 − ηiÞþ λLTLðηi − η0Þ: (22)

Finally, the update equation for the fluorescent yield estimates vector is22

EQ-TARGET;temp:intralink-;e023;114;465ηiþ 1 ¼ ηi þðJTi Ji þ λLTLÞ−1ðJTi δðηiÞ − λLTLðηi − η0ÞÞ: (23)

Equation (23) is general, and in this work, we apply a modified Levenberg-Marquardt
algorithm (similar to Axelsson et al.22 and Dehghani et al.32) where the update equation is

EQ-TARGET;temp:intralink-;e024;114;416ηiþ1 ¼ ηi þ ðJTi Ji þ λiLTLÞ−1JTi δðηiÞ; (24)

with λ being initialized to the maximum of the diagonal of the Hessian matrix:
λ0 ¼ maxfdiagðJT0J0Þg and updated in every iteration to λi ¼ maxfdiagðJTi JiÞg · 10−i∕4. A more
detailed discussion about the regularization follows in Sec. 2.4.

The iterative procedure of updating η stops when the relative decrease of the norm of the
error vector kδk is <2% or the predefined maximal number of iterations (around 20) is reached.32

2.4 Regularizations
The solution obtained from the inverse model is regularized and does not have the minimum
norm of the error vector. However, it has some properties that are imposed by the choice of
the regularization matrix—which can make it “smoother” (less abrupt spatial variations of the
reconstructed fluorescent yield) or have similar (very close) values in predefined regions or
even very sharp transitions between the regions.

The default regularization applied in this paper is without prior information about the geom-
etry, setting the regularization matrix of the Tikhonov regularization to an identity matrix L ¼ I.
This adds some “inertia” on the main diagonal of the Hessian matrix JTJ, which provides
numerical stability when computing inverses of large-dimensional matrices. As a consequence,
the solution appears “smooth” in space.

It is possible to include a priori knowledge about the geometry of the problem, by assuming
there are regions in space (for example different tissue types) that should have similar levels of PS
drug accumulation—for example, inside the tumor the highest, around the tumor lower, back-
ground the lowest. If we are not reducing the number of unknowns of the original inverse prob-
lem, thus permitting different values of reconstructed fluorophore absorption coefficients within
the regions, the geometrical biasing of the solution is called soft priority, and the entries of the
regularization matrix L ¼ ½Lij� are defined as22,40
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EQ-TARGET;temp:intralink-;e025;117;736Lij ¼
� 1; if i ¼ j;

−1
NRðiÞ

; else if nodes i and j belong to the same regionRðiÞ ≡ RðjÞwithNRðiÞ nodes;
0; otherwise:

(25)

Suppose we restrict to only a few possible values for the reconstructed fluorophore absorp-
tion coefficients, i.e., divide the whole geometry of the medium into Nr non-overlapping regions,
where all nodes within a particular region have the same reconstructed value. In that case, the
number of unknowns is reduced to Nr, and the geometrical biasing of the solution is called hard
prioring. When it is reasonable to assume homogeneous properties within the regions of the
tissue, this regularization results in quantitatively more accurate reconstruction, as reported
by Dehghani et al.41 and Srinivasan et al.42 The main idea underlying this method will be applied
in S2, where the results obtained without any geometrical biasing in S1 will be used to define the
regions in S2 (see Sec. 2.5).

It is, of course, possible to apply any regularization different from Tikhonov, and some
examples are given in the work by Jagannath and Yalavarthy43 and in the review by Okawa and
Hoshi.44

2.5 Second Stage of the Reconstruction (S2)
The inverse model provides the solution for the fluorescent yields in all nodes, using regulari-
zation and the Levenberg-Marquardt iterative algorithm, and we refer to this method as S1. The
solution obtained at this stage is usually smoother than it should be (obtained fluorescent yields
do not show abrupt spatial variations, because of the regularization) and therefore has a quanti-
tatively larger error. This is more evident in homogeneous regions, where almost the same fluo-
rophore absorption coefficient is expected over the whole volume of the region. This is the key
assumption for S2. Assuming the entire medium can be divided into Nr non-overlapping regions
(sets of finite element mesh nodes) of homogeneous fluorophore absorption coefficients, the
inverse problem to solve becomes more straightforward—the number of unknowns is reduced
to Nr, while still having Nm measurement points. Usually, Nr ≪ Nm.

The regions are defined after S1, by looking at the obtained spatial distribution of fluorescent
yields, i.e., fluorophore absorption coefficients. The values of fluorophore absorptions in the
mesh nodes (μaf1; μaf2; : : : ; μafNn

Þ are compared with thresholds. For the two finite element
mesh nodes belonging to the same element (tetrahedron), we say they are adjacent or neighbor-
ing. Starting from the mesh node m1 with the highest fluorophore absorption coefficient in the
medium, the first region is initialized as the set containing only that node. The average fluoro-

phore absorption coefficient of this node and all its neighboring nodes is μmax;1;avg
af . In the next

iteration, this region can be expanded by including all the neighboring nodes of the node m1,

which have fluorophore absorption greater than or equal to the threshold tpμ
max;1;avg
af , where 0 <

tp < 1 is the given fraction that determines the peak threshold. This procedure is repeated as long
as there are neighboring nodes (k) of any of the nodes from the first region, not yet included in the

first region, which satisfy the condition μafk ≥ tpμ
max;1;avg
af . After the iteration in which all the

adjacent nodes, not yet included in the first region, had fluorophore absorption below the thresh-

old tpμ
max;1;avg
af , the first region is concluded. Then, in case there is a node m2 with the highest

fluorophore absorption coefficient among all nodes outside of the first region, satisfying the

condition μafm2
≥ tbμ

max;1;avg
af , for the given background threshold fraction 0 < tb < 1, the second

region is initialized as the set containing only that node (m2). The average fluorophore absorption

coefficient of this node and all its neighboring nodes is μmax;2;avg
af . The iterative procedure for

including neighboring nodes continues, now with the threshold tpμ
max;2;avg
af , defining the second

region. In case there is a node (m3) in the finite element mesh which is not included in the first

two regions, and still satisfies the condition μafm3
≥ tbμ

max;1;avg
af , the next region is defined, and so

on. The first time the highest value of μaf outside of the regions defined so far is below the

threshold tbμ
max;1;avg
af , the number of regions is concluded by ascribing all the remaining nodes

to the background region. The flowchart diagram of this algorithm is shown in Fig. 1.
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The transition matrix T (also called a priori matrix41), with dimensions Nn × Nr, provides
the mapping between the original vector ηð1Þ of Nn fluorescent yields, as a result of S1, and the
vector of unknowns ηð2Þ in S2, which has only Nr components. A matrix entry Tij is equal to 1 if

the node i belongs to region j; otherwise, it is equal to 0. The relations between ηð1Þ and ηð2Þ,
as well as between the reduced (S2) Jacobian Jð2Þ and the full (S1) Jacobian Jð1Þ are

