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Abstract. A transverse magnetic field in graphene, together with the high speed of Dirac elec-
trons moving with Fermi velocity, gives rise to a set of collective modes, viz., kinetic magneto-
plasmonic modes, two-dimensional equivalent of Bernstein modes, with frequencies in between
the harmonics of electron cyclotron frequency. We develop a Vlasov theory of these modes in
a moderate magnetic field, including finite gyroradius effects, and study their excitation by laser
through linear mode conversion, facilitated by grating or periodic ribbons. At kρ → 0 (where k is
the wave number and ρ is the gyroradius of electrons), the magnetoplasmonic modes have
frequencies near the harmonics of electron cyclotron frequency. The frequencies rise with wave
number, attain maxima in the vicinity of the next cyclotron harmonic, and then fall off. In high-
mobility graphene, with ribbons or grating of appropriate ripple wave number, a normally
impinged laser coverts a significant fraction of its power into magnetoplasmons, reducing the
laser transmissivity as observed in experiments. © The Authors. Published by SPIE under a Creative
Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JNP.11.036015]
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1 Introduction

One important property of graphene1–8 is that all its Dirac electrons, irrespective of their energy,
have the same speed; vF ¼ 108 cm∕s as energy versus momentum relation is linear. When a
transverse magnetic field is applied, the electrons are localized in circular orbits and graphene
supports a variety of manetoplasmonic modes. Roldan et al.9,10 have developed a formalism of
these two-dimensional (2-D) Bernstein modes based on Dirac equation using random phase
approximation at intense magnetic fields, where Landau levels have energies comparable to
Fermi energy.

Basov et al.1 have discussed plasmons in graphene in the presence of a transverse magnetic
field in the limit of small Larmor radius. Yan et al.11,12 have detected bulk like and edge like
magnetoplasmon modes in graphene discs. Crassee et al.13 have observed terahertz magneto-
plasmons in graphene, mounted on substrate terrace or wrinkles, through a sharp dip in the trans-
mission coefficient of normally impinged radiation. It is believed that at the dip frequency, laser
undergoes linear mode conversion into magnetoplasmons. They have also observed Faraday
rotation (FR) of an optical wave passing through single layer graphene. Martinez and Jalil14

have developed quantum formalism of FR. In the limit of ℏωc ≪ εF (where ωc is the electron
cyclotron frequency, εF is the Fermi energy and ℏ is the reduced Planck’s constant), the effect of
Landau quantization is unimportant.

Theoretical studies on linear mode conversion of laser into surface plasmons are largely lim-
ited to unmagnetized case. Mikhailov15 has developed a formal analytical theory of laser mode
coupling to a plasmonic mode in an unmagnetized 2-D structure. Lee and Degertekin16 have
developed a coupled wave analysis of multilayered grating structures, but the results are obtained

*Address all correspondence to: Vipin K. Tripathi, E-mail: tripathivipin@yahoo.co.in
†Permanent address: Indian Institute of Technology Delhi, Physics Department, New Delhi, India.

Journal of Nanophotonics 036015-1 Jul–Sep 2017 • Vol. 11(3)

http://dx.doi.org/10.1117/1.JNP.11.036015
http://dx.doi.org/10.1117/1.JNP.11.036015
http://dx.doi.org/10.1117/1.JNP.11.036015
http://dx.doi.org/10.1117/1.JNP.11.036015
http://dx.doi.org/10.1117/1.JNP.11.036015
mailto:tripathivipin@yahoo.co.in
mailto:tripathivipin@yahoo.co.in
mailto:tripathivipin@yahoo.co.in


numerically for reflected diffraction efficiency. Gao et al.17 have carried numerical simulations of
linear mode conversion.

