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ABSTRACT. Purpose: The Medical Imaging and Data Resource Center (MIDRC) is a multi-
institutional effort to accelerate medical imaging machine intelligence research and
create a publicly available image repository/commons as well as a sequestered
commons for performance evaluation and benchmarking of algorithms. After
de-identification, approximately 80% of the medical images and associated meta-
data become part of the open commons and 20% are sequestered from the open
commons. To ensure that both commons are representative of the population
available, we introduced a stratified sampling method to balance the demographic
characteristics across the two datasets.

Approach: Our method uses multi-dimensional stratified sampling where several
demographic variables of interest are sequentially used to separate the data into
individual strata, each representing a unique combination of variables. Within each
resulting stratum, patients are assigned to the open or sequestered commons. This
algorithm was used on an example dataset containing 5000 patients using the
variables of race, age, sex at birth, ethnicity, COVID-19 status, and image modality
and compared resulting demographic distributions to naive random sampling of
the dataset over 2000 independent trials.

Results: Resulting prevalence of each demographic variable matched the preva-
lence from the input dataset within one standard deviation. Mann-Whitney U test
results supported the hypothesis that sequestration by stratified sampling provided
more balanced subsets than naive randomization, except for demographic subca-
tegories with very low prevalence.

Conclusions: The developed multi-dimensional stratified sampling algorithm can
partition a large dataset while maintaining balance across several variables, superior
to the balance achieved from naive randomization.
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1 Introduction

Since early 2020, the COVID-19 pandemic has presented an urgent and critical public health
crisis. This crisis produced several needs for essential biomedical research and development to
address, including early detection and differential diagnosis of COVID-19, prognosis and assess-
ment of response to treatment, and monitoring of the post-COVID patient. All these needs cre-
ated an important role for artificial intelligence (AI) in medical imaging of the COVID patient
and stimulated a rapid research effort in AI model development for COVID-19 applications.'
Many studies have found promising performance of AI models for various applications.
However, potential impact of algorithm bias and lack of clinical utility have been noted as major
shortcomings in Al developed for COVID-19 medical imaging, particularly algorithms devel-
oped early in the pandemic.*® As a response to this urgent public health need, the Medical
Imaging and Data Resource Center (MIDRC) was established in August, 2020, to accelerate
medical imaging machine intelligence research for COVID-19.

MIDRC is a multi-institutional research collaboration between the American College of
Radiology (ACR®), the Radiological Society of North America (RSNA), and the American
Association of Physicists in Medicine (AAPM), created to address critical gaps in resources and
technology for Al in medical imaging. Through the work of five technology development proj-
ects and 12 collaborating research projects, MIDRC is providing processes for data intake, de-
identification, quality assessment, and distributed public access in addition to organizing research
challenges and curated datasets to support high-quality research methods. The aim of MIDRC is
to accelerate machine intelligence research for COVID-19 and eventually for other diseases that
utilize medical imaging in, e.g., detection, diagnosis, or prognosis. One primary component of
MIDRC is the development of a publicly available image repository,” as well as a sequestered
database for performance evaluation and benchmarking of algorithms.

While the majority of the de-identified data (both images and metadata) submitted to
MIDRC are open, i.e., accessible to the public, approximately 20% of the data are being seques-
tered from public use for the purpose of machine intelligence algorithm evaluation. These
sequestered data will act as a large base from which task-based samples, or “test-sets,” can
be drawn to provide an estimate of an algorithm’s performance or generalization ability, without
ever releasing the data publicly or giving users direct access to the cases used for testing, thus
maintaining the integrity of the test set.®

To assure both datasets are similarly representative of the population, we developed a meth-
odology to balance demographic characteristics, or variables, across the sequestered and public
data. This process is implemented for incoming batches of data on an ongoing basis. While
MIDRC aims to provide a platform with a wide array of diverse data representative of the pop-
ulation, gaps and biases may inadvertently arise. MIDRC aims to recognize and address these
biases throughout the research workflow through multiple bias-reduction strategies and resources
for users to further reduce potential bias.’ Providing a public resource of curated COVID-19 data
and open-source algorithms for data analysis and cohort building will aid in bias mitigation by
increasing availability of multi-institutional data and standardized data labels across many dem-
ographic variables.'” Further, purposeful selection of patients for the sequestered database will be
a useful tool for the future assessment of the bias of the evolving database itself, as well as the
algorithms developed based on the database.