EQ-TARGET;temp:intralink-;e026;114;324ηð1Þ ¼ Tηð2Þ; Jð2Þ ¼ Jð1ÞT: (26)

The inverse problem is now solved without regularization, by applying the Gauss-
Newton45,46 iterative method with the updated equation for ηð2Þi

EQ-TARGET;temp:intralink-;e027;114;275ηð2Þiþ1 − ηð2Þi ¼ ððJð2ÞÞTi Jð2Þi Þ−1ðJð2ÞÞTi δðηð1Þi Þ: (27)

The initial guess for the vector ηð2Þ0 is the vector of averages of the fluorescent yields in
regions, obtained from S1, thus not expecting to be too far from the “solution” (value of η for
which kδðηÞk is minimal). Because the system of equations is now overdetermined, the forward
model in this stage cannot match all the measurement points but provides a smaller error kδk than
in S1. This error is evaluated for different divisions of the medium into regions, by changing the
threshold fractions tp and tb. A pair of threshold fractions ðtp; tbÞ is given as input to the region-
alization algorithm defined in Fig. 1. The output of the regionalization algorithm is the array of
regions R1;R2; : : : ;RNr

. The regionalization algorithm is executed for different threshold pairs
ðtp; tbÞ, resulting in different divisions of the medium into regions, i.e., different arrays

R1;R2; : : : ;RNr
. The regionalization (division) for which the error kδðηð2ÞÞk is the smallest, and

the corresponding vector ηð2Þ, are the final results of S2.

Fig. 1 Algorithm for defining the regions of homogeneous fluorophore absorption R1; : : : ;RNr

based on inputs from S1—reconstructed fluorophore absorptions in all nodes μaf1; : : : μafNn
, for

chosen thresholds t p , t b .
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3 Materials and Methods

3.1 Computer Implementation
A finite element mesh is defined over the considered inhomogeneous medium, and the FEM is
used to compute the forward model fluences and normalized Born ratios in Eq. (15). The mesh
elements are tetrahedrons, and the mesh creation and all FEM computations are done in
MATLAB (The MathWorks Inc., 2022) using the open-source NIRFAST package.32,47 Mesh
nodes are placed more densely around the fiber tip positions to capture more dynamic spatial
variations of fluence near the light sources and detectors. The resulting meshes had from 20,000
to 70,000 nodes, and between 90,000 and 320,000 elements, with an average size of around
ð5 × 5 × 5Þ cm3. The mesh, used to calculate the forward model, is called the forward mesh.
Details about the forward meshes used in this work are given in Table 1. The reconstruction
mesh, used to solve the inverse problem, has a lower resolution (for example 6480 nodes) to
reduce the computational cost and improve the numerical stability of the Hessian matrix inver-
sion. The interpolation from the forward mesh onto the reconstruction mesh and vice versa is
done in every iteration of the reconstruction procedure: the forward model and the corresponding
Jacobian are first computed on the forward mesh, then the dimension of the problem is reduced
by interpolating nodal values from higher resolution forward to lower resolution reconstruction
mesh, on which the update equation [Eq. (24)] is solved, and the obtained nodal values are
extrapolated back from the reconstruction to the forward mesh. Mesh resolution will affect the
quality of the reconstruction and the time needed for the convergence. One should find a balance
between the number of measurement points, the number of unknowns (size of the forward mesh),
the computational power, the regularization, the accuracy of the forward model, and finally, the
solution.

For S2, adaptive thresholds were implemented—the threshold fractions tp and tb from
Sec. 2.5 are varied, resulting in the one providing the lowest final kδk. This takes more computa-
tional time but is more robust than the approach with fixed thresholds. In the current implemen-
tation, it is assumed tp ¼ tb, and nine equidistant values for the threshold fractions are taken from
the interval (0.33, 0.87).

The graphical representation of the reconstructed fluorophore absorption relies on the map-
ping from the forward mesh nodal values to the values in arbitrary positions in space, where every
point in space is within an element, and its barycentric coordinate within the element determines
the contribution of each of the element nodes. The graphical representation is a 2-dimensional
(2D) color map of fluorophore absorption coefficients in a single xy-plane (the chosen slice
perpendicular to the z-axis, see Figs. 4, 5, 7, 8, 9, and 11). Note that even the homogeneous
GT fluorophore distributions will appear in different colors, because of this mapping between
the FEM mesh and 2D graphics mesh. Blue circles denote fiber tip projections in xy-plane. After
S2, the space is divided into a few regions of homogeneous fluorophore absorption coefficients
with sharp borders. It is possible to provide a 3-dimensional (3D) representation of the regions
using semi-transparent boundary surfaces [see Figs. 2 and 10(e)]. This way, the estimates of the
reconstructed inclusion (region) volumes are also given.

Table 1 Finite element meshes used in this work, with the details about
the size, numbers of nodes, and elements.

Mesh Size (mm × mm × mm) Number of nodes Number of elements

1 52 × 57 × 40 28,296 130,124

2 52 × 57 × 40 64,325 312,676

3 40 × 50 × 34 49,921 237,041

4 40 × 50 × 34 20,745 92,705

5 50 × 50 × 40 49,900 240,333

6 50 × 50 × 40 22,972 104,406
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3.2 Prostate Anatomy and Interstitial Fiber Placement
In Fig. 2, we give a 3D model of relevant tissues, fiber positions, and the reconstructed fluo-
rophore distribution in space. The reconstruction was performed on simulated data, following the
default scenario described in Sec. 3.3, without noise. The same finite element mesh was used for
data generation and reconstruction. This graphical representation should help the reader to under-
stand the geometry of the interstitial fiber placement. Fiber coordinates (see Table 2) and 3D
models of the prostate, urethra, and rectum are obtained from clinical ultrasound data, as in our
previous work.26 The fiber configuration in a particular PDT treatment is the result of Cimmino’s
optimization method, where the minimum threshold light dose is delivered to the target volume
while minimizing the surrounding tissue exposure.8,48

3.3 Numerical Simulations
Computer codes for numerical simulations, including data creation, reconstruction, and graphical
representation, were implemented in MATLAB. Simulated measurement data were created by
applying the forward model FEM, described in Sec. 3.1.

In all simulated scenarios, a single-spherical inclusion was considered. Unless other speci-
fied, the following parameters were used as default. GT background fluorophore absorption
μafbg;gt ¼ 0.01 cm−1, GT inclusion fluorophore absorption μafi;gt ¼ 0.10 cm−1, reduced scatter-
ing coefficient μ 0

s ¼ 8.7 cm−1, and absorption coefficient of the background μa ¼ 0.50 cm−1.
The inclusion was centered at ðxC; yC; zCÞ ¼ ð19; 25; 18Þ mm, with radius R ¼ 6.7 mm. A total
of 13 fibers were placed26 at the positions given in Table 2 and shown in Fig. 2.