In this paper, we develop Vlasov formalism of magnetoplasmons in graphene mounted on a
dielectric placed in a transverse static magnetic field and study their excitation via linear mode
conversion. Our treatment is restricted to moderate magnetic fields such that the Landau level
energy separation is smaller than Fermi energy. We find that the finite gyroradius effects give rise
to multiple magnetoplasmonic Bernstein modes, similar to the ones predicted by Roldan et al. at
intense magnetic fields. A suitable grating built in the dielectric substrate or an areal density
ripple, facilitates linear mode conversion. The grating creates a large wave number Fourier com-
ponent of the laser field that creates an electron density perturbation, driving the plasmonic wave.
Finer grating would generate Bernstein modes. One may mention that though the electron
dynamics in graphene is strongly correlated and one normally uses Dirac theory to deduce optical
conductivity, Boltzmann’s equation reasonably describes transport properties.2,18 Furthermore,
we may add that graphene plasmons can also be excited by electron beams.19,20 Batrakov and
Maksimenkov20 have studied theoretically the excitation of terahertz surface wave over a system
of unmagnetized graphene layers by a nonrelativistic electron beam. They obtain spatial growth
rate of the order of 0.2 cm−1 at 30 THz in eight layered graphene, using a 10-keVelectron beam.
The frequency of the wave can be tuned by beam energy as well as by sheet separation and doping.

In Sec. 2, we study magnetoplasmonic modes of graphene in a transverse magnetic field
including finite gyroradius effects. In Sec. 3, we study the linear mode conversion of radiation
into magnetoplasmons in graphene with periodic ribbons. In Sec. 4, we study the mode con-
version by a grating. In Sec. 5, we discuss the results.

2 Magnetoplasmons

Consider a graphene film mounted on a dielectric of relative permittivity εg (cf., Fig. 1). There
exists a transverse static magnetic field Bsx̂. The graphene is characterized by free electrons of
areal density N0

0, energy-momentum relation ε ¼ vFp, velocity ~ν ¼ ∂ε∕∂~p ¼ vF ~p∕p, and 2-D
equilibrium distribution function

EQ-TARGET;temp:intralink-;e001;116;184f00 ¼
1∕ð2π2ℏ2Þ
eðε−εFÞ∕T þ 1

; (1)

where εF is the Fermi energy, νF is the Fermi velocity (≃108 cm∕s), T is the temperature in
energy units, ℏ is the reduced Planck’s constant. At a low temperature to which we confine
here, εF∕T ≫ 1, N0

0 ¼ 2π∫ ∞
0 f

0
0pdp ¼ ε2F∕2πℏ2ν2F.

We perturb the equilibrium by a space charge mode of potential

EQ-TARGET;temp:intralink-;e002;116;92ϕ ¼ Ae−kzxe−iðωt−kzzÞ for x > 0; ϕ ¼ Aekzxe−iðωt−kzzÞ for x < 0; (2)

(a) (b)

Fig. 1 (a) Schematic of graphene mounted on a dielectric slab. A transverse static magnetic field
~BS is applied along x̂ . Magnetoplasmonic mode propagates along ẑ while its amplitude falls off
with jx j. (b) Graphene is embedded with periodic ribbons. A laser is normally impinged on
graphene.
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in compliance with the Poisson’s equation ∇2ϕ ¼ 0 (valid everywhere except in the graphene
layer) and the continuity of ϕ at x ¼ 0. To incorporate the effect of graphene layer, we write the
2-D Vlasov equation for free electrons

EQ-TARGET;temp:intralink-;e003;116;699

∂f
∂t

þ ~v:∇f − eð~Eþ ~v × ~BÞ: ∂f
∂~p

¼ 0; (3)

where −e is the electron charge and ~E, ~B are the electric and magnetic fields. In the presence of
the space charge mode, we write f ¼ f00 þ fLω and linearize the Vlasov equation

EQ-TARGET;temp:intralink-;sec2;116;632

∂fLω
∂t

þ ~v:∇fLω − e~v × ~Bs:
∂fLω
∂~p

≡
dfLω
dt

¼ −e∇ϕ:
∂f00
∂~p

;

to obtain the linear perturbation fLω

EQ-TARGET;temp:intralink-;e004;116;575fLω ¼ −ieA
1

p
∂f00
∂p

Z
t

−∞
~k:~p 0e−iðωt 0−kzz 0Þdt 0; (4)

where z 0, ~p 0 refer to position and momentum of electron at time t 0 and the integration is to be
carried over the unperturbed trajectory of electron in the static magnetic field, governed by the
equation of motion

