
RESEARCH PAPER

Demystifying the effect of receptive field size in
U-Net models for medical image segmentation

Vincent Loos ,a,† Rohit Pardasani,b,† and Navchetan Awasthi a,c,*
aUniversity of Amsterdam, Faculty of Science, Mathematics and Computer Science, Informatics Institute,

Amsterdam, The Netherlands
bGeneral Electric Healthcare, Bengaluru, Karnataka, India

cAmsterdam UMC, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands

ABSTRACT. Purpose: Medical image segmentation is a critical task in healthcare applications,
and U-Nets have demonstrated promising results in this domain. We delve into the
understudied aspect of receptive field (RF) size and its impact on the U-Net and
attention U-Net architectures used for medical imaging segmentation.

Approach: We explore several critical elements including the relationship among
RF size, characteristics of the region of interest, and model performance, as well as
the balance between RF size and computational costs for U-Net and attention U-Net
methods for different datasets. We also propose a mathematical notation for repre-
senting the theoretical receptive field (TRF) of a given layer in a network and pro-
pose two new metrics, namely, the effective receptive field (ERF) rate and the object
rate, to quantify the fraction of significantly contributing pixels within the ERF against
the TRF area and assessing the relative size of the segmentation object compared
with the TRF size, respectively.

Results: The results demonstrate that there exists an optimal TRF size that suc-
cessfully strikes a balance between capturing a wider global context and maintaining
computational efficiency, thereby optimizing model performance. Interestingly,
a distinct correlation is observed between the data complexity and the required
TRF size; segmentation based solely on contrast achieved peak performance even
with smaller TRF sizes, whereas more complex segmentation tasks necessitated
larger TRFs. Attention U-Net models consistently outperformed their U-Net counter-
parts, highlighting the value of attention mechanisms regardless of TRF size.

Conclusions: These insights present an invaluable resource for developing more
efficient U-Net-based architectures for medical imaging and pave the way for future
exploration of other segmentation architectures. A tool is also developed, which cal-
culates the TRF for a U-Net (and attention U-Net) model and also suggests an
appropriate TRF size for a given model and dataset.
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1 Introduction
Medical imaging, a cornerstone of modern healthcare, provides a non-invasive means for diag-
nosing and monitoring a wide range of diseases. However, the interpretation of medical images
often requires expert knowledge and can be time-consuming, leading to a growing interest in
automated analysis methods.1

Semantic segmentation, a key task in computer vision, plays a crucial role in this context. It
involves the categorization of pixels in an image into predefined classes, enabling the delineation
of anatomical structures and pathological regions in medical images.2 The U-Net architecture, a
convolutional neural network (CNN) designed specifically for biomedical image segmentation,
has emerged as a popular choice for semantic segmentation tasks in medical imaging.3 As illus-
trated in Fig. 1, it employs an encoder–decoder structure. The encoder progressively reduces the
spatial dimensionality while increasing the feature representation, capturing the global context of
the image. The decoder, on the other hand, gradually recovers the spatial information, enabling
precise localization.4 The U-Net is renowned for its accuracy in semantic segmentation tasks.3

An extended version, the attention U-Net, integrates an attention mechanism to enhance feature
capturing to improve overall performance.5

Within these networks, the concept of the receptive field (RF) is crucial. It refers to the
region in the input space that affects a feature in a CNN.6 There are two kinds of RF: the theo-
retical receptive field (TRF) and the effective receptive field (ERF). The TRF is defined as the
maximum region of the input image that influences a specific pixel of the output, considering
only the RF from the preceding layers that are relevant to the current layer.7 This is in contrast to
the ERF, which is the actual region of the input image that contributes to the activation of a
particular neuron in the network, taking into account the impact of operations such as pooling.6

An example of the TRF and ERF is illustrated in Fig. 2.
Previous studies have started investigating the role of RF size on U-Net performance for

image segmentation tasks but not all aspects have been explored. One study8 focused on ultra-
sound image segmentation, demonstrating that the RF size has a more critical role than the
network’s depth or the number of parameters. They suggested that a computationally efficient
shallow network could replace a deep one without performance loss by manipulating the RF size.
However, their study was limited to the U-Net architecture and a single dataset, comparing only
a deep and a shallow network, leaving room for a more exhaustive investigation.

Fig. 1 Variable attention U-Net in which the depth (n), kernel size of the convolution layers (k ), and
number of channels (c) can be tuned to alter the size of the TRF. It can be converted to a regular
U-Net by simply removing the attention gates and gating signals.
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Another study9 delved into the influence of RF size and network complexity on a CNN’s
performance for transmission electron microscopy (TEM) image analysis. They found that the
RF size’s influence varied with TEM image resolution and contrast characteristics. For low-
resolution TEM images, where contrast is crucial, RF size had a minimal influence. However,
for high-resolution TEM images, where identification is less dependent on contrast changes,
the RF size was vital, especially for low-contrast images. However, they only considered TEM
images and regular U-Nets, leaving the applicability of these findings to other medical imaging
tasks unexplored.

Our study builds upon these insights by examining the influence of the RF size on U-Net and
attention U-Net architectures across multiple medical image segmentation datasets with certain
characteristics in the region of interest (RoI). We compare 10 different U-Net architectures shown
in Table 1 with varied RF sizes and equal total parameters, thus isolating RF size’s impact per-
formance while taking into consideration specific dataset characteristics. Moreover, we repeat the
experiments on eight different synthetic datasets and six real-world medical datasets. We also
extend our investigation to the attention U-Net architecture, thereby expanding the study beyond
regular U-Net architecture. Our aim is to offer critical insights for U-Net-based architectures’
design, considering RF size as a key parameter.

Table 1 All U-Net configurations with different TRF sizes. The TRF size is influenced by the
convolutional kernel size (k ) and the vertical depth of the network (d ).

TRF size k; d Out channels per layer # Parameters

54 3, 2 [230, 456, 765, 1245] 31,013,720

100 3, 3 [145, 256, 512, 1024] 31,012,268

146 3, 4 [133, 244, 355, 791] 31,032,960

204 4, 3 [64, 128, 256, 512, 1024] 31,042,369

230 3, 6 [63, 170, 256, 512] 31,031,345

298 4, 4 [25, 44, 110, 451, 756] 31,043,816

360 3, 8 [47, 83, 180, 360] 31,062,482

412 5, 3 [63, 64, 115, 255, 512, 1024] 31,043,945

486 4, 6 [28, 58, 146, 270, 510] 31,027,119

570 4, 7 [24, 55, 101, 223, 481] 31,041,124

Fig. 2 Example of TRF and ERF in an image. The yellow square denotes the TRF, the maximum
input area influencing the output pixel located at the center of the square. The gray pixels, rep-
resenting the ERF, show the actual input area affecting a neuron’s activation, with intensity indi-
cating the impact level.
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Specifically, this paper makes the following contributions to the field of medical image
segmentation with U-Nets:

1. We provide a comprehensive analysis of the role of the RF size in the performance of
U-Net and attention U-Net architectures, demonstrating its significance in capturing the
necessary context for accurate segmentation.

2. We propose two new metrics called the ERF and object rates to quantify the fraction of
significantly contributing pixels within the ERF against the TRF area and assessing the
relative size of the segmentation object compared with the TRF size, respectively.

3. We explore the trade-off between RF size and computational cost for a variety of medical
imaging and synthetic datasets.

4. We compare the performance of U-Net and attention U-Net architectures for the same RF
size, highlighting the effectiveness of the attention mechanism in improving the model’s
overall performance.

5. We present a nuanced analysis of the performance trends across datasets with different
characteristics in the RoI, particularly its size and contrast to the surrounding area.

6. We provide a tool that calculates the TRF for a U-Net (and attention U-Net) model and also
suggest an appropriate TRF size for a given model and dataset.

2 Methodology
This study explores the role of the RF in the performance of U-Net and attention U-Net models in
semantic segmentation tasks. Through a series of experiments with varying TRF sizes, we evalu-
ated these models on a diverse range of datasets. In this section, we further provide comprehen-
sive descriptions of the model architectures, as well as the TRF and ERF computation.