Fig. 2 3D model of prostate tissue (semi-transparent red) with the urethra (semi-transparent
yellow), rectum (semi-transparent blue), and fluorescent PS (green). Blue lines and blue circles
represent fibers and their tips (labeled with numbers), respectively. PS distribution shown is a
result of the reconstruction from the simulation with default parameters (see Sec. 3.3) and without
noise. The same Mesh 1 (see Table 1) was used for data generation and inverse problem solving.
A coarser 6480-node mesh was used for matrix inversion. 3D models of the prostate, urethra, and
rectum obtained from clinical ultrasound data. Labels on axes x , y , and z correspond to the sides
and directions of the patient’s body.

Table 2 Fiber coordinates used in simulations.

Fiber number 1 2 3 4 5 6 7 8 9 10 11 12 13

x (mm) 25 35 15 20 30 20 30 15 20 15 20 35 20

y (mm) 15 20 20 10 15 25 40 15 20 35 40 30 30

z (mm) 7 15 17 19 21 19 19 17 17 15 15 7 7
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3.4 Evaluation of the Reconstruction
To quantitatively evaluate the performance of the reconstruction, here, we introduce the
following relative errors:

• reconstructed volume of the inclusion, relative error δVi;
• reconstructed fluorophore absorption coefficient of the inclusion, relative error δμafi;
• reconstructed fluorophore absorption coefficient of the background, relative error δμafbg;
• average absolute value of the relative error of the reconstructed fluorophore absorption

coefficient hjδμafð~rÞji in the whole medium (shorter hjeji).
Note that it only makes sense to define relative errors δVi, δμafi, and δμafbg for the results of

the second stage of the reconstruction, because these parameters refer to the regions defined only
in that stage. On the other hand, the absolute value of the relative error jej can be defined for every
node, and we will compare the average in the whole medium hjeji after S1 and after S2.

3.5 Phantoms
Tissue-mimicking phantoms were realized to validate the proposed model. A hybrid approach of
combining solid and liquid phantoms similar to the work by Ghauri et al.26 was followed. The
liquid solution used for background optical properties of the tissue phantom is a water solution of
Intralipid (200 mg∕ml, Fresenius Kabi, Ltd., Germany) and India ink (a - Rotring, Germany; and
b - Higgins, 44201 Chartpak Inc., USA). India ink (a) was first diluted in water to 1%, then 4.1 ml
of this stock solution was added to a solution containing 35.4 ml of intralipid (20%w/v) and
960 ml of water, mixed with a magnetic stirrer to achieve homogeneous properties: absorption
coefficient μab ¼ 0.24 cm−1 and the reduced scattering coefficient μ 0

sb ¼ 8.3 cm−1 (both at
690 nm). The optical properties were chosen to mimic those of a human prostate.49 The solid
inclusions were realized as spheres of radius R ¼ 5.5 mm. The material used was water-based
gelatin with the addition of proper amounts of Intralipid and India ink (b) to achieve the absorp-
tion coefficient μa ¼ 0.20 cm−1 and μ 0

s ¼ 15.7 cm−1. The same protocol as in our previous
work26 was applied to make these phantoms. The PS used was verteporfin, an active substance
of the drug Visudyne (Cheplapharm Arzneimittel GmbH, Germany). This PS is excited at around
690 nm and re-emits fluorescent light at wavelengths longer than 700 nm. Solid inclusions were
realized with different concentrations of verteporfin, ranging from 0.3 to 1.8 mg∕kg. Optical
characterization of bulk properties of both solid and liquid phantom components was done using
a time-domain diffuse optical spectroscopy system.50

3.6 Experimental Setup
The measurements were performed using SpectraCure’s P18 system.8,18 The system consists of a
light delivery unit with 18 photonics modules. Each photonics module (PM) has a laser diode
(690 nm), and two detectors—the first detecting excitation light (wavelengths below 700 nm) and
the other detecting fluorescence or infrared light (wavelengths above 700 nm). Each PM is SC-
connected to a 45-cm-long patch fiber with a core diameter of 400 μm and NA ¼ 0.37. Each
patch fiber is further SMA-connected to a 200-cm-long silica fiber with the same core diameter
and NA ¼ 0.22. This fiber, inserted through a brachytherapy needle, has its bare end (tip) free in
the tissue phantom (around 2 mm beyond the needle tip) to deliver and collect light, although
not simultaneously. PMs are controlled by SpectraCure’s Interactive Dosimetry by Sequential
Evaluation (IDOSE) software8 for how long the light will be sent or collected. We used n ¼ 12

PMs, and therefore, 12 fibers were placed in the tissue phantom, through brachytherapy needles,
which were supported at pre-determined positions (holes) in the brachytherapy template (hori-
zontal plane) and specific pre-determined depths (along the vertical axis). The fiber arrangement
has been decided based on different simulations of real measurements (see Figs. 8 and 9), such
that the chosen configuration, reported in Table 3, results in enough signals above the cut-off
threshold (Sec. 4.1), for all tested fluorophore concentrations.

By controlling all 12 PMs, tomographic data acquisition is possible: while one fiber is
delivering light, the other 11 are collecting—both excitation (690 nm) and infrared fluorescence
emission—and this is repeated such that all 12 fibers deliver light, one at a time (monitoring
sequence). There are usually several monitoring sequences (3 to 5), during the session, one after
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another, to follow the PS drug concentration evolution over time (which is of interest in a
dynamic environment, such as in vivo during PDT). After each monitoring sequence, a tomo-
graphic reconstruction of the fluorophore absorption can be performed. The tissue phantom
(Sec. 3.5) is a liquid solution, with the addition of solid fluorophore inclusions suspended
by brachytherapy needles. All the fibers and needles are vertical and immersed in the liquid
background, only two of the fiber tips are positioned inside the solid fluorophore inclusions.
The experimental setup is shown in Fig. 3.

4 Results and Discussion

4.1 Simulation Study on the Effect of Different Parameters
In simulations, we first examine how the size of the inclusion affects the reconstruction of relative
errors. The parameter varied here is the radius of the spherical inclusion (R). The reconstructions
after S1 and after S2, are compared with the GT fluorophore absorption distribution, as shown in
Fig. 4. Data were generated on the mesh different from the one used for the reconstruction
(see the caption of Fig. 4).

For all the considered sphere sizes, relative errors of the reconstructed fluorophore absorp-
tion coefficients of the inclusion and the background are always at similar levels (of the order of
(1 to 10)%). The absolute value of the relative error of the reconstructed volume is always <20%,
which corresponds to about 6% error in linear dimensions (radius or diameter). This can be
ascribed to the finite element mesh limitations and differences between the mesh used for data
creation and the mesh used for the reconstructions (see the caption of Fig. 4). Considering the
colors in Fig. 4, it is possible to observe that the spatial sensitivity is dependent on the fiber
positions—S1 reconstruction resulted in some detectable fluorophore absorption (dark red blurs)
around the fibers, whereas the rest of the background resulted in values close to 0 (black). S2 of
the reconstruction compensates for these artefacts taking advantage of the homogeneous regions
assumption. The reconstructed background has a maximum error of <10%. A clear evidence of
the benefits of the two-stage reconstruction approach is the following: an average absolute value
of the relative error of the reconstruction hjeji after S1 was always around 90%, whereas this
average is drastically reduced after adding S2, resulting in hjeji in range (1 to 8)%.