Potential bias and lack of generalizability in Al algorithms have been key shortcomings of
the clinical utility of Al, and multiple studies have found demographics to have a profound
impact on the performance of medical image classifiers.!®"'> Biases can also be hidden in data
structures that are not explicitly defined or monitored, leading to unintended bias in resulting
model performance.'®'® These studies highlight the key importance of mindful balancing of
demographic distributions within datasets used for machine intelligence applications.'*

Balancing multiple variables among subgroups is a widely studied topic in the field of clini-
cal trial development.'** Shifting demographic profiles of the study population have also been
investigated in the context of clinical trials.”! However, similar approaches have rarely been
applied in the field of machine intelligence due to the use of typical train-test splitting in datasets
that are often small or moderate in size. In both clinical trials and imaging data, there are similar
patient variables, but imaging contributes additional complexity regarding imaging machine
type, protocol, etc., as the data collection process is more varied. Here, we apply a developed
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method of multi-dimensional stratified sampling to separate incoming MIDRC data into open
and sequestered commons and evaluate the performance of the sampling method in terms of
similarities between the two commons. Our method differs from existing approaches in that
it incorporates several demographic variables and is used on an ongoing basis to continually
build two demographically matched data commons, at scale. In addition, the methodology devel-
oped for this work takes the standard concept of stratification and expands upon it in a script that
is shared as a public resource on the MIDRC GitHub website.

The goal of the developed sequestration algorithm is to generate two commons with dem-
ographically similar characteristics. Developers can then sample and train on any portion of the
publicly available data, and algorithm performance will be assessed with portions of the seques-
tered commons relevant to the user’s task. Our goal is to create a balance between the open data
that developers will use for training algorithms and the sequestered data that will provide a bal-
anced test set. The purpose of this work is to describe this process and provide a brief evaluation
of the current state of sequestration of imaging studies within MIDRC.

2 Methods

Prior to sequestration, de-identified clinical data of patients are submitted to MIDRC through
data input portals hosted by ACR and RSNA.” Quality of submitted medical imaging studies is
assessed, and the associated metadata are harmonized for representation within the MIDRC data
model at Ref. ’. Subsets of the incoming data undergo separation and are designated as “open” or
“sequestered” on an ongoing basis in batches created at regular submission time intervals.
To sequester approximately 20% of an incoming data batch, first, de-identified patient IDs
are compared across all previously processed batches. If a patient ID already exists in either the
public or sequestered commons, the incoming data for this patient are placed in the relevant
commons. This process ensures data are placed into the open or sequestered commons at the
patient level, and all images from longitudinal studies of a given patient are contained in only
one of the two commons. Following this longitudinal data check, the data of remaining patients
in the intake batch are sequentially separated into multiple strata based upon the anonymized
clinical site ID, image modality, COVID status (whether a patient ever tested positive for
COVID), and reported patient race, age, sex at birth, and ethnicity. These variables were selected
from the standard variables included in the Ref. 7 patient metadata by the authors after consid-
eration of the potential impact of each variable on future developed algorithms and importance of
balanced representation of that variable between the two commons. The number of included
variables is a compromise between balanced representation across many variables but few
enough variables that stratification does not creates a majority of bins with such low prevalence
that they will not be sufficiently balanced. The selected variables are not a comprehensive list,
but represent common variables considered in ML algorithm subgroup analyses and have been
shown in the literature to have potential impact on the performance of developed classifiers.!''*
A diagram of the sequestration process is shown in Fig. 1. Within each resulting bin or strata, i.e.,
a group of patients with a particular combination of characteristics, the patients are randomly
assigned to the open dataset or the sequestered dataset with proportions of approximately 80%

Open Dataset
(approx. 80%)

Age group 1 Ethnicity 1

Sex at birth 1 Sequestered

dataset

COVID+ Al 2
ge group (approx. 20%)

Input data
batch

Fig. 1 Diagram of demographic factors used to stratify data for separation into sequestered and
open databases. The input data batch is sequentially split into all possible variations of each
category until an individual stratum, containing a unique combination of variables, is achieved.
This individual stratum is then randomly separated into the open and sequestered commons with
proportions of approximately 80:20.
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and 20%, respectively. Thus, for n variables of interest, the balance of the n-dimensional
distribution of variable combinations can be controlled.