EQ-TARGET;temp:intralink-;e005;116;494

d~p 0

dt 0
¼ −e~v 0 × ~Bs ¼ −

evF
p

~p 0 × ~Bs: (5)

Under the conditions that at t 0 ¼ t, electron has position and momentum y 0 ¼ y, z 0 ¼ z,
p 0
z ¼ pz ¼ p cos θ, p 0

y ¼ py ¼ −p sin θ (where θ is the gyrophase angle), Eq. (5) gives
EQ-TARGET;temp:intralink-;e006;116;426

p 0
z ¼ p cos½ωcðt 0 − tÞ þ θ�; p 0

y ¼ −p sin½ωcðt 0 − tÞ þ θ�;
z 0 ¼ zþ vF

ωc
fsin½ωcðt 0 − tÞ þ θ� − sin θg;

y 0 ¼ yþ vF
ωc

fcos½ωcðt 0 − tÞ þ θ� − cos θg; (6)

where ωc ¼ eBsvF∕p. Using Eq. (6) and employing the Bessel function identity,
eiα sin θ ¼ P

lJlðαÞeilθ, we obtain from Eq. (4)

EQ-TARGET;temp:intralink-;e007;116;318fLω ¼ eϕ
vF

∂f00
∂p

X
l

X
l 0

lωc

ω − lωc
Jl

�
kzvF
ωc

�
Jl 0

�
kzvF
ωc

�
eiðl−l 0Þθ; (7)

leading to areal density and velocity perturbations

EQ-TARGET;temp:intralink-;e008;116;257NL
ω ¼

Z
∞

0

Z
2π

0

fLωdθpdp ¼ χeε0
e

kzϕ; (8)

EQ-TARGET;temp:intralink-;e009;116;219vzω;q ¼
1

N0
0

Z
∞

0

Z
2π

0

vzfLωdθpdp ¼ −
eϕω

m � v2Fkz
S; (9)

EQ-TARGET;temp:intralink-;e010;116;180χe ¼ −
N0

0e
2

kzm � ε0v2F
S; S ¼ 4

X
l

l2ω2
cJ2l

�
kzvF
ωc

�

ω2 − l2ω2
c

; (10)

where ωc ¼ eBs∕m�, m� ¼ εF∕v2F, χe is the electron susceptibility.
The jump condition on the normal component of displacement vector at x ¼ 0

EQ-TARGET;temp:intralink-;e011;116;99

∂ϕ
∂x

�
0þ

− εg
∂ϕ
∂x

�
0−

¼ e
ε0

NL
ω (11)
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on using NL
ω from Eq. (8) gives the dispersion relation for magnetoplasmons

EQ-TARGET;temp:intralink-;e012;116;7231þ εg þ χe ¼ 0; or 1þ εg ¼
4N0

0e
2

m � ε0kzv2F
X
l

l2ω2
cJ2l

�
kzvF
ωc

�
ω2 − l2ω2

c
: (12)

This equation for one wave number offers many values of frequency, each corresponding to a
magnetoplasmonic mode. The frequency of the l’th plasmonic mode lies between lωc and
ðlþ 1Þωc, where l ≥ 1. There is no mode at ω < ωc. For the first mode at long wavelengths,
kzvF∕ωc ≪ 1 (small gyroradius limit) only l ¼ 1, −1 terms are important and Eq. (12) gives

EQ-TARGET;temp:intralink-;e013;116;621ω2 ¼ ω2
c þ

N0
0e

2kz
m � ε0ð1þ εgÞ

: (13)

This is equivalent of an upper hybrid wave in a plasma.1 For ωc ¼ 0, Eq. (14) reduces to the
usual unmagnetized plasmon dispersion relation [cf. Eq. (18), Ref. 21], where frequency scales
as k1∕2z and ðN0

0Þ1∕4.
We have solved the dispersion relation, Eq. (12), numerically for the following parameters:

εg ¼ 3, G ≡ N0
0e

2∕m � ε0vFωc ¼ 22 (corresponding to N0
0 ¼ 1011 cm−2, Bs ¼ 1 Tesla or any

multiple of this areal density when the magnetic field is reduced by the same factor, keeping
N0

0∕Bs constant). In Fig. 2, we have plotted the normalized frequency as a function of normalized
wavenumber for four magnetoplasmonic modes. At kz → 0, the modes have frequencies near the
harmonics of cyclotron frequency. As kzvF∕ωc rises, the frequencies rise. For the first mode, the
frequency rises to a maximum of ω ¼ 1.7ωc at kzvF∕ωc ≈ 1 and then declines, asymptotically to
ωc at large kzvF∕ωc. For the second mode, ω rises from 2ωc at kz ¼ 0 to 2.7ωc at kzvF∕ωc ≈ 1.8

and then falls off. For the third mode, ω rises from 3ωc, initially very gradually and then faster,
attains a maximum ω ¼ 3.9ωc at kzvF∕ωc ≈ 2.5 and then falls off. For the fourth plasmonic
mode, maximum ω ¼ 4.9ωc occurs at kzvF∕ωc ≈ 3.1. In Fig. 3, we have plotted the dispersion
curves for G ¼ 110 (corresponding to N0

0 ¼ 1012 cm−2, Bs ¼ 2 Tesla). At this higher N0
0∕Bs

ratio, the mode frequencies rise more rapidly with kzvF∕ωc and attain maximum values closer to
the next harmonic. At kzvF∕ωc ≫ l, the l’th harmonic Bernstein mode has

EQ-TARGET;temp:intralink-;e014;116;371ω ≈ lωc

�
1þ

2N0
0e

2J2l
�
kzvF
ωc

�
m � ε0kzv2Fð1þ εgÞ

�
: (14)

3 Mode Conversion in Graphene Ribbons

We introduce a ribbon structure on graphene, effectively making the areal electron density to
have a ripple. The total electron density is thus

EQ-TARGET;temp:intralink-;e015;116;261N0
0T ¼ N0

0 þ Nq; Nq ¼ Nq0eiqz: (15)

Fig. 2 Normalized frequency versus normalized wave number for magnetoplasmonic modes,
originating at integer multiples of electron cyclotron frequency in graphene mounted on dielectric.
The parameters are G ¼ N0

0e
2∕m � ε0υFωc ¼ 22 (N0

0 ¼ 1011 cm−2, Bs ¼ 1 Tesla), εg ¼ 3.
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Practically ribbon structures are step wise periodic, e.g., N0
0T ¼ N0

0 þ δN for nλ < z < nλþ a
and N0

0T ¼ N0
0 for nλþ a < z < ðnþ 1Þλ, where n is an integer, a is the width of a ribbon, and λ

is the spatial periodicity. On carrying out Fourier series expansion of areal density in spatial
harmonics of wave number q ¼ 2π∕λ, one obtains the amplitude of the first harmonic
Nq0 ¼ ð2∕πÞN1 sinðqa∕2Þ. Higher harmonics have diminishingly smaller amplitudes.

A laser is normally incident on graphene from top

EQ-TARGET;temp:intralink-;e016;116;469

~E0 ¼ ẑA0e−iðωtþωx∕cÞ; ~B0 ¼ ŷðA0∕cÞe−iðωtþωx∕cÞ: (16)

We choose q such that it equals the magnetoplasmon wave number kz at frequency ω [cf.,
Eq. (12)]; q ≫ ω∕c. The reflected and transmitted fields are

EQ-TARGET;temp:intralink-;e017;116;411

~E0R ¼ ẑA0Re−iðωt−ωx∕cÞ;

~B0R ¼ −ŷðA0R∕cÞe−iðωt−ωx∕cÞ;
~E0T ¼ ẑA0Te−iðωtþωηgx∕cÞ;

~B0T ¼ ŷðA0Tηg∕cÞe−iðωtþωηgx∕cÞ; (17)

where ηg ¼ ε1∕2g and we have presumed that the FR of polarization is small. The laser gives rise
to perturbation in the electron distribution function fL0 , which on solving the linearized Vlasov
equation can be written as