2.1 U-Net Design and TRF Tuning
The configuration of the hyper-parameters of a U-Net model significantly impacts the size of its
TRF. As established in previous works, two of the hyper-parameters that determine the TRF size
in U-Net are the number of pooling layers and the convolutional kernel sizes.10 To elaborate,
Fig. 1 illustrates a variable attention U-Net diagram, where the TRF size can be adjusted in two
different ways. First, when the vertical depth (d) of the network is increased, one encoder and one
decoder block are added before and after the bottleneck, respectively. This increases the number
of pooling layers and therefore increases the TRF size. Changing the network depth on its own
does not result in a significant impact on the model’s performance.8 Second, the TRF size can be
varied by changing the kernel sizes of the convolutional layers within the network. The math-
ematical details of the effects of various layers on the TRF size are provided in Sec. 2.2.

It should be noted that adjusting these hyper-parameters also impacts the total number of
parameters in the model. To ensure a fair comparison between the performance of various con-
figurations, the total number of parameters must remain approximately equal. According to
Ref. 11, this can be achieved by modifying the number of output channels in each convolution
layer within the network blocks. Table 1 provides an overview of all configurations utilized in
this study. It is important to mention that the parameter count is based on the standard U-Net
architecture. The attention U-Net introduces additional parameters due to the inclusion of
an attention block at each layer. However, this increase varies approximately on the order of
100,000, which is relatively insignificant and can be considered negligible in this context.

2.2 Computing the TRF
Formally, the TRF refers to the maximum region of the input image X ∈ ½0;1�h×w that potentially
influences a specific pixel in the output layer. To represent the TRF at layer d in a U-Net archi-
tecture of depth D, we use a four-dimensional tensor TðdÞ ∈ Rh×w×2×2. Here, the first two dimen-
sions correspond to the y and x axes of the input image, respectively, whereas the third and fourth
dimensions represent the top-left (t-l) and bottom-right (b-r) coordinates of the TRF at layer d,
respectively. For a given pixel located at position ði; jÞ in the output layer D, the TRF can be
expressed as a 2 × 2 matrix in which the first row corresponds to the top-left corner of the TRF,
and the second row corresponds to the bottom-right corner of the TRF
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Mathematically, it can be ascertained that all pixels have an equal TRF size in the output
layer, except those located around the border because of the padded zeroes. Based on this obser-
vation, a single (maximum) TRF value can be assigned to the entire U-Net. In the remainder of
this paper, we define the TRF size of a U-Net as the size of the TRF of the center pixel ðu; vÞ ¼
ðh∕2; w∕2Þ in the output layer

EQ-TARGET;temp:intralink-;e002;117;633TRF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTðDÞ

u;v;1;0 − TðDÞ
u;v;0;0Þ · ðTðDÞ

u;v;1;1 − TðDÞ
u;v;0;1Þ

q
: (2)

To compute the values of the TRF matrix in Eq. (1), we traverse the network from the first to
the final layer, tracking the TRF of each pixel at every layer based on the previous layer’s pixels
until reaching the output layer.7 Therefore, the TRF of the pixel at position ði; jÞ in a layer at
depth d can be expressed as
EQ-TARGET;temp:intralink-;e003;117;552
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2
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3
5: (3)

In the input layer 0, the TRF of each pixel corresponds to the pixel itself

EQ-TARGET;temp:intralink-;e004;117;490Tð0Þ
i;j ¼

�
i j
i j

�
: (4)

The computation of the TRF in subsequent layers depends on the U-Net’s configuration. The
computation of TRF for all the possible layers, blocks, and functions that a U-Net may include is
shown in Appendices A–F.

2.3 Computing the ERF
For each pixel xi;j in the input image X ∈ ½0;1�h×w, its impact on the center pixel of the output
image yh∕2;w∕2 is measured by computing the partial derivative of the center output pixel with
respect to each input pixel ∂yh∕2;w∕2∕∂xi;j. This method quantifies how much yh∕2;w∕2 changes if
xi;j is changed by a small amount.6 For a TRF, the corresponding ERF (E ∈ Rm×n) can be
expressed as a matrix, as shown in Eq. (5):
EQ-TARGET;temp:intralink-;e005;117;328
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2
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3
77775: (5)

The actual computation of the ERF can be done easily with most deep learning frameworks
by back-propagating the value of one certain output pixel to the entire input and taking them × n
slice of the input at the position of the TRF.

3 Experiment

3.1 Training Protocol
All the models were trained on a high-performance computing node featuring two Intel Xeon
Platinum 8360Y CPUs and an NVIDIA A100 GPU with 40 GB of HBM2 memory. We used the
PyTorch framework12 and employed binary cross-entropy with logits loss as our loss function,
with the Adam optimizer facilitating training due to its efficiency and minimal memory
requirements.13

The initial learning rate was set at 10−4, and a learning rate scheduling strategy was imple-
mented to optimize learning. This strategy reduces the learning rate by 0.1 when the validation
loss plateaus for four epochs, enabling more substantial updates in early training phases and
smaller updates as the model nears convergence. The training lasted up to 200 epochs, with
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early stopping14 implemented to prevent overfitting. If the validation loss remained static over 20
consecutive epochs, training was ceased, and the parameters that achieved the lowest validation
loss were saved.

3.2 Datasets
Our study utilized a wide array of datasets, both synthetic and real-world medical images. The
synthetic datasets were specifically designed to evaluate certain hypotheses under controlled
conditions. Following this, we applied our hypotheses to medical imaging datasets, which
encompassed a variety of imaging techniques and anatomical structures, adding a layer of com-
plexity and realism to our evaluations. Illustrative examples of images and corresponding masks
from each dataset can be found in Fig. 3.

3.2.1 Synthetic datasets

The synthetic shape datasets are designed to provide a controlled environment for investigating
the impact of the TRF on the performance of the models. The datasets consist of synthetic images
with predefined shapes and configurations, allowing for a systematic exploration of the models’
behavior under different conditions.

There are a total of eight datasets with generated images. These are of two types, referred to
as type A and type B. Both types include three non-overlapping shapes—a circle, a triangle, and a
square—that are randomly placed and rotated, with a random gray value assigned to each shape.
For type A images, the masks are identical to the shapes in the images. For type B images, the
masks are the same, but the mask of the square is omitted, adding an additional level of complex-
ity to the segmentation task.

For each type, four datasets are created. Two of them contain small shapes placed on an
invisible 3 × 3 grid, and two of them contain large shapes placed on an invisible 2 × 2 grid.
For both the small and large datasets, one of them contains images with filled shapes and filled
masks, and the other one contains images with only the contours of the shapes with filled masks.
Each dataset contains a total of 1000 images, of which 700 are used for training, 150 for
validation, and 150 for testing.

These synthetic shape datasets offer valuable insights into the role of the TRF on the
performance of the models. By comparing the performance of the models on images with small
shapes versus large shapes, we can assess how the TRF size affects the model’s ability to capture
features of different scales. Specifically, it allows us to determine to what degree it matters if the
TRF is smaller than the shape, or if the shape fits into the TRF.

Fig. 3 Typical images and segmentation masks for the synthetic datasets (A and B) and medical
datasets (fetal head, fetal head 2, kidneys, lungs, thyroid, and nerve).
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The comparison between images with filled shapes and those with contour shapes allows us
to determine what happens if the TRF does not capture the entire shape, but only a part of it, such
as the part that is completely black in the image but is filled in the mask because it is within the
contours. This is particularly relevant for real-world applications, where the images often contain
complex structures that the model needs to accurately segment.

Furthermore, the use of type B images, where the mask of the square is omitted, enables us to
examine how the models handle irrelevant features in the images. This is particularly relevant for
real-world applications, where the images often contain irrelevant or distracting features that the
model needs to ignore to perform the task effectively.

3.2.2 Medical datasets

The experiments were carried out using below listed six medical datasets. The datasets are clas-
sified into two categories: high contrast, where the RoI can be visually distinguished solely based
on its contrast with the background, and low contrast, which requires additional details such as
the RoI’s contour or shape to distinguish it from the background.

1. Fetal head: This low-contrast dataset consists of two-dimensional (2D) ultrasound images
of fetal heads (dataset).15 It includes 350 training images, 74 validation images, and 76 test
images. The images were obtained using a standard clinical ultrasound system, and the
fetal head circumference was manually annotated by expert sonographers.

