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Abstract. A capsule network encodes entity features into a capsule and maps a spatial relation-
ship from the local feature to the overall feature by dynamic routing. This structure allows the
capsule network to fully capture feature information but inevitably leads to a lack of spatial
relationship guidance, sensitivity to noise features, and easy susceptibility to falling into local
optimization. Therefore, we propose a novel capsule network based on feature and spatial
relationship coding (FSc-CapsNet). Feature and spatial relationship extractors are introduced
to capture features and spatial relationships, respectively. The feature extractor abstracts feature
information from bottom to top, while attenuating interference from noise features, and the spa-
tial relationship extractor provides spatial relationship guidance from top to bottom. Then,
instead of dynamic routing, a feature and spatial relationship encoder is proposed to find the
optimal combination of features and spatial relationships. The encoder abandons the idea of
iterative optimization but adds the optimization process to the backpropagation. The experimen-
tal results show that, compared with the capsule network and its multiple derivatives, the pro-
posed FSc-CapsNet achieves significantly better performance on both the Fashion-MNIST and
CIFAR-10 datasets. In addition, compared with some mainstream deep learning frameworks,
FSc-CapsNet performs quite competitively on Fashion-MNIST. © The Authors. Published by
SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JEI.29.2.023004]
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1 Introduction

Traditional convolutional neural networks (CNNs)1 have obvious limitations for exploring spa-
tial relationships. The general method for classifying images of the same type taken from differ-
ent angles is to train multiple neurons to process features and then add a top-level detection
neuron to detect the classification results. This approach tends to remember the dataset rather
than summarizing the solution, and it requires large amounts of training data to cover different
variants and avoid overfitting. This characteristic also makes CNNs very vulnerable when
dealing with tasks based on moved, rotated, or resized samples.

Unlike CNNs, capsule networks (CapsuleNet)2 use capsules3 to capture a series of features
and their variants. In the capsule network, higher-layer capsules are used to capture the overall
features, such as “face” or “car,” while the lower-layer capsules are used to capture local entity
features such as “nose,” “mouth,” or “wheels,” leading to a completely different approach than a
convolutional network when abstracting the overall feature from local features. However, this is
not enough. A complete identification process requires both bottom–up feature abstraction and
top–down spatial relationship guidance. The capsule network defines a transformation matrix
between adjacent capsule layers to implement feature abstraction. Then, dynamic routing is
used to find the optimal combination of features to activate the next layer of capsules. However,
the entire process is still solely a bottom–up process. The definition of the transformation matrix
is settled in the lower-layer capsule, and feature information flows from lower-layer capsules
to higher-layer capsules. To achieve a more natural recognition, a top–down stream of spatial
relationship information is also needed.
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As an example, suppose we are doing a jigsaw puzzle in which a dog’s picture is split and the
pieces are mixed up. The process of restoring the original image from the fragments is generally
similar: first, we obtain a piece of the picture—maybe the dog’s leg or perhaps its mouth.
Obviously, these fragments are far from sufficient to restore the picture: we do not know where
they should be placed. Thus, naturally, in the second step, we begin to imagine where the dog’s
legs should be and how far they are from its mouth. Step by step, we restore the pieces to form
the dog. This results from spatial relationship guidance, which links the fragments together to
form a whole. If we do not know the spatial information of the image, the possibility of restoring
the dog is almost zero. That is why we need to improve the capsule network. More accurately,
naturally, the identification process requires the guidance of spatial relationships, and the capsule
network is not good at this.

In view of the fact that the capsule network uses a single transformation matrix, it is sensitive
to noise features, which causes the model to perform poorly when processing images with com-
plex spatial relationships. At the same time, the optimization idea of the iterative loop in the
dynamic routing algorithm also slows down the model’s convergence speed. For the purpose
of making up for these shortcomings as much as possible, we propose a new capsule network
called a feature and spatial relationship coding capsule network (FSc-CapsNet). Unlike the origi-
nal capsule network, we propose a new feature and spatial relationship coding structure for
FSc-CapsNet to replace the feature extraction process and dynamic routing. The feature and
spatial relationship coding structure consists of three parts: feature and spatial relationship
extraction, fusion, and encoding. The feature and spatial relationship extraction part includes
two processes. The first is the bottom–up feature extraction. FSc-CapsNet uses the feature
extractor to extract the decisive features required for classification from the original features.
The second is a top–down spatial relationship extraction. Unlike standard CapsuleNet, we cap-
ture the spatial relationships in images through a spatial relationship extractor based on the
higher-layer capsules.

FSc-CapsNet extracts the decisive features of the original features using a feature extractor.
These features have a large influence on the classification result, and they will greatly affect the
classification result for the current entity. The extraction weakens the influence of noise features
on the classification results. Noise features can be considered as features that have a negative
effect or may even interfere with the classification results. After feature extraction, FSc-CapsNet
strengthens the positive impact of the decisive features and weakens the negative impact of noise
features on the classification results. It is easier to obtain the correct classification result using
only decisive features than using all of the original features.

The spatial relationship extractor captures the spatial relationships that exist between differ-
ent features belonging to the same entity. Usually, a fixed spatial relationship exists between
different parts belonging to the same entity, while the spatial relationships between different
entities are different. Under the guidance of different spatial relationships, combinations of the
same features will result in different classification results. Consider the handwritten digit 6 as an
example: all handwritten digits 6 should include a circle and a line. Regardless of the position or
shape of the handwritten digit 6, the circles and lines follow the spatial pattern representative of
the digit 6. When a circle and a line exist but they are combined using the spatial pattern of the
number 9, we know that the handwritten digit is a 9 and not a 6. Examples of handwritten num-
bers 6 and 9 are shown in Fig. 1. We use a spatial relationship extractor to capture the spatial

Fig. 1 Two different spatial relationship patterns: numbers 6 and 9.
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relationships that correspond to the classification target. The spatial relationships differ depend-
ing on the classification target, and they affect the combinations of lower-layer capsules but are
not affected by them. Therefore, the process of spatial relationship extraction can be considered a
top–down process.