Fig. 3 (a) Gelatin sphere attached to two brachytherapy needles (corresponding to fibers 4 and 5)
before immersing into a liquid background. (b) Schematics of the laboratory setup: LDU—light
delivery unit, and PC—personal computer, with the software sending instructions to and receiving
the data from LDU. (c) SpectraCure’s P18 LDU with optical fibers connected to its ports.

Table 3 Another fiber configuration used in simulations and in experiments.

Fiber number 1 2 3 4 5 6 7 8 9 10 11 12

x (mm) 15 20 15 20 25 30 20 25 30 35 30 35

y (mm) 30 35 20 25 30 35 15 20 25 30 15 20

z (mm) 25 15 15 20 20 25 25 15 25 15 15 25

Šušnjar et al.: Two-stage diffuse fluorescence tomography for monitoring of drug. . .

Journal of Biomedical Optics 015003-12 January 2025 • Vol. 30(1)



It is interesting to note that the introduction of S2 in the reconstruction algorithm has a
similar effect on the background artifact removal and the spatial confinement of the reconstructed
inclusion as the quadratic source term in the diffusion equation for fluorescence in the case of
upconverting nanoparticles.51

The second varied parameter is the fluorophore absorption coefficient of the inclusion (μafi),
which is directly proportional to the concentration of the fluorophore. Figure 5 shows the recon-
struction results for different ratios of μafi∕μafbg, where the background fluorophore absorption
was kept constant, μafbg ¼ 0.010 cm−1. Data were generated on the mesh different from the one
used for the reconstruction (see the caption of Fig. 5).

We see that as the inclusion’s fluorophore absorption coefficient increases, the reconstructed
volume of the inclusion is more accurate. When the volume is underestimated, the absorption
coefficient is overestimated and vice versa. Relative errors of the reconstructed fluorophore
absorption coefficients of the inclusion and the background are always at similar levels (of the
order of (1 to 10)%). When the fluorophore absorption of the inclusion is similar to the back-
ground [Fig. 5(a), μafi∕μafbg ¼ 2.5], the reconstruction S2 resulted in three regions, and therefore,
a larger error for the reconstructed background, as the region between the background and the
inclusion was a “transitional” region with the reconstructed fluorophore absorption coefficient
32% higher than the GT background. In this particular case, the average absolute value of the
relative error hjeji after S2 was 34%, whereas after S1, it was 89%. In all other cases, the initial
hjeji of around 90% after S1 was reduced to a value in the interval (2 to 10)% by adding S2.

Next, we incorporate noise in the analysis to see how the reconstruction performs in the face
of uncertainty in input data. Noise in signals is a general term and can stem from the physical
limitations of the detection system. The ratio of this noise compared with the useful signal
can usually be reduced by increasing the excitation power or extending the measuring time.

Fig. 4 Reconstruction of spherical fluorophore inclusions of different simulated sizes (R):
(a) 3 mm, (b) 4 mm, (c) 5 mm, (d) 6 mm, (e) 7 mm, and (f) 8 mm. The results after the S1 recon-
struction are in the first row, followed by the S2 reconstruction in the second row, and finally
compared with the GT in the third row. The plane cut is perpendicular to the z-axis, through the
center of the inclusion sphere. Fluorophore absorption coefficients are shown with different colors
(color bars below the GT images). Blue circles represent fiber positions. Relative errors for the
reconstructed fluorophore absorption coefficients of the inclusions δμaf i and the background
δμaf bg , and the volumes of the inclusions δV i , are given below the images. Data were generated
using the denser Mesh 2, whereas the inverse problem was solved using Mesh 1 (see Table 1),
with a coarse 6480-node mesh used for matrix inversion.
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Other sources of noise come from our limited knowledge about the physical system, and from the
model, which is likely very simplified compared with reality. Random variables representing the
noise are added here to the theoretically computed signals (obtained by FEM). Every random
variable (for every measurement point and both the excitation and the fluorescence emission
wavelengths) is taken from a Gaussian distribution with a mean value of 0 and a standard
deviation equal to the corresponding theoretically computed signal, multiplied with an amplitude
factor, varied here from 0 to 7%. The Gaussian distribution for noise is chosen to model not only
the statistics of photon detection (shot noise) but also any other uncertainties. For the compari-
son, in our CW detection system, a Gaussian noise with an amplitude factor of 1% corresponds to
the Poisson noise for detected power of 4.5 · 10−10 W, whereas 3% of amplitude factor for
Gaussian noise corresponds to the detected power of 4.5 · 10−11 W for Poisson noise. The noise
modeled by a Gaussian distribution with noise amplitude factors of 3% or more is a good way to
model uncertainties even beyond the standard deviations of photon detection for relevant signal
levels (see Sec. 4.2 for the infrared signal cut-off threshold). The reconstruction was performed
on the same finite element mesh used for data generation to eliminate uncertainties due to FEM
resolution limitations. Figure 6 was obtained by repeating the same method of generating noisy
data 5× to find the averaged absolute values of the reconstruction relative errors.

The average relative errors for the reconstructed volume, fluorophore absorption coefficients
of the inclusion, background, and every node in the mesh are plotted in Fig. 6. For the noise
amplitude factor less or equal to 2%, all the relative errors from S2 reconstruction are less than

Fig. 5 Reconstruction of spherical (R ¼ 6.7 mm) inclusions of different simulated fluorophore
absorption coefficients (μaf i ): (a) 0.025 cm−1, (b) 0.050 cm−1, (c) 0.075 cm−1, (d) 0.100 cm−1, and
(e) 0.125 cm−1. The results after the S1 reconstruction are in the first row, followed by the S2
reconstruction in the second row, and finally compared with the GT in the third row. The plane
cut is perpendicular to the z-axis, through the center of the inclusion sphere. Fluorophore absorp-
tion coefficients are shown with different colors (color bars below the GT images). Blue circles
represent fiber positions. Relative errors for the reconstructed fluorophore absorption coefficients
of the inclusions δμaf i and the background δμaf bg , and the volumes of the inclusions δV i , are given
below the images. Data was generated using the denser Mesh 2, whereas the inverse problem
was solved using Mesh 1 (see Table 1), with a coarse 4590-node mesh used for matrix inversion.
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10% (all of them but volume with less than 6% relative error). It was observed that the recon-
struction quality decreases when the noise amplitude factor is 3% or more. A noise amplitude of
10% already results in distorted reconstruction images, usually having more than the two
expected regions, which have even higher errors (not shown in the graph, because the classi-
fication of the two expected regions is not relevant). It is possible to observe that the relative
error of the volume reconstruction and the fluorophore absorption of the inclusion is still accept-
able (<10%) as long as the noise amplitude factor is not >5%. The benefits of using S2 can be
seen by comparing the average absolute values of the relative errors for S2 hjejiS2, and S1 hjejiS1,
in Fig. 6. Although the S1 relative error is always around 90%, the S2 relative error is less than
6% for the noise amplitude factor less or equal to 2% or less than 20% for the noise amplitude
factor between 3% and 7%.