2. Fetal head 2: This low-contrast dataset is another set of 2D ultrasound images of fetal
heads, with a larger number of images (dataset).16,17 It includes 14,560 training images,
3240 validation images, and 2875 test images. The images in this dataset were collected
from multiple hospitals and were annotated by experienced radiologists.

3. Kidneys: This low-contrast dataset consists of three-dimensional (3D) MRI images of
kidneys (dataset).18,19 It includes 454 training images, 91 validation images, and 104 test
images. The images were acquired using a 3T MRI scanner, and the kidney regions were
manually segmented by radiologists.

4. Lungs: This high-contrast dataset consists of 2D X-ray images of lungs (dataset).20,21

It includes 396 training images, 84 validation images, and 86 test images. The images
were collected from a variety of patients with different lung conditions, providing a diverse
dataset for training and testing.

5. Thyroid: This low-contrast dataset consists of 3D ultrasound images of the thyroid (data-
set).22 It includes 3160 training images, 439 validation images, and 510 test images. The
images were acquired using a high-frequency linear array transducer, and the thyroid
regions were manually segmented by experienced clinicians.

6. Nerve: This low-contrast dataset consists of 2D ultrasound images of nerves (dataset).23 It
includes 1610 training images, 364 validation images, and 349 test images. The images
were collected from a variety of patients, and the nerve structures were manually annotated
by expert radiologists.

3.3 Data Pre-processing
All images in the datasets were pre-processed to ensure consistency and optimal performance
of the models. The pre-processing steps included resizing all images to a uniform size of
576 × 576 pixels. For the 3D datasets, all 2D slices were extracted and used as separate
images.

The datasets were split into training, validation, and test sets, with ∼70% of the images used
for training, 15% for validation, and 15% for testing. However, to prevent overfitting, slices from
one 3D volume or 2D images from the same patient were included in only one of the train,
validation, or test sets. This means that the split is not always exactly in these ratios.

Finally, on some of the smaller datasets, random data augmentation was applied to improve
the absolute results. On each sample, four random combinations of a horizontal flip, vertical flip,
and rotation with 90, 180, or 270 deg, respectively, were applied, where each part of the combi-
nation is applied with a probability of 0.5.
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3.4 Evaluation Measures
In the realm of image segmentation, five principal metrics are typically utilized to assess
performance.24,25 The Dice similarity coefficient (DSC) serves as a statistical metric, measuring
the similarity between two sets by calculating the ratio of twice the intersection area to the t
otal size of both sets. Sensitivity, or recall, appraises the model’s ability to accurately identify
positive instances, hence providing insight into the model’s efficacy in segmenting intended
areas. Specificity evaluates the model’s proficiency in correctly recognizing negative instances,
or in other words, its capability to exclude regions not meant to be segmented. Accuracy
gauges the model’s overall correctness in assigning classifications. Last, the Jaccard index
(JI) is an intersection-over-union measure that quantifies the similarity between the predicted
and actual segmentations, providing a rigorous assessment of model performance in segment-
ing images.

Moreover, to understand fully the impact of TRF and ERF on model performance, two addi-
tional metrics are proposed in this work: ERF rate and object rate. We also factor in the training
time (epochs) as a metric, quantifying the epochs needed to attain the lowest validation loss. This
allows us to comparatively analyze the training cost across various models.

3.4.1 ERF rate

We propose a new metric called the ERF rate to measure the ERF distribution. It quantifies the
fraction of significantly contributing pixels within the ERF against the TRF area, utilizing the
absolute value of the ERF pixels. The ERF rate [Eq. (6)] accounts for all the meaningful pixels
above a certain threshold (ε) in the ERF, giving more weight to pixels with higher values and
normalizing the result with the TRF area. The metric is computed for each test image, reporting
the mean ERF rate as the overall score. Thus, ERF rate calculation is tightly coupled to the
dataset as the weights and input images contributing to the calculation of ERF are associated
with the dataset

EQ-TARGET;temp:intralink-;e006;114;411r ¼
P

y∈E½jyj > ε� · ð1þ jyjÞ
m · n

: (6)

We use kernel density estimation (KDE) to find the threshold (ε) for key contributing pixels,
estimating the probability density function (PDF) of a continuous variable based on observed
samples.26

The density function fðxÞ of ERF values can be calculated using Eq. (7), where f̂ðxÞ is the
estimated PDF, KðxÞ is a kernel function with bandwidth h, and m · n is the number of obser-
vations in E. It is centered on each observation y

EQ-TARGET;temp:intralink-;e007;114;301f̂ðxÞ ¼ 1

m · n
·
X
y∈E

1

h
K

�
x − jyj

h

�
: (7)

To identify the ideal parameters for KDE, we examined the ERF absolute value histogram
for a large dataset sample. It reveals two different types of distributions: (i) ERFs with both
contributing and non-contributing pixels have a bimodal distribution with a left peak representing
non-contributing pixels and a right peak representing contributing pixels, and (ii) ERFs with
mostly non-contributing pixels have a highly positively skewed distribution. The first parameter,
the bandwidth (h), controls the kernel width and PDF smoothing level. Silverman’s rule-of-
thumb27 was used to automatically determine h (h ¼ 1.06 · σ̂mn, where σ̂ is the standard
deviation of a sample of size m · n) because it performs well on both bimodal and skewed
distributions.28

Finally, the threshold (ε) was selected based on the trough in bimodal distributions or the
stopping point of decrease in skewed distributions (Fig. 4). To reduce the number of troughs, thus
making it easier to find the optimal threshold, a Gaussian kernel function was used to smooth the
estimated PDF.26 The empirical formula for the stopping point amounts to finding a point in the
histogram where the frequency value in the bin is below the mean of the frequency values in
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the neighboring bins. This is approximately equal to numerically finding a point where the histo-
gram curve becomes convex.

The ERF rate intends to assess the utilization of TRF. A low ERF rate mathematically sig-
nifies that pixels contributing to the output are more localized as compared to the region being
explored through TRF. Mathematically, a low ERF rate should signal the under-utilization of
TRF, whereas an ERF rate close (or above 1) would indicate that TRF size might not be enough
to learn all the relevant features of the dataset.

3.4.2 Object rate

To assess the relative size of the object to be segmented in comparison to the TRF size, a new
metric denoted as the object rate is proposed. This metric is computed by dividing the total area
of a rectangle encompassing the edges of the object by the total area of the TRF size, or TRF2 as
defined in Eq. (2). In the case of multiple objects, the bounding box of each object is considered
individually, and the average area of such rectangles is computed. Thus, for an object with its
highest point at t, lowest at b, leftmost at l, and rightmost at r, the object rate can be calculated as
follows:

EQ-TARGET;temp:intralink-;e008;117;186OR ¼ ðb − tÞ · ðr − lÞ
TRF2

: (8)

4 Results and Discussion
Detailed results of the performance of the U-Net model for the different metrics on all medical
datasets can be found in Table 2. The results of the attention U-Net on the medical datasets
and the U-Net on the synthetic datasets of types A and B can be found in Tables 3–5, respectively.
In Secs. 4.1, 4.2 and 4.3 we present different plots to interpret and discuss these results.

Fig. 4. Examples of determining the threshold (ε) for the ERF rate with KDE for bimodally distrib-
uted ERF pixel values (a) and positively skewed distributed ERF pixel values (b).
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Table 2 All the results for the different evaluation measures on the medical datasets (fetal head,
fetal head 2, kidneys, lungs, nerve, and thyroid) for the U-Net.