In the capsule network, dynamic routing is used to find the optimal combination of the lower-
layer capsules to activate the higher-layer capsules, which is the classification result. In dynamic
routing, the capsules in the same layer are combined according to their contribution weights to
activate a capsule in a higher layer during iterations. Iterative loops slow down network con-
vergence and at the same time make the optimization process easily fall into a local optimum.

In FSc-CapsNet, the feature extractors map the feature vector into a feature matrix when
extracting features. Subsequently, FSc-CapsNet fuses the spatial relationships in another dimen-
sion based on the feature matrix, forming a three-dimensional (3-D) information cube.
Considering the complexity of finding the optimal combination of information cubes, it is not
appropriate to continue using dynamic routing. Instead, we use a 3-D convolutional kernel4 to
construct a feature and spatial relational encoder that simultaneously finds the optimal combi-
nation of features and spatial relationships. The 3-D convolutional kernel can model two differ-
ent dimensions of information at the same time. The feature and spatial relationship encoder does
not need to find the optimal combination through iteration. Instead, it performs the optimization
process during backpropagation. The encoder can adaptively find the global optimal combina-
tion during the network training process. This combination method does not require manual
evaluation indicators, and it achieves a more direct and accurate search for the optimal combi-
nation of features and spatial relationships. In addition, FSc-CapsNet establishes a reconstruction
unit via a deconvolutional layer to explore the possibility of using the deconvolutional layer5

instead of a fully connected layer as the reconstruction unit. The deconvolutional layer can be
regarded as a pooling process from low to high resolution through its unique upsampling oper-
ation. The upsampling process gives it stronger antinoise and pooling abilities.

The FSc-CapsNet established a new feature and spatial relationship coding structure. The
feature and spatial relationship extractor extracts the decisive features and spatial relationships
from the original features, respectively. The feature and spatial relationship encoder replaces
the dynamic routing with iterative optimization using the 3-D convolution kernel to simultane-
ously find the optimal combination of decisive features and spatial relationships. The structure
introduces top–down spatial information guidance for the capsule network and incorporates the
feature combination optimization process into the backpropagation. Compared with the original
capsule network and its derivatives, FSc-CapsNet achieves significantly better performance on
both the Fashion-MNIST and CIFAR-10 datasets. In addition, compared with other mainstream
deep learning frameworks, FSc-CapsNet achieves a competitive performance on Fashion-
MNIST. We made three improvements compared with the standard capsule network:

1. We propose a feature extractor and a spatial relationship extractor that extract features
and spatial relationships, respectively. A top–down stream of spatial relationships is intro-
duced into the capsule network, and the interference from noise features is attenuated.

2. We propose a feature and spatial relationship encoder that replaces dynamic routing and
adds the process of finding an optimal combination to the backpropagation, and the train-
ing process becomes end to end.

3. The deconvolution layer replaces the fully connected layer as the base layer of the recon-
struction unit with its powerful pooling and antinoise abilities.

2 Related Work

In recent years, many researchers have introduced spatial relations in the CNN classification
process. Spatial transformer networks (STNs)6 transform input patterns and even feature maps
through a series of affine transformation operations and add point of view invariance to the
standard CNN input without requiring any extra training supervision or modification. STNs
have achieved state-of-the-art performance on several benchmarks. Deformable convolutional
networks7 further expand the STNs and perform different feature map, perform spatial trans-
formations at different locations, and introduce two new modules to enhance the transformation
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modeling capacity of CNNs: deformable convolution and region of interest pooling.
Experiments have shown that this method has good results on complex object detection visual
tasks and semantic segmentation. Harmonic networks (H-Nets)8 implement a rotating equivalent
feature map using a circular harmonic filter, and they use complex returns to obtain the maxi-
mum response and direction. H-Nets use a rich, parameter-efficient, and computationally effi-
cient representation to introduce rotation invariance in deep feature map coding. At the same
time, their layer versatility is sufficient for use in conjunction with the latest architectures and
technologies. CapsuleNet2 explore new ways to encode feature information based on a method
for rewriting the underlying unit to introduce rotation invariance in the image classification
process. Compared with H-Nets, CapsuleNet perform better and require fewer parameters.

Subsequently, explorations and innovations to the capsule network structure have emerged
one after another. The proposed generative adversarial capsule network (CapsuleGAN)9 uses a
framework that employs CapsuleNet instead of standard CNNs to explore the fusion of
CapsuleNet and semisupervised models. CapsuleGAN is superior to a convolutional generative
adversarial network at modeling the image data distribution on the MNIST and CIFAR-10 data-
sets. A deep inception capsule network for gamma-turn prediction10 was also proposed, and its
performance was significantly better. This paper also verifies that even with a relatively small
number of input samples, CapsuleNet’s capsules are extremely effective at extracting advanced
features for use in classification tasks. Generalized CapsuleNet 11 added a routing process to the
optimization process and automatically set the number of routing networks. However, the paper
reports that the routing procedures in CapsuleNet are not sufficiently well integrated into the
entire training process because the optimal number of routing processes must be found man-
ually. To overcome this problem, they embedded the routing process into the optimization proc-
ess along with all of the other parameters in the neural network, making the coupling
coefficients in the routing process fully trainable. This approach coincides with our encoder
design idea. Furthermore, we abandon the idea of route iteration and use the 3-D convolutional
kernel to find the optimal combination. MS-CapsNet12 proposed a multiscale capsule network
that is more robust and efficient for feature representation. The authors proposed a multiscale
feature extraction method to expand the ability of the capsule network to recognize images. In
contrast, we further segment the original features and map the feature vectors to the feature
matrices.