For the parameters varied so far (fluorescent inclusion size, fluorophore concentration, and
noise level), the S1 reconstruction average absolute value of the relative error was around 90%,
and similar values have been reported in the literature.24,52 The necessity of using structural a
priori information to obtain quantitatively accurate reconstructions was stated by Lin et al.24

Here, we demonstrated that it is possible to obtain quantitatively more accurate results if the
second stage (see Sec. 2.5) is added to the reconstruction algorithm, even without any structural
(geometrical) prior in the regularization (see Sec. 2.4). Similar approach to our proposed method,
without any structural a priori information, was applied by Kwong et al.,52 using the technique
called “temperature-modulated fluorescence tomography.” However, the important difference is
that while there a functional a priori information was obtained by exploiting the thermal proper-
ties of specifically designed fluorophores, our proposed method uses only the results of S1 as an
input for S2 and therefore more general fluorophores can be used. Both approaches resulted in
comparable S2 reconstruction relative errors (up to around 15% for the fluorophore absorption
coefficient and 35% for the volume).

Optical properties of the medium around the fibers are given as inputs to the reconstruction
algorithm. If the forwarded (given) parameters do not match the actual optical properties of the
medium, the reconstruction is affected. Table 4 shows to what extent. Although the absolute
value of the relative error for the reconstructed volume is <26% in all but one of the cases con-
sidered, most of it naturally comes from the finite element mesh discretization of space, and the
limited resolution for the volume calculation. More interesting is the error for the reconstructed
fluorophore absorption coefficient of the inclusion. The fluorophore absorption is close to the GT
value, within about 20%, for the optical properties closer to the default absorption of 0.50 cm−1

Fig. 6 Reconstruction S2 relative errors (δV i , δμaf i , δμaf bg , hjejiS2) and S1 relative error (hjejiS1) for
different simulated noise levels (calculated at points where the Gaussian-profile noise amplitude
factor was 0, 1%, 2%, 3%, 5%, and 7%). The same mesh was used for data generation and recon-
struction (Mesh 1 from Table 1), whereas the matrix inversion was performed on a coarser 6480-
node mesh.
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and reduced scattering of 8.7 cm−1 (the first seven rows of Table 4). Larger deviations, which can
also occur in clinical reality, are reported in the last six rows of Table 4. The reconstructed fluo-
rophore absorption coefficient is overestimated in the cases where the background absorption is
overestimated or the background reduced scattering is underestimated, and vice versa.

The fluorescent inclusions considered so far were different from the background only in
terms of the fluorophore absorption coefficient, or the concentration of the fluorophores.
Now we take into account the possibility that the inhomogeneity (spherical inclusion) added
to the background may have different optical properties—absorption and scattering (inclusion:
μa ¼ 0.20 cm−1 and μ 0

s ¼ 15.7 cm−1, background: μab ¼ 0.50 cm−1 and μ 0
sb ¼ 7.3 cm−1).

Figure 7 shows how the reconstruction is affected if the absorption and the reduced scattering
coefficient of the medium are treated as homogeneous (c) in the whole medium (without speci-
fying optical properties around each of the fibers), compared with the case where the correct
input is given (after taking into account where the fibers are in respect to the spherical inclusion)
(b). Note that this “correct” input is still imperfect in describing the medium optical properties.
However, it is realistic because the IDOSE8,18 algorithm can estimate the properties around each
fiber. The limiting factor is the mapping between the fiber coordinates and FEM node coordi-
nates, i.e., mesh resolution. However, the reconstruction with more realistic optical properties is
significantly better than that with plain, homogeneous optical properties (see Fig. 7). Similar
conclusions about how the absorbing and scattering inhomogeneities affect the reconstructed
fluorophore absorption have been reported by Abascal et al.53 and Soubret et al.54

Experimental data always contain a certain level of noise. For the measurement points with a
low signal level (for example, when the detector fiber is far from the source fiber, or absorption in
between the fibers is high), the signal-to-noise ratio can become so low that these measurement
points become unreliable. It is possible that a fiber is partly blocked or acquires low signals. As a
consequence, even though the fluorescent signal is low, the excitation wavelength signal is also
low, and the Born ratio can become high because the “detected fluorescent signal” is dominated
by background noise with a level comparable to or even a few orders of magnitude greater
than the actual fluorescent signal. Such measurement points must not be forwarded to the

Table 4 Simulated actual and given background absorption (μa;actual, μa;given), reduced scattering
coefficients (μ 0

s;actual, μ
0
s;given), and the resulting relative errors of the reconstructed volume (δV i ) and

fluorophore absorption coefficient of the inclusion (δμaf i ). The same Mesh 2 (Table 1) was used for
data generation and reconstruction.

μa;actual (cm−1) μa;given (cm−1) μ 0
s;actual (cm

−1) μ 0
s;given (cm−1) δV i (%) δμafi (%)

0.30 0.30 8.7 8.7 −12.0 4.7

0.30 0.50 8.7 8.7 −23.0 20.1

0.50 0.30 8.7 8.7 0.6 −10.2

0.50 0.50 8.7 8.7 −11.1 3.2

0.50 0.50 7.3 7.3 −11.7 3.8

0.50 0.50 7.3 8.7 −15.2 −6.8

0.50 0.50 8.7 7.3 −7.4 15.0

0.50 0.50 15.0 15.0 −5.5 0.3

0.50 0.50 15.0 8.7 −1.1 46.3

0.50 0.50 8.7 15.0 −18.0 −29.7

0.20 0.20 8.7 8.7 −12.8 5.7

0.20 0.50 8.7 8.7 −44.8 52.7

0.50 0.20 8.7 8.7 25.5 −21.5
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reconstruction algorithm. Because the inverse problem is ill-posed, every unreliable data point
can amplify the reconstruction error, resulting in a reconstructed image very different from
the truth.

Here, we simulate the data processing of real measurements. All measured fluorescent sig-
nals below a certain threshold (Pcut) are discarded, leaving N 0

m ≤ Nm values. This means that the
reduced measurement vector has N 0

m rows, as well as the reduced Jacobian matrix (N 0
m × Nn).