TRF size trf54 trf100 trf146 trf204 trf230 trf298 trf360 trf412 trf486 trf570

Fetal head

Training time (epochs) 38 31 21 26 34 21 24 26 28 30

ERF rate before training 0.0135 0.0097 0.0047 0.0011 0.0046 0.0014 0.0044 0.0005 0.0012 0.0009

ERF rate 0.8898 0.9380 0.9153 0.8614 0.8196 0.5970 0.5785 0.4618 0.4175 0.2309

Dice score 0.7752 0.8866 0.9224 0.9527 0.9506 0.9526 0.9623 0.9614 0.9650 0.9665

Object rate 67.3558 16.8389 7.4840 4.0325 2.6942 1.7922 1.0997 0.9870 0.6452 0.4481

Accuracy 0.8687 0.9300 0.9518 0.9690 0.9693 0.9704 0.9749 0.9735 0.9761 0.9773

Sensitivity 0.8458 0.8914 0.9395 0.9508 0.9707 0.9709 0.9675 0.9570 0.9627 0.9680

Specificity 0.8831 0.9530 0.9612 0.9828 0.9739 0.9745 0.9844 0.9878 0.9887 0.9873

JI 0.6577 0.8152 0.8723 0.9212 0.9210 0.9248 0.9390 0.9371 0.9435 0.9466

Fetal head 2

Training time (epochs) 1 1 1 6 1 8 7 7 25 14

ERF rate before training 0.1531 0.0330 0.0300 0.0097 0.0245 0.0073 0.0163 0.0019 0.0051 0.0054

ERF rate 1.0005 0.0944 0.2275 0.0095 0.0168 0.0051 0.2761 0.0010 0.3159 0.1735

Dice score 0.6009 0.6261 0.7582 0.8745 0.7950 0.8588 0.9028 0.9071 0.9116 0.9214

Object rate 35.5599 8.8900 3.9511 2.1289 1.4224 0.9462 0.5806 0.5211 0.3406 0.2365

Accuracy 0.9889 0.8888 0.9207 0.9557 0.9315 0.9525 0.9654 0.9675 0.9686 0.9725

Sensitivity 0.7058 0.7818 0.8512 0.9133 0.9284 0.9502 0.9567 0.9524 0.9479 0.9616

Specificity 0.9913 0.9004 0.9303 0.9627 0.9316 0.9514 0.9645 0.9679 0.9708 0.9723

Jaccard index 0.5154 0.4764 0.6265 0.7876 0.6841 0.7805 0.8365 0.8445 0.8513 0.8656

Kidneys

Training time (epochs) 21 34 31 32 38 47 54 47 48 54

ERF rate before training 0.1715 0.0496 0.0303 0.0126 0.0287 0.0058 0.0217 0.0024 0.0059 0.0065

ERF rate 0.0123 0.0341 0.0227 0.0057 0.0162 0.0035 0.0088 0.0012 0.0038 0.0038

Dice score 0.7560 0.8367 0.8477 0.8524 0.8617 0.8364 0.8865 0.8657 0.8439 0.8802

Object rate 27.4954 6.8738 3.0550 1.6461 1.0998 0.7316 0.4489 0.4029 0.2634 0.1829

Accuracy 0.9832 0.9904 0.9911 0.9911 0.9917 0.9889 0.9923 0.9902 0.9900 0.9918

Sensitivity 0.7808 0.8856 0.8762 0.8783 0.8645 0.8814 0.8993 0.8914 0.8647 0.8884

Specificity 0.9892 0.9935 0.9945 0.9948 0.9963 0.9916 0.9961 0.9935 0.9942 0.9954

Jaccard index 0.6320 0.7509 0.7679 0.7717 0.7853 0.7490 0.8119 0.7836 0.7607 0.8055
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Table 2 (Continued).

TRF size trf54 trf100 trf146 trf204 trf230 trf298 trf360 trf412 trf486 trf570

Lungs

Training time (epochs) 15 20 29 26 36 26 51 28 33 40

ERF rate before training 0.0417 0.0419 0.0216 0.0127 0.0122 0.0069 0.0134 0.0009 0.0036 0.0061

ERF rate 0.0614 0.1298 0.0315 0.0040 0.0137 0.0031 0.0245 0.0012 0.0011 0.0039

Dice score 0.9601 0.9673 0.9687 0.9686 0.9683 0.9666 0.9689 0.9683 0.9662 0.9673

Object rate 84.4219 21.1055 9.3802 5.0542 3.3769 2.2463 1.3784 1.2371 0.8087 0.5616

Accuracy 0.9784 0.9823 0.9830 0.9829 0.9829 0.9820 0.9830 0.9827 0.9818 0.9824

Sensitivity 0.9650 0.9677 0.9697 0.9681 0.9695 0.9654 0.9694 0.9654 0.9746 0.9776

Specificity 0.9825 0.9870 0.9872 0.9878 0.9869 0.9873 0.9875 0.9886 0.9834 0.9834

Jaccard index 0.9240 0.9371 0.9398 0.9396 0.9391 0.9361 0.9402 0.9389 0.9353 0.9373

Nerve

Training time (epochs) 7 13 15 8 14 17 10 8 10 12

ERF rate before training 0.1425 0.0444 0.0381 0.0107 0.0287 0.0096 0.0213 0.0019 0.0104 0.0078

ERF rate 0.9312 0.7345 0.6953 0.0057 0.3348 0.0224 0.1363 0.0008 0.1244 0.0399

Dice score 0.4685 0.7329 0.7531 0.7745 0.7792 0.7863 0.7965 0.7951 0.7960 0.7947

Object rate 7.3183 1.8296 0.8131 0.4381 0.2927 0.1947 0.1195 0.1072 0.0701 0.0487

Accuracy 0.9758 0.9848 0.9859 0.9868 0.9873 0.9872 0.9876 0.9878 0.9881 0.9880

Sensitivity 0.6442 0.7519 0.7637 0.7803 0.7978 0.7990 0.7901 0.8068 0.8301 0.8289

Specificity 0.9808 0.9914 0.9923 0.9930 0.9928 0.9930 0.9940 0.9934 0.9927 0.9927

Jaccard index 0.3281 0.6030 0.6321 0.6572 0.6614 0.6701 0.6827 0.6800 0.6786 0.6785

Thyroid

Training time (epochs) 1 1 3 2 2 5 3 2 7 4

ERF rate before training 0.1652 0.0434 0.0280 0.0094 0.0227 0.0093 0.0180 0.0021 0.0089 0.0054

ERF rate 0.1041 0.1439 0.1823 0.0124 0.0482 0.0240 0.0269 0.0038 0.0152 0.0054

Dice score 0.5155 0.5829 0.6456 0.7043 0.7124 0.6907 0.6680 0.6667 0.7457 0.7284

Object rate 14.8609 3.7152 1.6512 0.8897 0.5944 0.3954 0.2426 0.2178 0.1424 0.0989

Accuracy 0.9718 0.9807 0.9840 0.9860 0.9822 0.9864 0.9854 0.9859 0.9871 0.9837

Sensitivity 0.6309 0.7427 0.7374 0.7516 0.7021 0.7563 0.7449 0.7705 0.7602 0.7268

Specificity 0.9788 0.9827 0.9879 0.9912 0.9928 0.9905 0.9884 0.9879 0.9935 0.9933

Jaccard index 0.3881 0.4779 0.5481 0.6107 0.6168 0.6036 0.5785 0.5746 0.6526 0.6246

Loos, Pardasani, and Awasthi: Demystifying the effect of receptive field size. . .

Journal of Medical Imaging 054004-11 Sep∕Oct 2024 • Vol. 11(5)



Table 3 All results for the different evaluation measures on the medical datasets (fetal head, fetal
head 2, kidneys, lungs, nerve, and thyroid) for the Attention- U-Net.