TextCaps13 introduced a technique for generating new training samples from existing sam-
ples that simulates the actual changes in human handwriting input by adding random noise to the
corresponding instantiation parameters. This strategy is useful in character recognition for local-
ized languages that lack large amounts of labeled training data. The stacked capsule autoencoder
(SCAE)14 is an unsupervised capsule network that defines a new representation learning method
in which any encoder can learn the viewpoint representation by inferring the local parts and
their poses and identifying the object to which these parts belong. In a comparison of many
unsupervised models, SCAE achieved a significant improvement. It also tries to find a fixed
relationship between the part and the whole, and the difference from our approach is that an
unsupervised approach is implemented by the authors of SCAE.

CapsuleNet also have fairly good performance when dealing with real-world problems or
with realistic image datasets. A novel method for traffic sign detection using CapsuleNet15

achieved an accuracy of 97.6% on the German Traffic Sign Recognition Benchmark dataset.
The work investigating CapsuleNet with dynamic routing16 explored the effects of CapsuleNet
for text classification and proposed three strategies for stabilizing dynamic routing processes to
mitigate the interference of certain noise capsules. A series of experiments were performed on
six text classification benchmarks using a capsule network. The experiment showed that the
capsule network achieves a significant improvement when transferring a single label to a multi-
label text classification via a strong baseline method.

3 Feature and Spatial Relationship Coding Capsule Network

In CapsuleNet, a capsule is defined as a vector with both direction and length, where the direc-
tion represents the feature of the entity and the length represents the probability of the entity’s
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existence. After applying “Squashing” nonlinear activation as Eq. (1), the activation probability
of the capsule, that is, its length, is compressed to (0, 1):

EQ-TARGET;temp:intralink-;e001;116;530Squashing∶ Vi ¼
kSik2

1þ kSik2
×

Si
kSik

; (1)

where Si is the input vector and Vi is the output vector of the capsule i.
The capsule network defines a transformation matrix Wij to implement the feature abstrac-

tion process, where i is any lower-layer capsule and j is any higher-layer capsule. The features
mentioned in this paper generally refer to the vector-type output of a capsule. A capsule with a
higher dimension can be regarded as carrying more feature information. Lower-layer capsules
represent local features, while higher-layer capsules represent global features, in other words, the
classification result. In a capsule network, the capsules in the Prim-Caps layer are called primary
capsules, while the Caps layer consists of the ultimate capsules. The output Vi of capsule i in the
Prim-Caps layer can be thought of as the original feature, and the output Vj of ultimate capsule j
represents the classification result.

In FSc-CapsNet, we propose a new feature and spatial relationship coding structure that
includes two stages: an extraction and fusion unit and an encoder unit. The structure of the
FSc-CapsNet is shown in Fig. 2, which consists of four parts: a standard convolutional layer
(“Conv layer”), a “Prim-Caps layer,” a “Caps layer,” and a deconvolutional reconstruction unit.
The extraction unit, the fusion unit, and the encoder unit are applied between the Prim-Caps layer
and the Caps layer. Here Vi refers to the output of capsule i in the Prim-Caps layer, and Vj refers
to the output of ultimate capsule j, which represents the classification result.

As shown in Fig. 2, we perform feature and spatial relationship extraction unit instead of the
transformation matrix Wij to abstract the decisive feature and spatial relationships. The decisive
feature Di exists in the feature matrix, but the spatial relationship Rj exists between the feature
matrices. The Uij is the output of a preliminary combination of the decisive features and spatial
relationships by fusion unit. It contains both the features most beneficial to the classification
results and the guidance of the spatial relationships from the classification results. It is more
advantageous to use Uij as the basic unit for activating the higher-layer capsules than to use
the original features. Finally, the encoder performs the final combination of the fusion feature
Uij, finds the optimal combination, and activates the higher-layer capsule j to obtain the clas-
sification results Vj.

3.1 Extraction and Fusion Unit

As shown in Fig. 3, FSc-CapsNet separately defines the feature extractor FEi and the spatial
relationship extractor SEj. The FEi is used to extract the decisive feature Di of the entity, and
the SEj is used to find the spatial relationship Rj from the classification results. For any primary
capsule i, there is one and only one corresponding FEi, and for any ultimate capsule j, there is

Fig. 2 The FSc-CapsNet consists of three layers and a reconstruction unit.
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one and only one corresponding SEj. The process of extracting Di from Vi by FEi should not be
affected by the classification result. Because different classification results are activated by com-
binations consisting of the same set of decisive features, the classification results do not affect the
feature information carried by the decisive features. They only affect the combination of decisive
features. Different classification results have different spatial relationships, and different spatial
relationships can combine the same decisive features into different classification results.

In general, a fixed spatial relationship exists between the different parts belonging to the same
entity, while the spatial relationships between different entities are often different. We define a
spatial relationship extractor SEj to capture this spatial relationship between a series of original
features that are subordinate to a given classification result. It can also detect differences between
features that are not part of the same classification result. The spatial relationship Rj reflects the
contribution of the decisive feature Di to the classification result Vj.