Reconstruction was performed on four different scenarios—the same spherical inclusion size and
position (R ¼ 5.5 mm, center at ðxC; yC; zCÞ ¼ ð20; 22; 18Þ mm), but different μafi, equidis-
tantly covering the interval from 0.015 to 0.030 cm−1. The optical properties of the inclusions
were the same as for solid inclusions used in phantoms, and the optical properties of the back-
ground were the same as those used for liquid phantom preparation, see Sec. 3.5. The optical
properties around the fibers were set accordingly. Reconstruction results are shown in Fig. 8. The
GT volume is Vgt ¼ 0.697 cm3. It can be visually observed that in the xy-plane through the
center of the sphere (z ¼ 18 mm), the fluorophore spatial extent is not fully reconstructed. This
is a consequence of the data cut-off. The same is true in the perpendicular, z-direction. As a result,
the whole volume of the inclusion is underestimated, leading to an overestimation of the
fluorophore absorption coefficients. For the cases shown in Fig. 8, the reconstructed volume
is (72 to 84)% of the GT volume, whereas the fluorophore absorption coefficient is overestimated
by (33 to 42)%. The threshold for simulated measurement data cut-off was Pcut ¼ 4.5 · 10−11 W,
resulting in N 0

m ¼ 50 (out of Nm ¼ 156) above-threshold measurement points in the case of the
lowest concentration (a) and N 0

m ¼ 61 in the case of the highest concentration (d).
The effect of the instrument cut-off and the reconstructed volume underestimation described

above can be diminished if the fibers are placed more favorably for solving the problem of DFT.
The fiber configuration (see Table 2) considered in simulations is from a realistic clinical sce-
nario. The priority in clinical PDT is to cause the photodynamic effect in tumorous tissue and
only there. Neglecting this condition, we suggest another fiber configuration, with 12 fibers
instead of 13, but having better spatial sensitivity around the spherical inclusion. The sphere’s
center was at ðxC; yC; zCÞ ¼ ð22.5; 27.5; 20.0Þ mm, and the fiber coordinates are defined in
Table 3. The same optical properties of the background and the inclusion, the same size of the
inclusion, as used to obtain the results in Fig. 8, were applied in six reconstructions shown in
Fig. 9. GT values for μafi varied from 0.015 to 0.090 cm−1 in equal steps. The cut-off threshold

was kept Pcut ¼ 4.5 · 10−11 W, resulting in N 0
m ¼ 54 (out of Nm ¼ 132) above-threshold

Fig. 7 Simulation of the scenario where the absorption and the reduced scattering coefficients of
the inclusion (μa, μ 0

s) differ from those of the background (μab , μ 0
sb). Slice through the spherical

inclusion center. Fluorophore absorption coefficients are shown with different colors. Blue circles
represent fiber positions. Below the images, values are given for the fluorophore absorption of the
inclusion μaf i , fluorophore absorption of the background μaf bg , and the volume of the inclusion V i

for (a) GT case, (b) reconstruction with correct optical properties around the fibers, and (c) recon-
struction with just homogeneous optical properties in the whole medium.
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measurement points in the case of the lowest concentration (a), and N 0
m ¼ 98 in the case of the

highest concentration (f). The reconstructed volume is (77 to 82)% of the GT volume, whereas
the fluorophore absorption coefficient is overestimated by (21 to 27)%.

It is interesting to see how the reconstruction algorithm performs when the information on
the actual fiber positions is uncertain. This uncertainty has one of the following two roots. First,
in clinical practice, ultrasound imaging of needle and fiber tips has inherent measurement

Fig. 9 Simulation of instrument cut-off effect in a configuration with 12 fibers (Table 3). Blue circles
represent fiber positions. Slice through the spherical inclusion center—comparison between the
S2 reconstructed image and the GT. Below the images, reconstructed values are given for the
fluorophore absorption of the inclusion μaf i , fluorophore absorption of the background μaf bg , and
the volume of the inclusion V i for different GT fluorophore absorptions (μaf i ;gt ): (a) 0.015 cm−1,
(b) 0.030 cm−1, (c) 0.045 cm−1, (d) 0.060 cm−1, (e) 0.075 cm−1, and (f) 0.090 cm−1. GT fluoro-
phore absorption of the background was μaf bg;gt ¼ 0. Data were created using Mesh 5, and the
reconstruction was performed using Mesh 6 from Table 1.

Fig. 8 Simulation of instrument cut-off effect in a configuration with 13 fibers (Table 2). Blue circles
represent fiber positions. Slice through the spherical inclusion center—comparison between the
S2 reconstructed image and the GT. Below the images, reconstructed values are given for the
fluorophore absorption of the inclusion μaf i , fluorophore absorption of the background μaf bg , and
the volume of the inclusion V i for different GT fluorophore absorptions of the inclusion (μaf i ;gt ):
(a) 0.015 cm−1, (b) 0.020 cm−1, (c) 0.025 cm−1, and (d) 0.030 cm−1. GT fluorophore absorption
of the background was μaf bg;gt ¼ 0. Data were created using Mesh 3, and the reconstruction was
performed using Mesh 4 from Table 1.
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uncertainties, due to the needle bending or different lengths of fibers beyond the needle tips.
Second, if the ultrasound is not used, as in our measurements on phantoms (see Sec. 4.2), there
is no feedback on the actual fiber positions. The desired (aimed, planned) fiber coordinates are
those chosen as optimal for the particular PDT treatment (see Sec. 3.2). The desired coordinates
can be corrected by estimates of actual fiber positions based on ultrasound images, after fiber
insertion into the patient’s body. These coordinates, denoted as xi;given, yi;given, and zi;given, for
i ¼ 1; : : : ; 13, and defined in Table 2, are then given as inputs to the tomographic reconstruction
algorithm. On the other hand, xi;actual, yi;actual, and zi;actual are actual positions of inserted fibers,
which can be more or less different from those given to the reconstruction algorithm. For
this simulation, actual fiber coordinates were obtained according to: xi;actual ¼ xi;given þ δxi,
yi;actual ¼ yi;given þ δyi, and zi;actual ¼ zi;given þ δzi, where δxi, δyi and δzi are random variables
taken from uniform distributions on intervals defined in Table 5. In this simulation, two realistic
levels of error amplitudes were considered, each with seven random realizations (scenarios) of
actual fiber positions. Table 5 shows the average relative errors for the reconstructed volume and
fluorophore absorption coefficients of the inclusion and the background. Bigger coordinate
uncertainties lead to larger reconstruction errors, with some scenarios resulting in more than
two regions. It can be concluded that the reconstruction is sensitive to the correct knowledge
of the fiber positions, and to have accurate reconstruction, only limited errors in the fiber position
estimation can be accepted.

Finally, instead of a homogeneous fluorophore concentration inside the sphere and in the
background, with a step-like transition between the two, we could consider a continuous
transition from the highest concentration at the sphere center, to the constant background level
concentration outside of the sphere of radius R ¼ 12 mm. The continuous transition has the
Gaussian profile [solid line in Fig. 10(d)]. From Fig. 10(d), it can be seen that the background
fluorophore absorption is accurately reconstructed in S2, which is an improvement compared
with S1. Although it is evident that a few homogeneous regions are not enough to accurately
approximate the Gaussian profile, reconstructed discrete values for μaf are not far from GT val-
ues. The number and size of regions depend on adaptive thresholds. Specifically in this simu-
lation, two degrees of freedom for the peak (tp) and the background threshold (tb) were allowed,
i.e., tp and tb can have mutually different values under the condition that tb ≤ tp, and both tp and
tb are from the defined set of discrete values (see Sec. 3.1). Figure 10(e) shows reconstructed
regions with their volumes and fluorophore absorption coefficients in 3D.