TRF size trf54 trf100 trf146 trf204 trf230 trf298 trf360 trf412 trf486 trf570

Fetal head

Training time (epochs) 36 28 26 34 35 39 39 34 32 34

ERF rate before training 0.8256 0.5080 0.4090 0.4592 0.3215 0.3601 0.2955 0.4388 0.2972 0.2690

ERF rate 0.9854 0.9548 0.9732 0.1771 0.8143 0.0024 0.5025 0.0013 0.0016 0.0025

Dice score 0.8307 0.9213 0.9524 0.9538 0.9625 0.9640 0.9642 0.9655 0.9675 0.9667

Object rate 67.3558 16.8389 7.4840 4.0325 2.6942 1.7922 1.0997 0.9870 0.6452 0.4481

Accuracy 0.8984 0.9512 0.9708 0.9715 0.9769 0.9781 0.9780 0.9791 0.9807 0.9803

Sensitivity 0.9085 0.9553 0.9528 0.9727 0.9591 0.9665 0.9637 0.9621 0.9638 0.9671

Specificity 0.8920 0.9476 0.9799 0.9711 0.9869 0.9848 0.9865 0.9891 0.9905 0.9879

Jaccard index 0.7200 0.8656 0.9206 0.9231 0.9388 0.9417 0.9420 0.9445 0.9482 0.9469

Fetal head 2

Training time (epochs) 6 3 4 2 4 8 4 6 4 12

ERF rate before training 0.8459 0.5388 0.4327 0.5030 0.3511 0.4051 0.3217 0.4826 0.3293 0.3049

ERF rate 1.0000 0.9070 0.8755 0.0325 0.7660 0.0845 0.3467 0.0030 0.1717 0.1735

Dice score 0.7094 0.8058 0.8403 0.8574 0.8895 0.9025 0.9082 0.9135 0.9106 0.9224

Object rate 35.5599 8.8900 3.9511 2.1289 1.4224 0.9462 0.5806 0.5211 0.3406 0.2850

Accuracy 0.9155 0.9380 0.9476 0.9508 0.9621 0.9658 0.9673 0.9699 0.9698 0.9518

Sensitivity 0.8614 0.8797 0.9172 0.9281 0.9419 0.9521 0.9465 0.9424 0.9513 0.9395

Specificity 0.9232 0.9479 0.9516 0.9529 0.9648 0.9668 0.9688 0.9739 0.9705 0.9612

Jaccard index 0.5716 0.6892 0.7341 0.7616 0.8130 0.8350 0.8441 0.8542 0.8517 0.8723

Kidneys

Training time (epochs) 27 29 25 48 52 50 57 57 65 55

ERF rate before training 0.8694 0.5124 0.4018 0.4715 0.3262 0.3916 0.2979 0.4270 0.3122 0.2975

ERF rate 0.1832 0.1251 0.0902 0.0406 0.1925 0.0388 0.0122 0.0015 0.0049 0.0019

Dice score 0.7481 0.8529 0.8410 0.8542 0.8709 0.8484 0.8703 0.8558 0.8979 0.8586

Object rate 27.4954 6.8738 3.0550 1.6461 1.0998 0.7316 0.4489 0.4029 0.2634 0.1829

Accuracy 0.9829 0.9911 0.9896 0.9911 0.9917 0.9901 0.9918 0.9913 0.9930 0.9903

Sensitivity 0.8210 0.8484 0.8500 0.8813 0.8878 0.8360 0.8813 0.8849 0.8920 0.8742

Specificity 0.9867 0.9959 0.9951 0.9942 0.9951 0.9952 0.9954 0.9952 0.9965 0.9936

Jaccard index 0.6197 0.7720 0.7505 0.7747 0.7967 0.7687 0.7990 0.7798 0.8300 0.7759
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Table 3 (Continued).

TRF size trf54 trf100 trf146 trf204 trf230 trf298 trf360 trf412 trf486 trf570

Lungs

Training time (epochs) 21 22 30 16 31 23 29 17 30 30

ERF rate before training 0.8377 0.5446 0.4295 0.5266 0.3453 0.3745 0.3063 0.4558 0.3053 0.3143

ERF rate 0.8615 0.6073 0.4391 0.0071 0.0240 0.1075 0.0245 0.0044 0.0084 0.0045

Dice score 0.9574 0.9677 0.9673 0.9672 0.9668 0.9662 0.9671 0.9649 0.9666 0.9681

Object rate 84.4219 21.1055 9.3802 5.0542 3.3769 2.2463 1.3784 1.2371 0.8087 0.5616

Accuracy 0.9769 0.9824 0.9822 0.9823 0.9819 0.9817 0.9822 0.9810 0.9819 0.9827

Sensitivity 0.9488 0.9738 0.9629 0.9665 0.9728 0.9636 0.9711 0.9618 0.9685 0.9684

Specificity 0.9867 0.9850 0.9886 0.9872 0.9846 0.9875 0.9856 0.9871 0.9862 0.9874

Jaccard index 0.9191 0.9378 0.9371 0.9370 0.9363 0.9352 0.9370 0.9331 0.9362 0.9388

Nerve

Training time (epochs) 10 12 12 13 10 10 14 9 14 11

ERF rate before training 0.8478 0.5326 0.4261 0.4985 0.3459 0.3965 0.3144 0.4639 0.3263 0.3110

ERF rate 0.9638 0.8183 0.8422 0.4236 0.5661 0.2254 0.4018 0.0762 0.2615 0.1329

Dice score 0.4801 0.7014 0.7428 0.7708 0.7631 0.7689 0.7911 0.7911 0.7941 0.7964

Object rate 7.3183 1.8296 0.8131 0.4381 0.2927 0.1947 0.1195 0.1072 0.0701 0.0487

Accuracy 0.9746 0.9849 0.9860 0.9872 0.9869 0.9867 0.9881 0.9875 0.9880 0.9881

Sensitivity 0.5738 0.8122 0.7848 0.7959 0.8150 0.7957 0.8210 0.8139 0.8343 0.8228

Specificity 0.9824 0.9885 0.9911 0.9924 0.9914 0.9922 0.9927 0.9929 0.9924 0.9930

Jaccard index 0.3427 0.5687 0.6203 0.6541 0.6437 0.6490 0.6761 0.6765 0.6770 0.6805

Thyroid

Training time (epochs) 2 2 2 3 4 3 3 2 3 5

ERF rate before training 0.8760 0.5268 0.4179 0.4842 0.3426 0.4035 0.3087 0.4485 0.2973 0.3025

ERF rate 0.8913 0.6137 0.3449 0.0786 0.1057 0.0504 0.1024 0.0125 0.0468 0.0253

Dice score 0.5706 0.6773 0.6638 0.7464 0.7142 0.7181 0.7060 0.7455 0.7219 0.7420

Object rate 14.8609 3.7152 1.6512 0.8897 0.5944 0.3954 0.2426 0.2178 0.1424 0.0989

Accuracy 0.9704 0.9811 0.9819 0.9844 0.9818 0.9835 0.9839 0.9832 0.9802 0.9836

Sensitivity 0.6093 0.7146 0.7767 0.7933 0.7155 0.7677 0.7581 0.7960 0.7262 0.7863

Specificity 0.9832 0.9897 0.9871 0.9904 0.9914 0.9903 0.9899 0.9902 0.9922 0.9901

Jaccard index 0.4402 0.5736 0.5609 0.6372 0.6085 0.6137 0.6084 0.6343 0.6114 0.6333

Loos, Pardasani, and Awasthi: Demystifying the effect of receptive field size. . .

Journal of Medical Imaging 054004-13 Sep∕Oct 2024 • Vol. 11(5)



Table 4 Results of the regular U-Net model on the Type A shapes datasets.

TRF size 54 100 146 204 230 298 360 412 486 570

A

Training time (epochs) 63 66 111 71 69 71 200 74 192 72

ERF rate before training 0.0514 0.0131 0.0104 0.0033 0.0078 0.0043 0.0080 0.0005 0.0015 0.0044

ERF rate 0.0028 0.0527 0.0009 0.0008 0.0008 0.0006 0.0002 0.0002 0.0002 0.0002

Dice score 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Object rate 100.5928 25.1482 11.1770 6.0224 4.0237 2.6766 1.6424 1.4741 0.9636 0.6692

Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Specificity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Jaccard index 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

A contour

Training time (epochs) 14 17 87 18 200 47 200 39 49 117

ERF rate before training 0.0353 0.0138 0.0088 0.0038 0.0059 0.0020 0.0040 0.0004 0.0010 0.0011

ERF rate 0.4710 0.0502 0.0392 0.0048 0.0047 0.0029 0.0036 0.0005 0.0013 0.0017

Dice score 0.8219 0.9791 0.9998 0.9996 0.9996 0.9997 0.9998 0.9996 0.9997 0.9999

Object rate 98.8970 24.7242 10.9886 5.9208 3.9559 2.6315 1.6147 1.4492 0.9473 0.6579

Accuracy 0.9469 0.9930 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 1.0000

Sensitivity 0.9505 0.9933 0.9999 0.9997 0.9996 0.9998 0.9998 0.9997 0.9997 0.9999

Specificity 0.9465 0.9929 1.0000 0.9999 0.9999 0.9999 1.0000 0.9999 0.9999 1.0000

Jaccard index 0.6983 0.9591 0.9996 0.9992 0.9992 0.9995 0.9997 0.9992 0.9994 0.9997

A large

Training time (epochs) 50 64 57 70 97 68 105 67 99 69

ERF rate before training 0.0326 0.0097 0.0115 0.0019 0.0058 0.0008 0.0047 0.0008 0.0020 0.0015

ERF rate 0.0028 0.0007 0.0004 0.0003 0.0002 0.0002 0.0001 0.0001 0.0001 0.0000

Dice score 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Object rate 137.8993 34.4748 15.3221 8.2559 5.5160 3.6693 2.2515 2.0207 1.3209 0.9173

Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Specificity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Jaccard index 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 4 (Continued).