Since, for any given patient, imaging studies from multiple modalities might be available,
such as computed tomographs (CT) or radiographs, the sequestering of patient data by modality
was accomplished by first identifying the most prevalent image modalities in an intake data
batch. If a patient entry contained more than one modality, the modality most prevalent in the
intake data batch was established to be that patient’s “primary” modality, and images from any
less prevalent modality were assigned along with the most prevalent modality. Modalities present
in this analysis included computed radiograph (CR), CT, digital radiography (DX), and magnetic
resonance (MR) images. Patient age data were grouped into categories matching the age group
categories provided by the Center for Disease Control COVID-19 database.?” Patient sex at birth,
race, and ethnicity were grouped in agreement with the categories defined by the NIH.?***

To demonstrate the sequestration process in simulation, 5000 patients were randomly
selected from the public data commons’ to serve as an example of an input dataset. This number
of patients approximately models a typical data submission from a single clinical site to MIDRC
from 2021 to 2022. As such, the example input dataset was not separated by contributing clinical
site. It is important to note that users will not be training or testing on any single batch of data,
rather all cumulative data batches (after being sampled using the developed sequestering method)
will be available to users from the public data commons. The developed sequestration algorithm
was applied to the remaining demographic variables (age, race, sex at birth, ethnicity, COVID-19
status, and image modality) to achieve a similar distribution of variables between the input data-
set and the two subsets, i.e., the open and the sequestered data commons. The variables of age,
race, sex at birth, ethnicity, COVID-19 status, and image modality contained 9, 7, 4, 3, 3, and 4
categories, as listed in Table 1, respectively, resulting in a total of 9072 strata. As such, strata used
in separating data are multiplicative, and the overall number of categories and strata are relatively
large. As more strata are included, it is important to have enough data to adequately fill those
strata to generate a balanced separation. There is no known rule on how many strata are too many,
but the number should be considered with the size of incoming data and what demographic
variables are of key importance to research questions.”’

To summarize the performance of our developed sequestration algorithm, we applied the
algorithm to the input dataset for 2000 independent trials. In each independent trial, a different
random seed was used to initiate the splitting. The mean and standard deviation of each dem-
ographic category’s prevalence was calculated over all independent trials and compared to the
prevalence in the input dataset and between the two subsets.

To compare the performance of the sequestration algorithm to “naive” separation of the
dataset with an overall 80:20 random drawing, where the assignment to open or sequestered
dataset is made randomly without considering demographic variables, we sought to evaluate
resulting balance in the two subsets. In this paper, “more balanced” is intended to mean that
the relative distributions of demographic categories are more closely matched between resulting
open and sequestered subsets. For example, a balanced sample would result in both the open and
sequestered subsets having a nearly 50:50 split of male and female patients, matching the initial
dataset. Conversely, an unbalanced sample may have 60% male patients (and 40% female
patients) in the open subset and 40% male patients (and 60% female patients) in the sequestered
subset. We applied the naive algorithm to the input dataset for 2000 independent trials, reviewed
the resulting distribution of cases across demographic categories through visual inspection, and
evaluated demographic balance quantitatively by comparing the median of each distribution
using the one-tailed Mann-Whitney U test.”> The resulting distributions were first compared
by creating histograms of the scaled difference from expectation in each category, calculated
according to Eq. (1):

[F)INT = Nopen|
(f)NT
Here, f represents the fraction placed in the open commons; this value is a scaling factor to

scale the total number of patients in a given category to the proportion placed in the open

commons. In this work, it is equal to 0.8. Ny represents the number of patients in a given category
in total from the input dataset; this is the incoming number of patients, to be split, in one category.

Scaled difference from expectation =

6]
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Table 1 Distribution of all balanced variables in the input, open (~80%), and sequestered (~20%)
datasets following splitting via stratified sampling. Prevalence values are written as the mean per-
cent (standard deviation) over 2000 independent trials. The label of “not reported” was added to
variables with blank entries.