EQ-TARGET;temp:intralink-;e018;116;284fL0 ¼ eA0T
1

p
∂f00
∂p

Z
t

−∞
p 0
ze−iωt

0
dt 0 ¼ ieE0z

2

∂f00
∂p

�
eiθ

ω − ωc
þ e−iθ

ωþ ωc

�
; (18)

giving the drift velocity and surface current density

EQ-TARGET;temp:intralink-;e019;116;227v0z ¼
1

N0
0

Z
∞

0

Z
2π

0

vzfL0 dθpdp ¼ −
ieE0zω

m � ðω2 − ω2
cÞ
; KL

0z ¼
iN0

0e
2E0zω

m � ðω2 − ω2
cÞ
: (19)

Since the laser wave vector has no component in the plane of electron gyration, the Larmor
radius effects do not appear in electron response. The oscillatory velocity v0z beats with the
density ripple to produce an areal density perturbation, which on solving the equation of con-
tinuity, ∂NNL

ω;q∕∂tþ ð1∕2Þ∂∕∂zðNqv0zÞ ¼ 0, turns out to be

EQ-TARGET;temp:intralink-;e020;116;138NNL
ω;q ¼

q
2ω

Nqv0z: (20)

Here, we have used the complex number identity ReA:ReB ¼ ð1∕2ÞRe½A:B þ A:B��, where Re
stands for the real part of the quantity and * denotes the complex conjugate. This density per-
turbation acts as driver for the plasmonic wave. Let the potential of the plasmonic wave be ϕ,

Fig. 3 Normalized frequency versus normalized wave number for magnetoplasmonic modes,
originating at harmonics of cyclotron frequency in graphene for G ¼ 110 (N0

0 ¼ 1012 cm−2,
Bs ¼ 2 Tesla), εg ¼ 3.

Liu and Tripathi: Kinetic magnetoplasmons in graphene and their excitation by laser

Journal of Nanophotonics 036015-5 Jul–Sep 2017 • Vol. 11(3)



given by Eq. (2). It creates linear density and velocity perturbations NL
ω, ~vω;q given by Eqs. (8)

and (9).
Using NL

ω;q, NNL
ω;q in the jump condition, Eq. (11) with NL

ω replaced by NL
ω þ NNL

ω;q, one
obtains

EQ-TARGET;temp:intralink-;e021;116;687DA ¼ i
Nq0e2A0T

2m � ε0ðω2 − ω2
cÞ
; D ¼ 1þ εg þ χe: (21)

The oscillatory velocity due to the magnetoplasmonic wave vzω;q beats with the density ripple
to produce a surface current density

EQ-TARGET;temp:intralink-;e022;116;616

~KNL
0 ¼ −

1

2
N�

qe~vω;q; (22)

which acts as a source to influence the optical wave. Using this in the jump condition on the
magnetic field

EQ-TARGET;temp:intralink-;e023;116;551B0yj0þ − B0yj0− ¼ μ0ðKL
0z þ KNL

0z Þ; (23)

and employing the continuity of E0z at x ¼ 0 one obtains

EQ-TARGET;temp:intralink-;e024;116;512A0 þ A0R ¼ A0T; (24)

EQ-TARGET;temp:intralink-;e025;116;481A0 − A0R ¼ ηgA0T þ i
N0

0e
2ω

m � ε0cðω2 − ω2
cÞ
A0T þ N�

q0e
2ωS

2m � ε0cqv2F
A: (25)

Equations (23), (25), and (26) yield the amplitude of the transmitted laser field

EQ-TARGET;temp:intralink-;e026;116;427A0T ¼ 2A0

1þ ηg þ i
N0

0
e2ω

m�ε0cðω2−ω2
cÞ þ i

�
N�

q0e
2

m�ε0

�
2

ωS
4cqv2FDðω2−ω2

cÞ

: (26)

The third term in the denominator corresponds to optical conductivity of graphene at the laser
frequency. At frequencies one percent away from the cyclotron resonance, ðω − ωc ≥ 0.01 ωÞ
this term is insignificant as compared to the first two terms. At cyclotron resonance, it is masked
by collisions. However, around that point, the FR of polarization is significant and present for-
malism is not applicable.