TRF size 54 100 146 204 230 298 360 412 486 570

A large contour

Training time (epochs) 25 31 56 13 24 199 19 12 25 33

ERF rate before training 0.0290 0.0148 0.0081 0.0037 0.0055 0.0031 0.0052 0.0006 0.0013 0.0014

ERF rate 0.4730 0.2601 0.8689 0.0028 0.0034 0.0015 0.0025 0.0003 0.0006 0.0007

Dice score 0.6708 0.8646 0.9841 0.9995 0.9997 0.9993 0.9998 0.9995 0.9994 0.9994

Object rate 138.7451 34.6863 15.4161 8.3065 5.5498 3.6918 2.2653 2.0331 1.3290 0.9229

Accuracy 0.8197 0.9119 0.9892 0.9997 0.9998 0.9995 0.9998 0.9997 0.9996 0.9996

Sensitivity 0.8949 0.9112 0.9912 0.9995 0.9997 0.9993 0.9998 0.9995 0.9995 0.9993

Specificity 0.8005 0.9123 0.9881 0.9998 0.9998 0.9996 0.9999 0.9998 0.9996 0.9998

Jaccard index 0.5056 0.7626 0.9688 0.9991 0.9994 0.9986 0.9995 0.9990 0.9987 0.9989

Table 5 Results of the regular U-Net model on the Type B shapes datasets.

TRF size 54 100 146 204 230 298 360 412 486 570

B

Training time (epochs) 46 52 173 190 123 47 45 44 45 198

ERF rate before training 0.0387 0.0113 0.0128 0.0022 0.0105 0.0022 0.0054 0.0007 0.0019 0.0019

ERF rate 0.0918 0.0556 0.0016 0.0010 0.0005 0.0006 0.0002 0.0002 0.0001 0.0001

Dice score 0.9345 0.9959 1.0000 1.0000 1.0000 1.0000 0.9998 1.0000 0.9999 1.0000

Object rate 57.3475 14.3369 6.3719 3.4333 2.2939 1.5259 0.9363 0.8404 0.5493 0.3815

Accuracy 0.9843 0.9991 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Sensitivity 0.8810 0.9921 1.0000 1.0000 1.0000 0.9999 0.9998 1.0000 0.9999 1.0000

Specificity 0.9994 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Jaccard index 0.8772 0.9920 1.0000 1.0000 1.0000 0.9999 0.9996 1.0000 0.9999 1.0000

B contour

Training time (epochs) 20 12 81 125 137 42 194 139 144 182

ERF rate before training 0.0277 0.0063 0.0059 0.0018 0.0061 0.0019 0.0046 0.0005 0.0013 0.0012

ERF rate 0.5588 0.3507 0.0383 0.0018 0.0042 0.0012 0.0033 0.0006 0.0022 0.0009

Dice score 0.8067 0.9751 0.9997 0.9998 0.9998 0.9995 0.9998 0.9997 0.9998 0.9998

Object rate 62.1263 15.5316 6.9029 3.7194 2.4851 1.6531 1.0143 0.9104 0.5951 0.4133

Accuracy 0.9620 0.9945 0.9999 1.0000 1.0000 0.9999 1.0000 0.9999 1.0000 1.0000

Sensitivity 0.9490 0.9961 0.9998 0.9998 0.9998 0.9994 0.9998 0.9997 0.9998 0.9998

Specificity 0.9633 0.9943 1.0000 1.0000 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000

Jaccard index 0.6771 0.9515 0.9995 0.9996 0.9996 0.9989 0.9997 0.9995 0.9996 0.9997
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4.1 Role of Contrast
Figure 5 illustrates the relationship between the TRF size and the DSC for all synthetic shape
datasets, encompassing both types A and B for the U-Net model. For all datasets that can be
segmented solely based on contrast (A, A large), the model attains perfect performance even at
the smallest TRF size [Fig. 5(a)]. For datasets that present an added layer of complexity by either
representing only contours of RoI in input images (A contour, A large contour) or by excluding
the square from the mask (type B), a larger TRF is required to reach peak performance [Figs. 5(a)
and 5(b)]. These datasets with an added complexity in segmentation show a model performance
trend where DSC starts at a lower point for a small TRF and requires a larger TRF to reach peak
performance, unlike the consistent perfect performance in contrast-based datasets.

The same pattern is present in the medical datasets: all datasets that have a low-contrast RoI
show a trend of increasing DSC as the TRF size grows, whereas the high-contrast lung dataset
attains peak performance starting at the lowest TRF [Figs. 6(a) and 6(e)]. The segmentation
output for the datasets of fetal head, kidneys, nerve, and thyroid for different TRFs is shown
in Figs. 7(a)–7(d), respectively, and the combined results for the U-net model are shown in
Table 2. Figure 8 shows the results for the lung dataset for different TRFs. As, in the lung dataset,
the RoI can be identified visually using the contrast, and the DSC attains close to peak value even
for a very small TRF. It is clear that the predicted segmentation improves significantly with
increasing TRF for all datasets except the lung dataset.

Table 5 (Continued).

TRF size 54 100 146 204 230 298 360 412 486 570

B large

Training time (epochs) 34 67 63 184 28 59 143 35 110 199

ERF rate before training 0.0231 0.0077 0.0087 0.0023 0.0048 0.0030 0.0049 0.0005 0.0019 0.0011

ERF rate 0.0021 0.0016 0.0006 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001

Dice score 0.8703 0.9454 0.9933 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Object rate 85.1332 21.2833 9.4592 5.0968 3.4053 2.2653 1.3900 1.2475 0.8155 0.5663

Accuracy 0.9368 0.9756 0.9971 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Sensitivity 0.7825 0.9161 0.9933 1.0000 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

Specificity 0.9943 0.9937 0.9982 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Jaccard index 0.7706 0.8974 0.9868 1.0000 0.9999 0.9999 1.0000 0.9999 1.0000 1.0000

B large contour

Training time (epochs) 27 55 59 135 32 180 198 30 200 35

ERF rate before training 0.0119 0.0088 0.0064 0.0040 0.0049 0.0019 0.0040 0.0006 0.0016 0.0019

ERF rate 0.6198 0.2014 0.6863 0.0011 0.0062 0.0013 0.0027 0.0004 0.0008 0.0008

Dice score 0.6593 0.8793 0.9815 0.9998 0.9996 0.9998 0.9998 0.9994 0.9998 0.9993

Object rate 89.1812 22.2953 9.9090 5.3392 3.5672 2.3730 1.4561 1.3068 0.8543 0.5932

Accuracy 0.8838 0.9513 0.9919 0.9999 0.9998 0.9999 0.9999 0.9998 0.9999 0.9997

Sensitivity 0.9156 0.9584 0.9922 0.9998 0.9996 0.9998 0.9998 0.9995 0.9998 0.9989

Specificity 0.8795 0.9497 0.9918 0.9999 0.9999 0.9999 1.0000 0.9998 0.9999 0.9999

Jaccard index 0.4939 0.7860 0.9637 0.9996 0.9991 0.9996 0.9996 0.9989 0.9996 0.9986
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This pattern is further highlighted in Table 2, where all low-contrast datasets consistently
show a trend of increasing DSC with TRF, and all high-contrast datasets do not show the
same trend.

4.2 Optimal TRF Size
In Figs. 6(b) and 6(f), a trend is visible, which shows that the ERF rate shrinks with the enlarge-
ment of the TRF size for the U-Net and the attention U-Net respectively. This suggests that as
the TRF size increases, a smaller proportion of pixels actually contribute to the predicted seg-
mentation. Moreover, as the TRF size increases, the training time (epochs) tends to increase,
as displayed in Figs. 6(c) and 6(g) for the U-Net and the attention U-Net respectively. This find-
ing implies that an excessively large TRF size may lead to unnecessary computations in U-Net
and the attention U-Net architecture, potentially explaining the observed increase in training time
(epochs) with the expansion of the TRF size.