Input dataset  Input dataset ~ Open subset  Sequestered subset

Demographic subcategory count prevalence prevalence prevalence

Age group

[0, 18) 74 1.5% 1.5% (0.1%) 1.4% (0.3%)
[18, 30) 393 7.9% 7.9% (0.1%) 7.9% (0.3%)
[30, 40) 529 10.6% 10.6% (0.1%) 10.3% (0.4%)
[40, 50) 687 13.7% 13.7% (0.1%) 13.9% (0.4%)
[50, 65) 1434 28.7% 28.6% (0.1%) 29.1% (0.4%)
[65, 75) 909 18.2% 18.2% (0.1%) 18.1% (0.4%)
[75, 85) 597 11.9% 11.9% (0.1%) 11.9% (0.3%)
[85, 140) 284 5.7% 5.7% (0.1%) 5.5% (0.3%)
Not reported 93 1.9% 1.8% (0.1%) 1.9% (0.2%)
Race

American Indian or Alaska 17 0.3% 0.3% (0.0%) 0.3% (0.2%)
Native

Asian 294 5.9% 5.9% (0.1%) 5.9% (0.4%)
Black or African American 1386 27.7% 27.8% (0.1%) 27.6% (0.4%)
Native Hawaiian or other Pacific 15 0.3% 0.3% (0.0%) 0.3% (0.2%)
Islander

White 2568 51.4% 51.2% (0.1%) 51.8% (0.6%)
Not reported 554 11.1% 11.1% (0.1%) 10.8% (0.5%)
Other 166 3.3% 3.3% (0.1%) 3.3% (0.4%)
Sex at birth

Female 2533 50.7% 50.6% (0.1%) 50.8% (0.5%)
Male 2464 49.3% 49.3% (0.1%) 49.1% (0.5%)
Other 0 0.0% 0.0% (0.0%) 0.0% (0.0%)
Not reported 3 0.1% 0.1% (0.0%) 0.1% (0.1%)
Ethnicity

Hispanic or Latino 499 10.0% 10.0% (0.1%) 9.7% (0.6%)
Not Hispanic or Latino 4443 88.9% 88.8% (0.2%) 89.2% (0.6%)
Not reported 58 1.2% 1.2% (0.1%) 1.2% (0.3%)

COVID-19 status

No 2602 52.0% 52.0% (0.1%) 52.2% (0.5%)
Not reported 1 0.0% 0.0% (0.0%) 0.0% (0.0%)
Yes 2397 47.9% 48.0% (0.1%) 47.8% (0.5%)
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Table 1 (Continued).

Input dataset  Input dataset Open subset Sequestered subset
Demographic subcategory count prevalence prevalence prevalence

Image modality

CR 2049 41.0% 40.9% (0.2%) 41.3% (0.8%)
cT 910 18.2% 18.3% (0.2%) 18.0% (0.8%)
DX 2596 51.9% 52.0% (0.1%) 51.9% (0.5%)
MR 27 0.5% 0.5% (0.0%) 0.5% (0.2%)

If, within the initial 5000 total patients there were 500 patients with reported race as Asian,
N7 would be equal to 500 for the race category of Asian. This is the unscaled expected counts.
Similarly, Ny, represents the number of patients in a given category in the open dataset, which
would be expected to be 80% of Ny in size if the dataset split was exact; this is the resulting
number of patients, after being split, in one category. If, within the resulting open subset there
were 390 patients with reported race as Asian, Ngpe, would be equal to 390 for the race category
of Asian. This is the observed count. The value of this metric from all independent trials was
plotted in histograms for a given bin within a category, e.g., in the race categories, all Asian
patients. Distributions from our developed stratified sampling algorithm and from naive random
sampling were compared using the one-tailed Mann—Whitney U test. The Mann—Whitney U test
is a nonparametric alternative to the #-test to compare central measures of two distributions,
which can be employed without any assumption about the shape of the distribution. In this analy-
sis, we are using a one-tailed Mann—Whitney U test with the alternative hypothesis indicating
the median of the distribution of the scaled difference from expectation [Eq. (1)] from stratified
sampling was less than that for the naive random sampling. P-values <0.05 were considered
significant. Results were adjusted for multiple comparisons using the Holm—Bonferroni multiple
comparisons correction.?® In this correction, the calculated p-value must be less than the chosen
significance threshold divided by the rank of said p-value, after ordering from least to greatest
where the smallest p-value would have a rank of the total number of comparisons. In this analy-
sis, 29 comparisons were evaluated.