As shown in Fig. 3, the feature extractor and spatial relationship extractor are defined as a 3-D
matrix—one dimension higher than the transform matrixWij—used to expand the feature vector
into a feature matrix. In a capsule network, it is generally believed that the higher the dimension
of the capsule, the more information it carries. Thus, a feature matrix carries more information
than does a feature vector. To some extent, expanding the feature vector to a higher dimension
also achieves the selection and combination of feature information. Assume the number of pri-
mary capsules in the Prim-Cap layer isM, and the number of ultimate capsules in the Cap layer is
N. Each primary capsule has L dimensions, and the dimension of the ultimate capsule is H. The
size of the feature extractor FEi is defined as ½L;K;K�, and the size of spatial relationship extrac-
tor SEj is also defined as ½L;K;K�. There are a total of M feature extractors and N spatial rela-
tionship extractors. Here K is a constant between ðL;HÞ, Di is calculated by Eq. (2), and Rj is
calculated by Eq. (3).

EQ-TARGET;temp:intralink-;e002;116;229Di ¼ Vi � FEi; (2)

EQ-TARGET;temp:intralink-;e003;116;186Rj ¼ Vi � SEj: (3)

As mentioned above, Rj represents a fixed spatial relationship between a series of features
subordinate to a given classification result. It also reveals the differences between features that
are not part of the same classification result. Therefore, the spatial relationship Rj can be used to
measure the contribution of decisive features to the classification results. The process of fusing
decisive features with spatial relationships to obtain fusion features is shown in Fig. 4. We lin-
early superimpose the decisive feature Di with the spatial relationships Rj to obtain the fusion
feature Uij, as in Eq. (4). The fusion feature Uij contains the features that are most beneficial to
the classification results, as well as guidance from the spatial relationships of the classification
results.

Fig. 3 The process of extracting decisive features Di and spatial relationships Rj from the original
feature Vi by the feature extractor FEi and the spatial relationship extractor SEj .
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EQ-TARGET;temp:intralink-;e004;116;500Uij ¼ Di þ Rj: (4)

3.2 Encoder Unit

In the capsule network, dynamic routing is used to find the optimal combination of the primary
capsules to activate the ultimate capsules. The capsule network needs to enhance the contribution
of the features that are beneficial to the classification results and weaken those that are harmful.
Therefore, the contribution weight Cij is introduced as an evaluation indicator to measure the
contributions of features to the classification results. The Cij is calculated by the coupling coef-

ficient Bij between the predicted feature Ûjji and Vj, as shown in Eqs. (5) and (6).

EQ-TARGET;temp:intralink-;e005;116;374Bij ¼ Bij þ Ûjji · Vj; (5)

EQ-TARGET;temp:intralink-;e006;116;328Cij ¼ SoftmaxðBijÞ: (6)

The dynamic routing process is shown in Fig. 5. In iteration, the primary capsule i combines
with each other capsule to activate the ultimate capsule j according to its Cij. The classification
result Vj of this iteration participates in the next iteration as input to update Cij. After several
iterations, the optimal feature combination is obtained, where the optimal feature combination is
the optimal solution of Cij. For feature vectors, dynamic routing is a suitable way to find the
optimal combination of features, but it is not suitable for FSc-CapsNet. In addition, the initial
value of Cij will greatly influence the search process of the optimal solution, and the iterative
optimization process independent of backpropagation can easily fall into a local optimal
solution.

Fig. 4 The decisive feature Di linearly superimpose with the spatial relationships Rj to obtain the
fusion feature Uij .

Fig. 5 In the dynamic routing, the contribution weight Cij is updated simultaneously.
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In FSc-CapsNet, the decisive features and spatial relationships are fused into an information
cube, which is called the fusion feature Uij. We propose a feature and spatial relationship
encoder to adaptively find the optimal combination of fusion features, as shown in Fig. 6.
The 3-D convolutional kernel is used as a basic unit to construct three convolutional layers,
forming the feature and spatial relationship encoder. The encoder takes the fusion feature
Uij as input, the number of primary capsules as the number of 3-D convolutional channels, and
the number of ultimate capsules as the depth of the 3-D convolutional kernel. As the 3-D con-
volutional encoding progresses, the feature matrix in the depth range is continuously abstracted
into smaller scales by the 3-D convolutional kernel, which can be considered as a combination of
the fusion features. At the same time, the feature matrix between the different channels is com-
bined into a new feature matrix, which can be considered as a combination of the spatial relation-
ships between the fusion features. Finally, the encoder adaptively finds the optimal solution that
takes both directions into consideration.

The feature matrix in the depth-N range is defined as UN
ij and is input to the three 3-D con-

volutional layers to obtain the output of the ultimate capsules. The output of the ultimate capsules
in the depth-N range is defined as VN

j . The value vxyzij at position ðx; y; zÞ on the j’th feature
matrix in the i’th 3-D convolutional layer is given in Eq. (7). Finally, Vj is resized to ½H; 1� and
activated by the Squashing nonlinear activation as Eq. (1).

EQ-TARGET;temp:intralink-;e007;116;325vxyzij ¼ ReLU

�X
m

XPi−1

p¼0

XQi−1

q¼0

XTi−1

t¼0

Wpqt
ijmv

ðxþpÞðyþqÞðzþtÞ
ði−1Þm þ bij

�
; (7)

where Ti is the depth of the 3-D convolutional kernel andWpqt
ijm is the ðp; q; tÞ’th value of the 3-D

kernel connected to the m’th feature matrix in the previous layer. Inside the encoder, the acti-
vation function of the convolutional layer is the rectified linear unit (ReLU17).