4.2 Phantom Validation
The optical and geometrical properties of the realized phantom are described in Sec. 3.5.
The gelatin-based spherical inclusions of seven different verteporfin concentrations were
tested: c0 ¼ 0, c1 ¼ 0.3 mg∕kg, c2 ¼ 0.6 mg∕kg, c3 ¼ 0.9 mg∕kg, c4 ¼ 1.2 mg∕kg, c5 ¼
1.5 mg∕kg, and c6 ¼ 1.8 mg∕kg. The experimental procedure is described in Sec. 3.6. The fiber
configuration used is defined in Table 2. The center of the spherical inclusion was placed at
ðxC; yC; zCÞ ¼ ð22.5; 27.5; 20.0Þ mm. For each spherical inclusion, the measurement had five

Table 5 Simulated errors (δx i , δy i , δzi ) of the estimation of actual fiber coordinates, random var-
iables uniformly distributed over the defined intervals, with the resulting average relative errors for
the reconstructed volume (δV i ) and fluorophore absorption coefficients of the inclusion (δμafi) and
the background (δμafbg), for seven scenarios (averaged over the number of scenarios resulting in
the specific number of regions). The same Mesh 2 (Table 1) was used for data generation and
reconstruction.

δx i (mm) δy i (mm) δzi (mm) Regions Scenarios δV i (%) δμafi (%) δμafbg (%)

½−0.5; 0.5� ½−0.5; 0.5� ½−1; 1� 2 5 −8.8 5.5 2.0

½−0.5; 0.5� ½−0.5; 0.5� ½−1; 1� 3 2 6.2 −6.2 −16.0

½−1; 1� ½−1; 1� ½−2; 2� 2 5 −23.6 16.8 3.6

½−1; 1� ½−1; 1� ½−2; 2� 3 2 −41.9 33.4 −15.0
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sequences, and the average was taken to increase the signal-to-noise ratio. Before forwarding the
data to the reconstruction algorithm, raw measurement data were processed such that every infra-
red detected value below 4.5 · 10−11 W was discarded, resulting in the reduced vector of mea-
surements having N 0

m ¼ 46 elements (out of Nm ¼ 132) in the case of concentration c1, and
N 0

m ¼ 75 in the case of concentration c6. This cutting-off is done to make the reconstruction

Fig. 10 Simulation of the scenario where the fluorophore absorption coefficient of the spherical
(R ¼ 12 mm) inclusion follows a Gaussian profile, with the peak μaf i ¼ 0.10 cm−1 at the sphere
center ðxC; yC; zCÞ ¼ ð20; 22; 18Þ mm and background outside of the sphere μaf bg ¼ 0.01 cm−1.
The plane cuts perpendicular to the z-axis, at z ¼ 18 mm, are shown as color maps for (a) S1
reconstruction results, (b) S2 reconstruction results, and (c) GT. Blue circles represent fiber
positions. (d) μaf ðr Þ dependence calculated at mesh nodes, where r is the distance of the node
from the sphere center, for S1 reconstruction (black dots), S2 reconstruction (blue circles), and
GT Gaussian μaf ðr Þ ¼ μaf i expð− lnðμaf i∕μaf bgÞr 2∕R2Þ (red solid line). (e) 3D representation of S2
results. Data were generated using the denser Mesh 3, and the inverse problem was solved using
Mesh 4 (see Table 1), whereas the matrix inversion was performed on a coarser 7140-node mesh.

Fig. 11 Tomographic reconstruction of the fluorophore absorption, cut plane z ¼ 20 mm, for differ-
ent verteporfin concentrations applied in the gelatin spheres (c): (a) 0.3 mg∕kg, (b) 0.6 mg∕kg,
(c) 0.9 mg∕kg, (d) 1.2 mg∕kg, (e) 1.5 mg∕kg, and (f) 1.8 mg∕kg. Results of the two stages of the
reconstruction are shown (S1 and S2) in different rows, the values for the reconstructed fluoro-
phore absorption coefficient of the inclusion μaf i , background μaf bg , and the estimated volume of
the inclusion V i are given below. Blue circles represent fiber positions. Columns (a)–(f) have
different color bars.
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more robust by avoiding amplification of measurement points with low levels of detected infrared
power, as explained in Sec. 4.1.

The tomographic reconstruction of fluorophore absorption was performed on Mesh 6 from
Table 1, and a lower resolution 6137-node mesh was used for matrix inversion. Reconstruction
results for six nonzero verteporfin concentrations are shown in Fig. 11, with the plane cut through
the sphere center (z ¼ 20 mm). The reconstructed volume of the inclusion is underestimated as
expected, (63 to 89)% of the ideal sphere volume (Sec. 4.1). The reconstructed fluorophore
absorption coefficient is expressed in arbitrary units for two reasons. First, the reconstructed
volume is not reliable, and when the volume is underestimated, the fluorophore absorption coef-
ficient is overestimated. However, all the reconstructed volumes are close to each other, and the
arbitrary unit can be used for relative comparison of the reconstructed PS drug concentrations.
Second, the fluorescence quantum yield, defined in Sec. 2.1, was assumed to be γ ¼ 10%.55,56 If
this value is wrong, all the results obtained from experimental measurements cannot be expressed
in a specific SI unit, but in a scaled unit which can be used for a relative comparison.

The relative comparison of the reconstructed fluorophore absorption coefficients for seven
verteporfin concentrations (including zero) applied in phantoms is graphically shown in Fig. 12.
A linear (y ¼ axþ b) least-squares fitting was performed through seven data points, resulting in
the coefficient of determination R2 ¼ 0.99, and the free term b ¼ −0.0012, suggesting a direct
proportionality between the fluorophore absorption and the fluorophore concentration. The
obtained linearity parameters are comparable with those from other fluorescence tomography
quantification methods.57,58 Our tomographic reconstruction algorithm validated on verteporfin
phantoms shows the potential for capturing quantitative differences in the PS drug concentration
by using SpectraCure’s P18 clinical system.

4.3 Limitations and Potential Improvements
The main limitations of the suggested DFT reconstruction methods are determined by the math-
ematical nature of the problem and the physical limitations of the measurement process. There is
also a computational factor that plays an important role in potential real-time clinical applica-
tions. To have a better spatial resolution, more nodes should be added to the finite element mesh,
and this requires more measurement points, i.e., source-detector pairs. Physically, because the
prostate volume is already small and the tumor region is even smaller, placing many brachyther-
apy needles of ∼1 mm diameter is not a simple task for a clinician. Moreover, the high spatial
density of metal needles inside a relatively small tissue volume affects the light propagation
and the model derived from the diffusion equation. SpectraCure’s P18 system used in experi-
ments has 18 photonics modules; therefore, slots for up to 18 optical fibers, which is more than
enough for most prostate cancer PDT applications, but imposes a theoretical limit of a maximum
18 · 17 ¼ 306 measurement points for DFT.