The last term in the denominator of Eq. (26) corresponds to mode coupling of laser to mag-
netoplasmons. At exact phase matching [i.e., when q equals the wave number of the plasmonic
wave given by Eq. (12)], D vanishes and the last term in the denominator of Eq. (26) overflows.
However, in the present formalism, we have neglected damping of the plasmonic mode that may
arise due to collisions. The damping of plasmons would arrest the resonance. As a phenomeno-
logical model of collisional effects, the right-hand side of the Vlasov equation may be replaced
by −νðf − f00Þ, where ν is the collision frequency. In the case of the upper hybrid mode, this
leads to replacing, in the dispersion relation, ω2 by ωðωþ iνÞ leading to damping rate ωi ¼ ν∕2.
For the Bernstein modes, we may replace, in the expression for susceptibility or S, ω2 by
ωðωþ iνÞ, giving an imaginary part to D, D ¼ Dr þ iDi. At resonance, Dr vanishes and
Di can be written as

EQ-TARGET;temp:intralink-;sec3;116;183Di ≈
4N0

0e
2νω

m � ε0kzv2F
X
l

l2ω2
cJ2l

�
kzvF
ωc

�
ðω2 − l2ω2

cÞ2
:

From Eqs. (21) and (26), one may write the normalized plasmonic field amplitude and laser
intensity transmission coefficient at the mode conversion point as
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EQ-TARGET;temp:intralink-;e027;116;520T ¼
����A0T

A0

����
2

ηg ¼
4ηg

½1þ ηg þ ψ2�2 þ
�

N0
0
e2ω

m�ε0cðω2−ω2
cÞ

�
2
; (27)

EQ-TARGET;temp:intralink-;e028;116;458

���� qAA0

���� ¼
���� Nq0e2q

m � ε0Diðω2 − ω2
cÞ
����
�
T
ηg

�
1∕2

; ψ ¼ ðNq0∕N0
0Þ2G2Sω∕qc

4Diðω2∕ω2
c − 1Þ ; (28)

whereG ≡ N0
0e

2∕m � ε0vFωc. One may note that the amplitude of the plasmon electric field jqAj
may far exceed the laser field due to strong localization of plasmons. The fractional laser power
going into the magnetoplasmonic mode is

EQ-TARGET;temp:intralink-;e029;116;393η ¼ 1 − T −
����A0R

A0

����
2

¼ 4ψ

ð1þ ηg þ ψÞ2 : (29)

We have carried numerical calculations for the following parameters Nq0∕N0
0m ¼ 0.5, εg ¼ 3,

G ¼ 22, qvF∕ωc ¼ 1, ν∕ωc ¼ 2 × 10−3 corresponding to N0
0m ¼ 1011 cm−2, m� ¼ 10−32 kg,

q ¼ 1.6 × 105 cm−1, εF ¼ 50 meV, Bs ¼ 1 Tesla, ωc ¼ 1.6 × 1013 rad∕s. We have plotted
in Fig. 4 the intensity transmission coefficient of laser through graphene as a function of nor-
malized laser frequency. At the plasmon resonance, corresponding to the excitation of the first
magnetoplasmonic mode of frequency ω ¼ 1.7ωc, the transmission coefficient falls to 42%. At
the second plasmonic resonance ω ¼ 2.7ωc corresponding to the excitation of the second plas-
monic mode, the transmission coefficient is 52%. At the third plasmon resonance, it is 60%.