In the general deep learning model, a 3-D convolutional kernel is generally used to learn the
spatiotemporal features. It can simultaneously model time and space features to establish a con-
nection between the two. The feature abstraction process of two adjacent 3-D convolutional
layers is shown in Fig. 7. The 3-D convolutional kernel, simultaneously along with the depth
and channel direction, could abstract the feature matrix Ib1−i of the b layer from the Ia1−i in a layer.
To demonstrate the abstraction of features better, we simplified the representation of the feature
map, focusing only on the encoding process corresponding to one higher level capsule, so Iai is
defined as the output of the a’th layer 3-D convolution layer feature map. Generally speaking,
Uij in Fig. 6 can be regarded as the input of the first 3-D convolutional layer, which is defined as
I0i , and Vj in Fig. 6 is the output of the third 3-D convolutional layer, which is I3i .

Figure 8 shows the bottom–up feature abstraction process and the process of capturing the
spatial relationships in a top–down manner in FSc-CapsNet. In the extraction unit, the two
streams of information are independent. The fusion unit fuses the two streams to obtain the

Fig. 6 The feature and spatial relationship encoder consists of three 3-D convolutional layers, and
the fusion feature Uij is abstracted into ultimate capsules by 3-D convolutional kernel. Here M is
the number of primary capsules and the channels of the encoder and N is the number of ultimate
capsules and the depth of encoder. Finally, the encoder resizes the output VN

j to ½N;H; 1�, where
H is the dimension of an ultimate capsule.
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fusion feature. The encoder finds the optimal fusion feature combination through the 3-D con-
volutional kernel while considering both the fusion features and the spatial relationships.

3.3 Deconvolutional Reconstruction Unit

As shown in Fig. 9, we set the deconvolutional reconstruction unit to reconstruct an image from
the ultimate capsules. After the outputVj of the ultimate capsule j passes through the mask layer,
the feature information carried by Vj is decoded using three deconvolutional layers to obtain a
reconstructed image. The reconstructed image can assist in training. We use the Euclidean dis-
tance between the reconstructed image and the original image as the reconstructed loss. In addi-
tion, the reconstructed loss after zooming in 0.0005 times is added to the overall loss during
training as in Eq. (8). The deconvolutional reconstruction structure is shown in Fig. 9.

EQ-TARGET;temp:intralink-;e008;116;118

Lj ¼ Tj �max ð0; mþ − kUjkÞ2 þ λð1 − TjÞ �max ð0; kUjk −m−Þ2

þ 0.0005 �
Xn
i

ðOij − RijÞ2; (8)

Fig. 8 The process of feature and spatial relationship coding, including feature and spatial infor-
mation extraction, fusion, and coding unit.

Fig. 7 The feature abstraction process of two adjacent 3-D convolutional layers.
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where Tj stands for the label during training, λ ¼ 0.5, mþ ¼ 0.9, and m− ¼ 0.1. Here Oij and
Rij represent the pixel intensities of the original and reconstructed images, respectively.

4 Experiments

To evaluate the performance of FSc-CapsNet, we conducted an experiment on the Fashion-
MNIST18 and CIFAR-10 datasets.19 Compared with the standard MNIST, the samples in the
Fashion-MNIST and CIFAR-10 datasets are both more diverse and more realistic. The “com-
ponents,” for example, the body part of the top, the sleeve, and the collar, shared between the
different sample types are clearer, and these parts are common to various categories, such as
coats and T-shirts. The accuracy achieved on this type of dataset can demonstrate the advantages
of FSc-CapsNet’s use of spatial relationships to address classification tasks. Fashion-MNIST is
an even slightly greater classification challenge than is MNIST.

The Fashion-MNIST dataset contains 10 categories and 70,000 samples. The size, format,
and training/testing sets of Fashion-MNIST are identical to those of MNIST. Each image is gray-
scale with a size of [28, 28]. The training set size is 60,000, and the testing set consists of 10,000
images.

4.1 Model Structure and Parameter Settings

The structure of the FSc-CapsNet is shown in Fig. 2, which consists of four parts: Conv layer,
Prim-Caps layer, Caps layer, and deconvolutional reconstruction unit. The FSc-CapsNet’s
parameter settings are shown in Table 1, including Conv layer, Prim-Caps layer, Caps layer,
the encoder unit, and deconvolutional reconstruction unit, and the table shows the specific

Fig. 9 The architecture of deconvolutional reconstruction unit.

Table 1 The parameter settings of FSc-CapsNet.

Layer Input channel Kernel size Stride Depth Output channel

Conv layer 1 7 × 7 2 — 256

Prim-Caps layer 256 5 × 5 1 — 32 × 6 × 6

3-D Conv-1 layer 32 × 6 × 6 3 × 3 2 10 32

3-D Conv-2 layer 32 3 × 3 2 10 8

3-D Conv-3 layer 8 3 × 3 2 10 1

Caps layer 1 — — — 10

DeConv-1 layer 1 3 × 3 1 — 5

DeConv-2 layer 5 3 × 3 2 — 3

DeConv-3 layer 3 4 × 4 2 — 1

Han et al.: Feature and spatial relationship coding capsule network
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settings of the six parameters, including input channel, kernel size, stride, depth, and output
channel.