Fig. 12 Reconstructed fluorophore absorption coefficient (μaf i ) of solid spherical inclusions for
different applied concentrations of verteporfin (c). Experimental data marked with +, parameters
of the linear fit (red line) shown in the legend.
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The time required to solve the inverse problem in two stages, having as inputs the measure-
ments expressed as Born ratios and the optical properties estimated around the fibers, is around
4 to 5 min on CPU Intel i9, 10th generation, 3.7 GHz, with 32 GB RAM. The computations can
be faster or slower, depending on the finite element mesh resolution. The choice of the finite
element mesh is important and it has to take into account the dimensions of the medium, the
number of fibers, and time constraints (in the case of real-time clinical applications). For a clin-
ically realistic measurement with a set of 12 to 13 fibers interstitially placed inside a volume of
around ð5 × 5 × 5Þ cm3, finite element meshes of around 20,000 to 30,000 nodes were used.

Data acquisition by this system can still be improved. Increasing the numerical aperture of
the fibers is desired, and already in the latest system, NA ¼ 0.37 is used, which is better than
NA ¼ 0.22 used in this work (see Sec. 3.6). Leakage of 690 nm light through filters to the infra-
red detectors should be rejected as much as possible or precisely estimated and compensated for.
To make the reconstruction algorithm work robustly, regardless of noise and expected errors in
detection, a certain threshold below which all the infrared signals are to be discarded, should be
carefully determined. It would be useful to predict in simulations how much the reconstructed
volume is underestimated, as a consequence of this cutting-off, and take it into account as a
correction for the reconstruction from real measurement data.

Optical properties around the fibers are estimated according to already developed
methods.8,18 This is a good input to the fluorescence reconstruction algorithm but could be
improved in terms of spatial resolution and decoupling of absorption from the scattering.
However, that would result in more complex problems and a potential need for time-domain
systems. On the other hand, if it is of interest to reduce the computational complexity and achieve
faster reconstructions, simpler models can be developed by assuming a homogeneous back-
ground medium, and analytical expressions are given in Sec. 2.1, removing the need for
FEM calculations.

Note that in the current model, the effect of metal needles and the optical properties of silica
fibers is not considered. We believe that this will not affect the reconstruction significantly,
because the effective optical properties around the fibers are estimated as mentioned above and
the Born ratio is used to express the measured fluorescence. Light propagation at fluorescent
wavelengths is not expected to differ significantly from light propagation at the excitation
wavelength. As the Born ratio of the detected fluorescent and excitation wavelength signals
is forwarded to the reconstruction algorithm, all uncertainties including the inhomogeneous
or different optical properties in the medium and in small volumes occupied by the fibers and
needles, are expected to be canceled or negligible. However, it is suggested to model the presence
of optical fibers and brachytherapy needles in the medium, but the diffusion equation approach
would become more complex. Another possible approach is to compare the effects on the Born
ratio in Monte Carlo simulations in the two cases—when the fibers and needles are modeled and
when they are not.

A precise knowledge of the fiber positions is important, as it is an input to the forward model
used in reconstructions. The feedback information about the fiber positions is available in the
clinical setting, obtained from the ultrasound probe. This was not available in phantom experi-
ments, and we used recommended (aimed, desired) fiber positions as the actual fiber positions
(see Secs. 3.2 and 4.1). In the reality of the experiments with phantoms, because the gelatin
sphere was attached to the fibers, precise positioning of all the fibers and the sphere relative
to them was not possible. More precise information about the actual fiber positions would
improve the accuracy of the forward model, which is expected to result in better reconstruction
of the PS drug concentration.

Moreover, it would be beneficial to separately characterize fluorophore inclusions, before
the tomographic reconstruction in a liquid background, to verify that the concentration of fluo-
rophores (PS drug) is uniformly distributed over the inclusion volume. The phantom used in this
paper had a simplified geometry, unlike the hybrid phantom from our previous work26 whose
prostate boundaries were defined using the 3D model obtained from the clinical ultrasound data.
The effect of such geometry could be explored and considered in the future.

Finally, the algorithm for determining the regions as inputs to S2 could be implemented in
many different ways. One direction for further exploration is to extend the allowed set for adap-
tive threshold fractions tp and tb, for example by not imposing tp ¼ tb, including more than nine
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different values, or extending the empirically determined interval (0.33, 0.87) (Sec. 3.1). Other
suggested directions include application of clustering algorithms based on statistical pattern
recognition or artificial neural networks. Moreover, it is expected that the structural a priori
information in S1 (which can be obtained from ultrasound during the treatment) would improve
the accuracy of the inputs for S2 and therefore the final results of S2.

5 Conclusion
We have proposed a novel two-stage approach for estimating the spatial distribution of the fluo-
rescent PS drug starting from CW measurement data at excitation and fluorescence emission
wavelengths, acquired by interstitially placed optical fibers. S1 of the proposed algorithm relies
on standard DOT reconstruction methods, without any geometrical prior. The results from S1 are
then used as inputs for S2, presented here for the first time. The reconstruction methods were
implemented in MATLAB, using the NIRFAST package. Numerical simulations in various
scenarios were performed to test the newly developed methods and find their limitations. As
found in simulations with a single homogeneous fluorescent spherical inclusion, it is essential
to increase the signal-to-noise ratio to have a reliable reconstruction of the volume of the inclu-
sion and its fluorophore absorption coefficient. Various inclusion sizes and fluorophore concen-
trations were investigated. More accurate results are obtained if the optical properties around the
fibers are correctly taken into account, compared with the case where a mismatch between the
actual optical properties and those forwarded to the reconstruction algorithm exists. The novel
two-stage approach resulted in the average absolute value of the reconstruction relative error of
the order of (1 to 10)%, compared with around 90% in a standard single-stage approach. The
tomographic reconstruction methods were validated on prostate tissue-mimicking phantoms to
estimate the spatial distribution and concentration of fluorescent PS verteporfin used in the PDT
of prostate cancer. The reconstructed fluorophore absorption coefficients had a good direct pro-
portionality with the applied concentrations of verteporfin, whereas the reconstructed volume of
the inclusion had a relative error (10 to 35)%. The results from experimental measurements show
the potential for further development of the proposed DFT methods and their eventual clinical in
vivo application for monitoring the PS drug concentration in real-time during the PDTof tumors.

Before transferring to clinics, these methods should be validated on the next generations of
phantoms of different shapes, sizes, PS concentrations, and with various fiber configurations. In
parallel, the reconstruction methods can be used offline to find the correlation between the pros-
tate cancer treatment outcome and the amount of the PS and its spatial and temporal evolution in
already finished treatments.
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