In this context, the object rate, plotted against the DSC in Fig. 6(d) (U-Net) and Fig. 6(h)
(attention U-Net), also seems to play a role. When the object rate, i.e., the size of the RoI relative
to the TRF, increases, the DSC degrades. This is corroborated by the two rightmost columns in

Fig. 5 Performance of the (a) shape dataset A and (b) shape dataset B for the regular U-Net

Fig. 6 Various plots for the analyses of the medical datasets for U-Net (a) DSC versus TRF size,
(b) ERF rate versus TRF size, (c) training time (epochs) versus TRF size, (d) Dice score versus
object rate, and for attention U-Net, (e) DSC versus TRF size, (f) ERF rate versus TRF size,
(g) training time (epochs) versus TRF size, and (h) Dice score versus object rate.
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Table 6, where for most low-contrast datasets where the TRF size plays a major role, the optimal
TRF size, i.e., the TRF size at which the DSC saturates is usually only slightly smaller than the
size of the RoI.

Despite the overall trend of increasing DSC with expanding TRF size, we observe slight
drops. This can be interpreted in light of the concept of variability in neural networks, as dis-
cussed in Ref. 29. Variability, as they defined it, represents the richness of landscape patterns in
the data space with respect to well-scaled random weights. As the TRF size increases, the model
starts to incorporate more global context into its predictions. Although this can be beneficial for
capturing larger-scale structures in the image, it may also introduce more noise into the model’s
predictions, especially if the larger TRF includes irrelevant or distracting features. This could
result in slight decreases in the DSC.

Fig. 7 Examples of the TRF (yellow square), ERF (pixels within the TRF) in the top row in each
subfigure and the predicted segmentation for various TRF sizes in the bottom row, on the samples
from the fetal head (a), kidneys (b), nerve (c), and thyroid (d) datasets, as presented in Fig. 3.

Fig. 8 Examples of the TRF (yellow square), ERF (pixels within the TRF) in panel (a) and the
predicted segmentation for various TRF sizes in panel (b), on the sample from the lungs dataset
from Fig. 3.
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4.3 Attention Mechanism and TRF Size
In Figs. 6(a) and 6(e), the TRF size is plotted against the DSC for the U-Net and attention U-Net,
respectively, for all the medical datasets. In both instances, the trend of an increasing DSC as the
TRF grows is present. Figure 9 shows the segmentation for the fetal head 2 dataset for all the
TRFs and the corresponding TRF and ERF. As the TRF size increases, the segmentation accu-
racy increases, and the overall trend can be seen in Table 2. The same trend is also visible for the
attention U-Net model, the results of which are shown in Table 3. However, all absolute scores
are higher in the case of the attention U-Net. Table 6 column 4 shows the summary of results for
all the datasets if they follow the pattern of DSC using the attention U-Net model.
All the medical imaging datasets except the lung dataset follow the pattern for both U-Net and
attention U-Net models, with higher absolute scores for the attention counterpart. Hence, it can
be said that the attention mechanism will consistently improve the performance, regardless of
TRF size. Even with the attention mechanism, TRF plays an important role, and a larger TRF
might further improve the performance of attention U-Net models.

Table 6 Summary of the insights from the results. Values with no� mean that the RoI can be
identified visually, but not all regions that have this contrast are included in the mask.

Dataset
Dataset
type

RoI can be
identified visually
only by contrast

Pattern of
increasing
DSC with

TRF

Pattern retained
with attention

U-Net, but higher
absolute score

Average
dimension
of RoI

DSC saturates
between
TRF sizes

Nerve Clinical No Yes Yes 159 298 to 360

B contour Synthetic No Yes N/A 168 100 to 146

A contour Synthetic No Yes N/A 169 100 to 146

Thyroid Clinical No Yes Yes 187 146 to 204

B large contour Synthetic No Yes N/A 237 146 to 204

A large contour Synthetic No Yes N/A 242 146 to 204

Fetal head 2 Clinical No Yes Yes 255 146 to 204

Fetal head Clinical No Yes Yes 260 146 to 204

Kidneys Clinical No* Yes Yes 101 298 to 360

B Synthetic No* Yes N/A 168 54 to 100

B large Synthetic No* Yes N/A 238 100 to 146

Lungs Clinical Yes No N/A 329 0 to 54

A Synthetic Yes No N/A 168 0 to 54

A large Synthetic Yes No N/A 244 0 to 54

Fig. 9 Examples of the TRF (yellow square), ERF (pixels within the TRF) in panel (a) and the
predicted segmentation for various TRF sizes in panel (b), on the sample from the fetal head
2 dataset from Fig. 3.
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4.4 Designing Efficient Architectures
In this work, we performed the experiments for different TRFs having the same number of total
parameters for different datasets, as can be seen in Table 1. Detailed results of the performance of
the U-Net model for the different metrics on all medical datasets can be found in Table 2. The
results of the attention U-Net on the medical datasets and the U-Net on the synthetic datasets of
types A and B can be found in Tables 3–5, respectively. These results show that even for the same
number of parameters, there is a very high effect on the performance of the network if the TRF is
changed. The inclusion of TRF size as a parameter for models can lead to a more fair comparison
of their performance. It will also help in designing efficient architectures, ones with optimal
trade-offs between performance and number of parameters.

Based on these results, we have developed some thumb rules and have incorporated them in
a tool that recommends appropriate TRF size based on contrast and object size. The following are
the thumb rules that the tool encompasses:

• Images that are contrast segmentable should have a TRF that need not be more than the
object size.

• Images that are not contrast segmentable should have a TRF more than the object size.

5 Conclusion
This work highlights the essential role of the TRF size in semantic segmentation tasks with U-Net
and attention U-Net architectures across datasets of various modalities. We discovered that an
optimal TRF size, the one that balances the capturing of global context and computational effi-
ciency, can significantly enhance model performance. This implies that an excessively large TRF
size may lead to unnecessary computational costs without corresponding improvements in per-
formance. In addition, our results emphasize the added value of the attention mechanism in
boosting segmentation accuracy, irrespective of the TRF size.

Our findings suggest that the datasets where RoI can be visually identified by contrast com-
parison alone typically attain peak performance with even small TRF. Conversely, this is not the
case when additional complexities are present, such as contrast not being the only criteria for
identifying RoI or contours demarcating RoI. This implies that the model’s performance also
depends on factors such as the complexity of the task and the size of the RoI relative to the
TRF size.

Furthermore, our study indicates that the DSC tends to plateau at a certain TRF size depend-
ing on the dataset. This suggests that there exists an optimal TRF size for each dataset, beyond
which further expansion of the TRF size does not significantly improve the DSC. These findings
can have practical implications for the design of segmentation models, suggesting that increasing
TRF size may not always be necessary or beneficial.

These insights provide a valuable reference for designing and optimizing U-Net-based
architectures for various tasks and datasets in medical imaging. Although our study focused on
the U-Net and attention U-Net architectures, there are many other architectures used for semantic
segmentation tasks, such as SegNet,30 PSPNet,31 and DeepLab.32 Future research could inves-
tigate the impact of the TRF size on the performance of these architectures.

6 Appendix A: Convolution
In a 2D convolution layer, a filter or kernel is applied to a 2D image, performing a dot product at
each position.33 The kernel size (k) impacts the detail level captured, whereas the stride (s) affects
the kernel shift amount. Padding (p), set to “same” in this study, ensures that the output feature
map matches the input image dimensions, permitting edge-based convolution operations.