In FSc-CapsNet, Conv layer is a standard two-dimensional (2-D) convolutional layer with
ReLU activation. Prim-Caps layer converts the feature map abstracted by Conv layer into 1152
(32 × 6 × 6) channels primary capsule, and each primary capsule is eight-dimensional (8-D).
Caps layer consists of 10 ultimate capsules, and each ultimate capsule is 16-dimensional
(16-D). The encoder unit used for the spatial relation coding consists of three 3-D convolutional
layers. And the deconvolutional reconstruction unit consists of three deconvolutional layers.
Before reconstructing the image, the 16-D feature vector in the ultimate capsule is converted
into a [4, 4, 1] feature map, which is used as the input to the deconvolutional layer.

4.1.1 Extraction and fusion unit

The extraction and fusion unit are applied between the Prim-Caps and Caps layers. In the extrac-
tion unit, the feature extractor and the spatial relationship extractor are both set to [8, 10, 10].
They transform the 8-D feature vector into a feature matrix of [10, 10].

The loss function used in FSc-CapsNet is shown in Eq. (8). We use Adam gradient descent
optimization algorithm20 during training, and the learning rate starts from 0.01. The entire model
is built on PyTorch. The batch size is set to 128, and the hyperparameters for Adam are set to
their defaults.

5 Results

The standard capsule network is used as a baseline in this paper along with several of its deriv-
atives. The standard capsule network consists of a four-layer structure: a Conv layer, a Prim-Caps
layer, a Caps layer, and a reconstruction unit. The parameter settings in the first three layers are
the same as those in FSc-CapsNet, and dynamic routing is applied between the Prim-Caps layer
and the Caps layer. The final reconstructed structure consists of 512, 1024, and 784 channels in
three fully connected layers. We also selected two derivatives of the standard capsule network:
MS-CapsNet12 and TextCaps.13 Both of these derivatives were applied to the Fashion-MNIST
and CIFAR-10 datasets, and the main improvements from both variants also lie in their feature
extraction processes. In terms of accuracy, both of these models exceed that of the standard
capsule network.

We evaluated our experiments on the Fashion-MNISTand CIFAR-10 datasets. Table 2 shows
a comparison of between our experimental group and some baseline. The baseline group
includes four CapsuleNet: standard capsule network, MS-CapsNet, MS-CapsNet with Dropout,
and TextCaps. The experimental group has four FSc-CapsNet models: standard FSc-CapsNet,
FSc-CapsNet with a fully connected reconstruction unit, FSc-CapsNet with a large-scale feature
matrix, and FSc-CapsNet with more larger-scale feature matrices. Insofar as was possible, we
used the same parameter settings for all of the CapsuleNet to ensure a fair comparison.

Table 2 shows the average accuracy and parameter sizes of the baseline and FSc-CapsNet
methods on both Fashion-MNIST and CIFAR-10. The comparison of FSc-CapsNet with several
baselines shows that, clearly, FSc-CapsNet models achieve significantly better performances
than do the capsule network and its various derivatives. On the Fashion-MNIST dataset, the
average accuracy of the standard capsule network is 92.28%, ∼1.41% lower than average accu-
racy of the standard FSc-CapsNet. After replacing the reconstruction unit with fully connected
layers, the average accuracy of FSc-CapsNet was reduced to 93.58%—which was still 1.3%
higher than the accuracy of standard capsule network. After extending the feature matrix from
[10, 10] to [16, 16], the average accuracy of FSc-CapsNet rose to 1.56% higher than the standard
capsule network, reaching 93.84%. We found that, compared with the variants of the capsule
network, FSc-CapsNet achieves higher accuracy on Fashion-MNIST than that of MS-CapsNet
or MS-CapsNet with Dropout. The performance of FSc-CapsNet is close to that of TextCaps.
The difference between the two is ∼0.02%. Moreover, when the extension of the feature matrix is
added, FSc-CapsNet performs better than TextCaps.

It is worth mentioning that we attribute the accuracy performance advantage of FSc-
CapsNet to the use of spatial relationships for two reasons. First, after the performance of
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the capsule network reaches a high enough level, the increase in the parameter scale cannot get
a better performance. We have repeatedly tested some CapsuleNet with larger parameter
scales, and none of them can achieve better performance. Second, compared with the capsule
network, the improvement of the FSc-CapsNet parameter is mainly concentrated in the 3-D
convolution layer of the encoder structure, but in the feature abstraction part that exists in both
models, the parameters of FSc-CapsNet are even less than the capsule network. In FSc-
CapsNet, the parameters in the 3-D convolution layer are mainly used to find the optimal
combination of spatial relationships, that is, the introduction of spatial relationships has led
to an increase in the number of parameters in this part. Therefore, the fundamental reason why
FSc-CapsNet can achieve better performance is always the use of spatial relationships, rather
than simply the increase in the parameter.

To better compare FSc-CapsNet and the capsule network in the use of spatial relationships,
we selected some samples and have shown their reconstructed images obtained by the two mod-
els in Fig. 10. As shown in Fig. 10, there are eight original samples in the upper part of the
subgraph, and the bottom half is the reconstructed images. Compared with the capsule network,
the reconstructed image of FSc-CapsNet is closer to the original image, and the boundaries of the
entity in the images are clearer. After comparing the reconstructed image with the original image
one by one, it was found that there were no missing parts in the reconstructed image.

Among the four variants of FSc-CapsNet, we can see that proper feature matrix selection
leads FSc-CapsNet to achieve higher accuracy. Compared with that of the standard FSc-
CapsNet, the accuracy of FSc-CapsNet with the feature matrix extension increases by 0.15%.
That is, a [16, 16] feature matrix on the Fashion-MNIST dataset achieves better performance

(a) (b)

Fig. 10 The reconstructed images of some samples obtained by (a) the capsule network and
(b) FSc-CapsNet.