3 Results

Results obtained from splitting the input dataset using our stratified sampling method over 2000
independent trials are shown in Table 1. The mean and standard deviation of each demographic
category’s prevalence was calculated over all independent trials and compared to the prevalence
in the input dataset and between the two subsets. For all demographic subcategories, the preva-
lence in the input dataset was matched in both the open and sequestered subsets within one
standard deviation. For the category of image modality, the prevalence represents the percentage
of patients with a given image modality available, and since many patients have images from
multiple modalities, these percentages will not add to 100%.

Histograms of the scaled difference from expectation over 2000 independent trials for the
categories of age and race in the “Open” subset (~80%) are shown in Figs. 2 and 3. For most
categories analyzed, sequestration by stratified sampling provided lower scaled differences from
expectation, in general, than from the naive randomization, as indicated by the narrower distri-
butions for stratified sampling than naive randomization. However, for some categories with low
prevalence, such as race of American Indian or Native American, stratified sampling showed
similar variation from expectation as the naive randomization.

Results of the statistical comparison of the histograms of the scaled difference from expect-
ation for all demographic subcategories categories in the “Open” subset using the one-tailed
Mann—Whitney U test are shown in Table 2. Similar results were found for the “Sequestered”
subset, despite having smaller relative sample size but are omitted for brevity. Statistical results
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Fig. 2 Histograms of the scaled difference from expectation for the category of age in the “Open”
dataset after 2000 independent trials of dataset splitting using naive random sampling (blue) and
our stratified sampling method (yellow). Here, a narrower histogram indicates better balance, and
a wider histogram indicates worse balance in a given subcategory over all independent trials.

support the qualitative summary that sequestration by stratified sampling provided lower
differences from expectation, in general, than did the naive randomization, with the exception
of demographic subcategories with very low prevalence. P-values <0.05 were considered sig-
nificant. Correction for multiple comparisons using Holm—Bonferroni did not change signifi-
cance between the differences from expectation for any subcategory except the category of
having an ethnicity of not Hispanic or Latino. As a result, for most demographic categories,
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Fig. 3 Histograms of the scaled difference from expectation for the category of race in the “Open”
dataset after 2000 independent trials of dataset splitting using naive random sampling (blue) and
our stratified sampling method (yellow). Here, a narrower histogram indicates better balance, and
a wider histogram indicates worse balance in a given subcategory over all independent trials.

our developed method of stratified sampling significantly outperformed naive random sampling,
providing more balanced demographic distributions on average.

4 Discussion

We demonstrated, using our proposed method of multi-dimensional stratified sampling, that
splitting an input dataset of 5000 COVID-19 patients into an 80% open dataset and a 20%
sequestered dataset based on the variables of age, race, sex at birth, ethnicity, COVID-19 status,
and image modality resulted in subsets that exhibited distributions very similar to those of the
input dataset and each other. The high degree of similarity in the distributions indicates that the
sequestration algorithm operated as expected. Moreover, the distributions of the differences from
the expected values for the developed stratified sampling algorithm and naive randomization
indicated that the stratified sampling algorithm, in general, outperformed naive randomization,
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Table 2 Results of the one-tailed Mann-Whitney U test, comparing distributions of the scaled
difference from expectation in the “Open” dataset after 2000 independent trials of dataset splitting
using naive random sampling and using our stratified sampling method. P-values shown in bold
were considered significant (p < 0.05) and p-values with two asterisks were considered significant
after Holm-Bonferroni multiple comparison correction. Here, statistically significant indicates the
histogram of the scaled difference from expectation from stratified sampling algorithm was signifi-
cantly narrower than the histogram from naive random sampling.