If the padding is set to same, the number of arrays that must be padded on every side of
the Tðd−1Þ tensor to simulate a convolution while maintaining the previous layer’s dimensions
can be calculated. For a h × w layer, the padding values along the y and x axes are computed as
follows:
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EQ-TARGET;temp:intralink-;e009;117;736py ¼
�ðh − 1Þ · sþ k − h

2

�
; (9)

EQ-TARGET;temp:intralink-;e010;117;690px ¼
�ðw − 1Þ · sþ k − w

2

�
: (10)

Therefore, along the first and second axes of the four-dimensional tensor Tðd−1Þ, the tensor is
padded with py and px, two-dimensional tensors that contain the same values as the edges along

the first and second axes of Tðd−1Þ. Let Pðd−1Þ denote this padded tensor. For each position ði; jÞ,
the top-left and bottom-right pixels from the previous layer’s TRF can be fetched from Pðd−1Þ at
the indices ði · s; j · sÞ and ði · sþ k − 1; j · sþ k − 1Þ, respectively. Thus, the TRF at position
ði; jÞ for a convolutional layer at depth d can be denoted as

EQ-TARGET;temp:intralink-;e011;117;586

TðdÞ
i;j ¼

2
4Pðd−1Þ

i·s;j·s;0;0 Pðd−1Þ
i·s;j·s;0;1

Pðd−1Þ
i·sþ k−1;j·sþ k−1;1;0 Pðd−1Þ

i·sþ k−1;j·sþ k−1;1;1

3
5: (11)

7 Appendix B: Max Pooling
2D max pooling is a feature map reduction method where a rectangular kernel selects maximum
values within regions, creating a smaller feature map.33 The kernel size (k) defines the sliding
window size over the input, and the stride (s)—in our study equal to k to simplify the compu-
tation—controls the window’s movement.

For a given position ði; jÞ, the topmost and leftmost pixels from the previous layer’s TRF can
be accessed from the Tðd−1Þ tensor at the index of ði · k; j · kÞ, whereas the bottom-most and
rightmost pixels can be accessed at the index of ði · kþ k − 1; j · kþ k − 1Þ. As such, the
TRF at position ði; jÞ for a max pooling layer at depth d can be expressed as follows:

EQ-TARGET;temp:intralink-;e012;117;406TðdÞ
i;j ¼

2
64

Tðd−1Þ
i·k;j·k;0;0 Tðd−1Þ

i·k;j·k;0;1

Tðd−1Þ
i·kþ k−1;j·kþ k−1;1;0 Tðd−1Þ

i·kþ k−1;j·kþ k−1;1;1

3
75: (12)

8 Appendix C: Upsampling
Upsampling is a technique used to increase the spatial resolution of feature maps. In particular, it
is implemented through transposed convolution or deconvolution, which is the reverse operation
of convolution. During the transposed convolution operation, a kernel of size k is applied to the
input feature map to generate an output feature map with a higher spatial resolution. The stride s
determines the amount of shift in the output feature map for each kernel application.33 When the
stride is set to k, the size of the output feature map is equal to the size of the input feature map
multiplied by the stride.

However, when the stride s is different from the kernel size k, there may be overlaps in the
values of the output feature map. Therefore, an iterative method is required to identify the corners
of the TRF for each pixel in the output feature map. Specifically, Algorithm 1 is applied to each
pixel ði; jÞ in the input map, computing the range in which the pixel is copied to the output
feature map by multiplying the top and left indices with the stride and the bottom and right
indices with the stride and then adding the kernel size. The algorithm then iterates over the pixels
ðm; nÞ in the output feature map within this range. If there is no overlap, the indices from the
previous layer at ði; jÞ are simply copied. Otherwise, for the top and left of the TRF, the algorithm
takes the minimum of the current index and a potentially overlapping index, whereas for the
bottom and right TRF, it takes the maximum.
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9 Appendix D: Concatenations
Within the U-Net architecture, skip connections from layer d − c are integrated into the decoder
blocks by concatenating them with the output of the upsampling layer d − 1.34 To achieve this,

the TRF of the tensors being concatenated, denoted as Tðd−cÞ
i;j and Tðd−1Þ

i;j , must first be deter-

mined. The TRF of each pixel after concatenation, denoted as TðdÞ
i;j , is obtained by selecting the

lowest indices for the left and top of both TRFs and the highest indices for the right and bottom of
both TRFs. This approach ensures that the largest possible TRF is obtained:

EQ-TARGET;temp:intralink-;sec9;114;218TðdÞ
i;j;0;0 ¼ minðfTðd−1Þ

i;j;0;0;T
ðd−cÞ
i;j;0;0gÞ;

EQ-TARGET;temp:intralink-;sec9;114;178TðdÞ
i;j;0;1 ¼ minðfTðd−1Þ

i;j;0;1;T
ðd−cÞ
i;j;0;1gÞ;

EQ-TARGET;temp:intralink-;sec9;114;156TðdÞ
i;j;1;0 ¼ maxðfTðd−1Þ

i;j;1;0;T
ðd−cÞ
i;j;1;0gÞ;

EQ-TARGET;temp:intralink-;sec9;114;133TðdÞ
i;j;1;1 ¼ maxðfTðd−1Þ

i;j;1;1;T
ðd−cÞ
i;j;1;1gÞ:

10 Appendix E: Activation Functions
Although nonlinear activation functions such as ReLU and sigmoid do affect the ERF by poten-
tially reducing its size when certain parameters are set to zero,35 they have no effect on the TRF as

Algorithm 1 TRF at layer d and pixel ði ; jÞ after upsampling

for m←i · s to i · s þ k do

for n←j · s to j · s þ k do

if TðdÞ
m;n is None then ▹ If no overlap (yet)

TðdÞ
m;n←Tðd−1Þ

i ;j ▹ Copy from previous layer

continue ▹ Go to next pixel

end if

if Tðd−1Þ
i ;j ;0;0 ≤ TðdÞ

m;n;0;0 then ▹ If there is overlap:

▹ Get smallest value

TðdÞ
m;n;0;0←Tðd−1Þ

i ;j ;0;0 ▹ Update top

end if

if Tðd−1Þ
i ;j ;0;1 ≤ TðdÞ

m;n;0;1 then ▹ Get smallest value

TðdÞ
m;n;0;1←Tðd−1Þ

i ;j ;0;1 ▹ Update left

end if

if Tðd−1Þ
i ;j ;1;0 ≥ TðdÞ

m;n;1;0 then ▹ Get largest value

TðdÞ
m;n;1;0←Tðd−1Þ

i ;j ;1;0 ▹ Update bottom

end if

if Tðd−1Þ
i ;j ;1;1 ≥ TðdÞ

m;n;1;1 then ▹ Get largest value

TðdÞ
m;n;1;1←Tðd−1Þ

i ;j ;1;1 ▹ Update right

end if

end for

end for
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these functions act element-wise on the previous layer. Therefore, in a layer d with an activation
function, it can be concluded that TðdÞ

i;j ¼ Tðd−1Þ
i;j .

11 Appendix F: Attention Gates
Attention gates, a key component of the attention U-Net architecture (illustrated in Fig. 1),
receive input features from a layer denoted as x 0 and a gating signal from a layer g.5 The inputs
are then subjected to 1 × 1 convolutions, followed by element-wise addition. At this point, the
TRF is equivalent to the maximum range of the TRF of either input as the TRF is not modified by
the 1 × 1 convolution. Next, a ReLU and sigmoid function are applied, which leave the TRF
unchanged, as described in Appendix E. Finally, element-wise multiplication is performed
on the output, which results in the TRF being equivalent to the maximum range of the TRF
of either input. As a result, the TRF sizes of a U-Net and attention U-Net with the same depth
and convolution kernel sizes are equivalent.

Therefore, similar to concatenations, the TRF of an attention gate a is the maximal range of
the TRF from its input features of layer x 0 and the gating signal of layer g:

EQ-TARGET;temp:intralink-;sec11;117;547TðaÞ
i;j;0;0 ¼ minðfTðx 0Þ

i;j;0;0;T
ðgÞ
i;j;0;0gÞ;

EQ-TARGET;temp:intralink-;sec11;117;508TðaÞ
i;j;0;1 ¼ minðfTðx 0Þ

i;j;0;1;T
ðgÞ
i;j;0;1gÞ;

EQ-TARGET;temp:intralink-;sec11;117;485TðaÞ
i;j;1;0 ¼ maxðfTðx 0Þ

i;j;1;0;T
ðgÞ
i;j;1;0gÞ;

EQ-TARGET;temp:intralink-;sec11;117;463TðaÞ
i;j;1;1 ¼ maxðfTðx 0Þ

i;j;1;1;T
ðgÞ
i;j;1;1gÞ:
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