Table 2 The comparison of average accuracy and parameter sizes of the baseline and
FSc-CapsNet methods on both Fashion-MNIST and CIFAR-10 (M is for millions).

MNIST (%) Fashion-MNIST (%) Par (M) CIFAR-10 (%) Par (M)

CapsuleNet 99.56� 0.031 92.28� 0.22 5.4 72.56� 0.42 6.2

MS-CapsNet 99.58� 0.011 93.10� 0.45 10.8 75.1� 0.37 11.2

MS-CapsNet + Dropouta 99.58� 0.015 93.40� 0.38 10.8 75.7� 0.55 11.2

TextCaps 99.62� 0.018 93.71� 0.44 17.4 78.69� 0.27 18.2

FSc-CapsNet 99.61� 0.014 93.69� 0.28 6.8 79.10� 0.33 9.6

FSc-CapsNet + FCb 99.59� 0.028 93.58� 0.32 7.5 78.73� 0.19 11.3

FSc-CapsNet + LMc 99.62� 0.011 93.84� 0.16 12.3 79.64� 0.21 18.7

FSc-CapsNet + MLMd 99.62� 0.015 93.82� 0.21 22.1 79.88� 0.15 34.0

aMS-CapsNet + Dropout is a derivative of MS-CapsNet.
bFSc-CapsNet + FC refers to FSc-CapsNet with the fully connected layer.
cFSc-CapsNet + LM is a derivative that extends the dimension of the feature matrix to [16, 16].
dFSc-CapsNet + MLM is a derivative that extends the dimension of the feature matrix to [20, 20].
Note: Bold values indicate results that are better than capsule network.
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than a [10, 10] feature matrix, but continuing to extend the feature matrix to [20, 20] did not yield
a significant performance increase. In fact, a slight drop occurred. We believe this result is
because the samples in Fashion-MNIST are grayscale. Thus, the feature information carried
by each sample is insufficient to support such a large feature matrix, which ultimately leads
to overfitting.

After comparing the performances of the standard FSc-CapsNet and FSc-CapsNet with a
fully connected reconstruction unit, we found that this version of the deconvolution reconstruc-
tion unit performs sufficiently well to be able to replace the fully connected layer. The standard
FSc-CapsNet achieves an accuracy score of 0.11% higher than the FSc-CapsNet with a fully
connected reconstruction unit. Moreover, in terms of parameter size, the former is reduced
by ∼10%, compared with the latter. We believe this occurs because the deconvolutional layer
upsamples the output of the encoder, further weakening the interference of noise features. The
deconvolutional layer can be thought of as a pooling layer added to the encoder, which enhances
the generalizability of the encoder and reduces the possibility of overfitting. Therefore, the
deconvolutional layer is more suitable for FSc-CapsNet than is the fully connected layer.

We also applied our FSc-CapsNet to the CIFAR-10 dataset. CIFAR-10 is a color-image data-
set more similar to natural objects. Consequently, each CIFAR-10 sample is a three-channel
RGB image with a size of 32 × 32. Compared with handwritten characters, CIFAR-10 contains
real objects in the real world. Not only do the samples include large amounts of noise, but the
spatial relations and features of the objects are not the same. All of these factors make CIFAR-10
difficult to classify.

As shown in Table 2, FSc-CapsNet also achieved a significantly better performance on the
CIFAR-10 dataset than did the standard capsule network. The highest average accuracy of the
standard capsule network and its variants is 78.69%. The average accuracy achieved by FSc-
CapsNet is 79.73%—1.04% higher than TextCaps and 7.17% higher than the standard capsule
network. FSc-CapsNet with larger-scale feature matrices can even achieve an accuracy of
79.64%. FSc-CapsNet has a greater accuracy advantage on the CIFAR-10 dataset than on the
Fashion-MNIST dataset. We believe this is due to the filtering of noise features during feature
extraction and the guidance of spatial relationships. The former reduces noise feature interfer-
ence, while the latter optimizes the feature combination. In addition, after analyzing the variants
of FSc-CapsNet, we found that FSc-CapsNet achieved a higher accuracy improvement on
CIFAR-10 than on Fashion-MNIST after extending the feature matrix to [20, 20]. After extend-
ing the feature matrix from [16, 16] to [20, 20], the accuracy achieved by FSc-CapsNet was
reduced by 0.02% on Fashion-MNIST, while on CIFAR-10, the accuracy was improved by
0.24%. We believe this is because the samples in CIFAR-10 carry more information that can
support a larger feature matrix without overfitting. Therefore, a larger feature matrix leads to
better accuracy performance.

As shown in Table 3, we also tested three mainstream deep learning architectures, VGG-16,21

GoogLeNet,22 and ResNet-18,23 and compared their best accuracies with the derivatives of the

Table 3 The accuracy performance and parameter num-
bers of some mainstream models.

Fashion-MNIST (%) CIFAR-10(%)

CapsuleNet 92.50 72.98

MS-CapsNet 93.55 75.47

TextCaps 94.15 78.96

FSc-CapsNet + MLM 94.01 80.03

VGG-16 93.50 93.40

GoogLeNet 93.70 92.07

ResNet-18 94.90 93.82
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standard capsule network on the Fashion-MNISTand CIFAR-10 datasets. FSc-CapsNet achieves
competitive performance on Fashion-MNIST. FSc-CapsNet scores lower than only TextCaps
and ResNet-18 and higher than VGG-16 and GoogLeNet. On CIFAR-10, the accuracy of
FSc-CapsNet surpasses that of TextCaps, which has the highest accuracy of all of the capsule
network variants. In contrast to the mainstream deep learning frameworks, the accuracy of FSc-
CapsNet cannot be called excellent.