Demographic subcategory Input dataset count Mann-Whitney U test result
Age group

[0, 18) 74 p < 0.01**
[18, 30) 393 p < 0.01*
[30, 40) 529 p < 0.01**
[40, 50) 687 p < 0.01**
[50, 65) 1434 p < 0.01*
[65, 75) 909 p < 0.01**
[75, 85) 597 p < 0.01**
[85, 140) 284 p <0.01**
Not reported 93 p < 0.01**
Race

American Indian or Alaska Native 17 p =0.70
Asian 294 p < 0.01*
Black or African American 1386 p < 0.01*
Native Hawaiian or other Pacific Islander 15 p =0.29
White 2568 p < 0.01**
Not reported 554 p < 0.01*
Other 166 p < 0.01**
Sex at birth

Female 2533 p < 0.01*
Male 2464 p < 0.01*
Other 0 N/A
Not reported 3 p =0.52
Ethnicity

Hispanic or Latino 499 p < 0.01*
Not Hispanic or Latino 4443 p = 0.01
Not reported 58 p =0.57

COVID-19 status

No 2602 p < 0.01**
Not reported 1 p=0.29
Yes 2397 p < 0.01**
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Table 2 (Continued).

Demographic subcategory Input dataset count Mann-Whitney U test result

Image modality

CR 2049 p < 0.01**
CT 910 p < 0.01**
DX 2596 p < 0.01*
MR 27 p < 0.01**

providing more balanced distributions of demographics versus the demographic distributions
obtained from naive randomization.

It is important to note that while the analysis of the data focused on individual demographic
categories, the developed method of multi-dimensional stratified sampling also controls the
n-dimensional joint distribution of demographic categories. Thus, for each unique combination
of demographic categories (e.g., 30 to 39 years old, Asian, Not Hispanic, COVID-19 positive,
females, etc.), the stratified sampling algorithm separates that unique strata into “Open” or
“Sequestered,” preserving the joint distributions. Additional work to evaluate the joint distribu-
tion balance of the entire MIDRC data commons is discussed in another publication.”’

While the high degree of similarity in the distributions of variables across both subsets is
promising, indicating that the proposed sampling method worked as intended, the ultimate goal
in constructing a sequestered dataset for algorithm evaluation does not aim for perfect symmetry
relative to the data going to the open dataset. Sequestration will provide an ongoing method to
monitor and maintain a high level of similarity in the variable distributions, but perturbations in
the demographics will also be purposely implemented to assure algorithm generalizability.
Balanced distributions of demographic variables between open and sequestered commons allow
for establishment and maintenance of a standard “MIDRC demographic” across both commons.
This demographic profile is useful in evaluation of the bias and diversity of MIDRC data, which
is discussed in another publication.?® Balance of the demographic distributions will also allow for
users to sample similar data for training that can be later sampled for testing from the sequestered
commons. However, all the data separated into each commons do not represent the subset on
which training or testing will be directly performed. It instead represents an entire data commons
that will need to be sampled by another method for selection of a cohort for a specific task. When
an algorithm is tested using data from the sequestered dataset, test samples will be randomly
drawn from the sequestered set according to the distributions related to the task (e.g., clinical
question, clinical claim, and intended population), that is, the sequestered set in its entirety
will not be used in the test. Furthermore, from the algorithm testing using sequestered data,
only summary performance information will be reported back and not case-specific results.
Methodology for this specific task-based sampling that is more directly related to performance
of individual algorithms will be discussed in a future publication.®

The size of 5000 patients for the example set was selected to be approximately representative
of a “typical” incoming data batch internal to MIDRC that would be proportionally split between
the two commons. The 5000 patients were selected at random from the existing public data
commons and are available for download on Ref. . Larger subsets of data would be expected
to have relatively better achieved balance with stratification and smaller subsets would be
expected to have relatively worse achieved balance with stratification, decreasing until it
approaches naive random sampling. However, this is shown within the current dataset within
the smaller and larger strata investigated.