4 Mode Conversion in Dielectric Grating

Consider a dielectric grating of thickness d sandwiched between graphene and the substrate. The
relative permittivity of the grating region is

EQ-TARGET;temp:intralink-;e030;116;184εr ¼ εg0 þ εq; εq ¼ εq0e1qz: (30)

A laser is normally impinged on graphene with incident, reflected, and transmitted fields
given by Eqs. (16) and (17). The driven plasmonic wave has potential given by Eq. (2). In
the grating region, the Poisson equation can be written as

EQ-TARGET;temp:intralink-;e031;116;121−ε0εg0∇2ϕ ¼ ρNL; ρNL ¼ −
i
2
qε0εqE0z: (31)

ρNLd can be treated as effective surface charge density to excite the plasmonic mode. Equivalent
areal electron density at ω, q is

Fig. 4 Intensity transmission coefficient of laser normally impinged on graphene (with periodic
ribbons of wave numbers q ¼ ωc∕υF ) as a function of normalized laser frequency. The parameters
are: G ¼ 22 (N0

0 ¼ 1011 cm−2, Bs ¼ 1 Tesla), εg ¼ 3. Dips at A, B, C refer to excitations of first,
second, and third kinetic (Bernstein) magnetoplasmonic modes.
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EQ-TARGET;temp:intralink-;e032;116;735NNL
ω;q ¼ −

d
e
ρNL ¼ iqd

2e
ε0εqE0z: (32)

From the Maxwell’s equation ∇ × ~B ¼ μ0ð~J þ ∂ ~D∕∂tÞ, one may see that the last term, as a beat
of the plasmonic wave field with the permittivity ripple, gives an effective surface current density
at frequency ω and wave number kz ¼ 0

EQ-TARGET;temp:intralink-;e033;116;667KNL
0z ¼ −iωε0

ε�q
2
ð−iqϕÞd: (33)

With these expressions for NNL
ω;q and KNL

0z , Eqs. (11) and (23) lead to

EQ-TARGET;temp:intralink-;sec4;116;613DA ¼ −i
dεq
2

ε0A0T; A0 − A0R ¼ ηgA0T þ i
N0

0e
2ω

m � ε0cðω2 − ω2
cÞ
A0T −

ωε�qqd
2c

A;

giving

EQ-TARGET;temp:intralink-;e034;116;556A0T ¼ 2A0

1þ ηg þ i
N0

0 me
2ω

m�ε0cðω2−ω2
cÞ þ i jεqj

2ωqd2

4cD

: (34)

The transmission coefficient is given by Eq. (27) with ψ given by

EQ-TARGET;temp:intralink-;sec4;116;497ψ ¼ jεqj2ωqd2
4cωi∂D∕∂ω

:

The treatment is valid for εq0∕εg0 < 1, qd < 1. The effect of the dielectric grating is very similar
to that of the density ripple.

5 Discussion

A transverse magnetic field opens up a variety of magnetoplasmonic modes in graphene. The
lowest frequency mode, at wavelengths longer than the electron gyroradius, is sort of an upper
hybrid mode; however, its frequency variation with wave number and electron density is very
different from plasmas. Other modes have frequencies close to harmonics of cyclotron fre-
quency. At shorter wavelengths, kinetic effects become important and mode frequencies rise
with wave number, acquire maxima, and then fall off gradually. This behavior is similar to
the one reported by Roldan et al. at high magnetic fields when quantum effects are important.

The magnetoplasmonic modes can be excited by laser via linear mode conversion, when the
graphene layer is embedded with ribbons or a dielectric grating is employed between the sub-
strate and graphene. For a given ripple wave number, the magnetic field helps tuning the process
of laser mode conversion. Crassee et al.13 carried experiments with wrinkled surfaces and p-type
graphene. They observed a dip in the laser transmission coefficient of magnitude comparable to
what we get in Fig. 4. However, their variation of transmission coefficient with magnetic field
does not reveal the discrete character as one would expect from mode conversion to Bernstein
modes. The experiments need to minimize collisional damping of the modes.

The wide range of magnetoplasmonic modes offer new opportunities for active plasmonic
devices at terahertz frequencies. One may envisage stimulated excitation of these modes by elec-
tron hole recombination under conditions of population inversion. Their frequencies can be
tuned by magnetic field. The application of a surface ripple would convert the plasmonic
modes into terahertz radiation emission.

The present treatment of mode conversion is limited to a low depth of amplitude modulation
of ribbons, i.e., N1∕Nq0 < 1∕2 otherwise, a large number of spatial harmonics of plasmons are
excited.22
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