In fact, the performance of all CapsuleNet and their variants in the CIFAR-10 dataset is far
inferior to that of mainstream CNNs (for details, refer to Table 1 in Sec. 5). There are two main
reasons for the poor performance of the capsule network on the CIFAR-10 dataset. On the one
hand, the capsule network structure is sensitive to noise features, and the RGB image has many
more noise features than the grayscale image. On the other hand, the capsule network has no
pooling layer, which makes it difficult for the capsule network to process input images with
complex spatial relationships. FSc-CapsNet reduces the impact of noise features on classification
results through feature and spatial relationship extractors. In addition, the feature and spatial
relationship encoder and deconvolution reconstruction unit play the role of a pooling layer
to a certain extent, further weakening the influence of noise features. From Table 1, it can
be clearly seen that the performance of FSc-CapsNet compared with that of the capsule network
has been greatly improved on the CIFAR-10 dataset. In other words, the above modifications
improve the robust to noise features of FSc-CapsNet.

However, it must be acknowledged that, although improved in various ways, FSc-CapsNet
still follows the basic framework of the capsule network and has not been able to completely
eliminate the influence of noise features. This has led to the performance of FSc-CapsNet in the
CIFAR-10 dataset that is still not as good as the mainstream CNNs.

5.1 Computational Cost and Convergence Speed

We define three different computational costs to compare the differences between FSc-CapsNet
and capsule network in detail, including absolute computational cost, relative computational
cost, and effective computational cost.

Absolute computational cost refers to the ratio of the calculation time to the number of iter-
ations during training. Relative calculation cost refers to the calculation time required to reach a
given accuracy. Effective calculation cost refers to the calculation time required for the model to
reach the best accuracy. On the same computing platform, we believe that the training time can
reflect the computational cost of the model during training.

On Fashion-MNIST, the difference between FSc-CapsNet and the capsule network in three
different computational costs is recorded in Table 4. After repeated analysis and comparison, we
found that in terms of absolute computational cost, compared with the capsule network, FSc-
CapsNet takes approximately three times the cost to iterate once. We believe that the 3-D con-
volution layer has caused a significant increase in computational cost. At present, it is inevitable
that 3-D convolution is more computationally expensive than 2-D convolution.

Although FSc-CapsNet is much higher than the capsule network in terms of absolute com-
putational cost, it can be clearly found that there is no particularly large gap after comparing the
relative calculation costs and even the FSc-CapsNet is slightly lower than the capsule network.

Table 4 The difference between FSc-CapsNet and capsule network in three kinds of computa-
tional costs on Fashion-MNIST.

ACa (ms) ECb (ks)

RCc (ks)

90.0% 91.0% 92.0% 93.0%

CapsuleNet 0.85 8.10 0.76 3.06 6.65 —

FSc-CapsNet 2.35 17.3 1.51 3.02 5.66 9.85

aAC refers to absolute computational cost.
bEC refers to effective computational cost.
cRC refers to relative computational cost
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The faster convergence speed of FSc-CapsNet is the main reason for the above differences. We
show the changes in loss function of FSc-CapsNet and the capsule network with the number of
iterations on the Fashion-MNIST and CIFAR-10 dataset in Fig. 11. Obviously, FSc-CapsNet can
achieve better accuracy performance with fewer iterations. In other words, its recognition effi-
ciency is higher, which leads to a lower level of relative computational cost and effective com-
putational cost. Table 4 also shows the effective computational cost of the two models. FSc-
CapsNet requires approximately 2.1 times the calculation time of the capsule network.
Given that FSc-CapsNet can achieve an accuracy performance of ∼1% higher than the capsule
network, we believe that the computational cost investment is acceptable.

In addition, we conducted an experiment on the complete SVHN dataset.24 Using this data-
set, the input size is extended to [32, 32], and the number of channels is expanded to three. The
best accuracy achieved by FSc-CapsNet is 93.47%, which is significantly better than the stan-
dard capsule network (by 2.96%), which achieved only 90.51%.

6 Conclusions

In this paper, we propose a network called FSc-CapsNet. Compared with the original capsule
network and its multiple derivatives, the experimental results show that FSc-CapsNet achieves
significantly better accuracy on both Fashion-MNIST and CIFAR-10 datasets. In addition, com-
pared with some mainstream deep learning frameworks, FSc-CapsNet obtains a very competitive
performance on Fashion-MNIST.

The feature and spatial relationship coding structure defines the feature and spatial relation-
ship extractor and encoder. The spatial relationship extractor maps feature vectors to feature
matrices and introduces top–down spatial relationship information flow into the capsule net-
work, and the separate extraction unit reduces the influence of noise features on the classification
results. The feature and spatial relationship encoder replaces the dynamic routing and synchro-
nously implements abstraction and combination of feature and spatial relationships through the
3-D convolutional kernel, which put the optimization process of feature combination into the
backpropagation. The deconvolution layer adds pooling to the encoder, further weakening the
negative impacts of noise features and reducing the possibility of overfitting.

Although the performance of FSc-CapsNet on CIFAR-10 is better than that of CapsuleNet
and their multiple derivatives, there is still a gap compared with the accuracy of mainstream
CNNs. The introduction of 3-D convolutional layers inevitably increases the computational cost
in training. Thus, a better and more efficient encoder structure needs to be explored in ongoing
research.
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