Assessment of machine learning algorithm performance is often achieved through methods
such as k-fold cross validation or bootstrapping.”’ These methods sample a limited dataset many
times to test the algorithm on a variety of sample characteristics. More commonly, sampling for
these methods is performed using naive randomization. As such, naive random sampling was an
intuitive choice for a standard of comparison with the developed method of multi-step stratified
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sampling. Stratified randomization is an existing process used in separating training and testing
datasets, but generally only allows for stratification across a single variable. However, balancing
of multiple variables across public and sequestered datasets, from which cases cannot be made
known, or used and replaced, is a task not typically considered in machine intelligence appli-
cations. Using the presented process, which sequentially steps through each branch until a single
multi-variable stratum is obtained, balance across all possible combinations of the selected
variables can be controlled. Similar processes are used in the construction of case and control
populations in clinical trials, but these processes are typically conducted once, after collection
of the entire population. Our process is implemented on each incoming MIDRC data batch,
which are received on an ongoing basis. To the knowledge of the authors, this is the first appli-
cation of multi-step stratified sampling to generate continually growing machine intelligence
datasets.'>1%20

Stratification across a large number of variables also necessitates a relatively large initial
dataset to be split to achieve its intended effects, i.e., achieving better balance than naive ran-
domization. This is evidenced in this work in the relatively lower difference in performance
between random guessing and stratified sampling in subgroups of low prevalence. Once a sub-
group population is too low to split 80:20 evenly, the process of assigning a patient to a specified
subgroup is random with probability of 80:20. This is a known limitation for clinical trial strati-
fication schemes.?’ Having large data batches, on the order of thousands of patients, enables
the stratification across multiple variables. Oakden-Rayner et al. provide an example of why
stratification across many variables may be a beneficial approach since fewer variables are
“hidden” and balance across many subgroups is monitored within MIDRC.!” The developed
sequestration algorithm will provide an open-source tool for avoiding hidden stratification,
through the use of a type of variable population or schema completion. Other, more sophisticated
methods of sampling, such as minimization, could also be used for comparison to stratified
sampling and may indeed outperform stratified sampling in certain circumstances, particularly
when the number of patients relative to the number of strata is low. However, using a method of
multi-step stratified sampling is intuitive for users to understand and may be simply modified
to accommodate new stratification variables, increasing the general utility of an open-source
tool.

With the explosion of machine intelligence algorithm development, validation of algorithm
performance and generalizability has become increasingly important. As a result, many academic
journals now encourage authors to make datasets and algorithms public when publishing. The
creation of a large, common sequestered dataset that can be sampled for specific task-based
algorithm performance evaluations could provide a new gold standard in the field of machine
intelligence. Further, a sequestered database for algorithm testing could allow for expedited
clinical implementation of algorithms developed for medical decision making if accepted by
regulating bodies. This work outlines the process by which such a database has been developed
for use in a multi-institutional data commons.

It is also important to discuss a few limitations of this study. The ability of stratified sampling
to achieve a much higher degree of balance than simple randomization is highly dependent on the
incoming dataset size and prevalence of a given demographic subcategory. Subgroups that are
very rare in incoming data batches are likely to be rare across the entire data commons, and the
ability to sample rare cases will always be limited by their availability in each data commons.
Clinical trials that use similar stratification methods also note this be to be a limitation.’ While
the currently developed algorithm samples based on the demographic categories of race, age,
ethnicity, sex at birth, COVID-19 status, image modality, and clinical site, the algorithm will
be adapted in the future to additional needs, including body site or patient location information.
The authors also acknowledge that specific labels of race, ethnicity, or sex at birth may not
adequately describe all populations or provide a clear correlate to genetic ancestry, which empha-
sizes the importance of oversight and monitoring of Al algorithms for equity in their applications
to healthcare. As additional information and understanding of case descriptors are acquired, the
sequestration algorithm will be modified to accommodate. In addition, while ensuring similar
distributions of demographic characteristics may help to reduce potential algorithm bias, certain
biases will still persist and must be acknowledged.
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5 Conclusion

The creation of a sequestered dataset within MIDRC will allow for algorithm performance evalu-
ation using large, verifiable multi-institutional data. This work outlines the process by which the
sequestered dataset will be sampled from incoming data batches to ensure balanced variables in
both the public and sequestered data. Using an example input dataset, both subsets were found to
match the distribution of variables in the original data with a high degree of similarity.
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