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Abstract. The relative permittivity dyadic of a dielectric structurally chiral material (SCM)
varies helicoidally along a fixed direction; in consequence, the SCM exhibits the circular
Bragg phenomenon, which is the circular-polarization-selective reflection of light. The introduc-
tion of hyperbolicity in an SCM—by making either one or two but not all three eigenvalues of
the relative permittivity dyadic acquire negative real parts—does not eliminate the circular Bragg
phenomenon, but significantly alters the regime for its exhibition. Significantly wider circular-
polarization-sensitive stopbands may be exhibited by hyperbolic SCMs in comparison to non-
hyperbolic SCMs. Physical vapor deposition techniques appear to be suitable to fabricate hyper-
bolic SCMs. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JNP.8.083998]
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1 Introduction

Chiral liquid crystals1,2 and chiral sculptured thin films3,4 are dielectric examples of structurally
chiral materials (SCMs)—which are anisotropic and helicoidally nonhomogeneous along a fixed
axis. If that fixed axis is parallel to the z-axis of a Cartesian coordinate system with unit vectors
ûx, ûy, and ûz, the frequency-domain constitutive relations of dielectric SCMs may be set down
as

DðrÞ ¼ ε0 ̳ε rðzÞ • EðrÞ
¼ ε0 ̳SzðzÞ • ̳SyðχÞ • ðεaûzûz þ εbûxûx þ εcûyûyÞ • ̳STy ðχÞ • ̳STz ðzÞ • EðrÞ

BðrÞ ¼ μ0HðrÞ;

9=
;; (1)

where the superscript T denotes the transpose; μ0 and ε0 are the permeability and permittivity of
free space; the rotational nonhomogeneity is expressed through the dyadic

̳SzðzÞ ¼ ûzûz þ ðûxûx þ ûyûyÞ cos
�
hπz
Ω

�
þ ðûyûx − ûxûyÞ sin

�
hπz
Ω

�
; (2)

with 2Ω as the helical pitch and either h ¼ þ1 for structural right-handedness or h ¼ −1 for
structural left-handedness; the dyadic

̳SyðχÞ ¼ ðûxûx þ ûzûzÞ cos χ þ ðûzûx − ûxûzÞ sin χ þ ûyûy (3)
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containing χ ∈ ½0 deg; 90 deg� as the angle of rise of the helical morphology; and εa, εb, and εc
are the three z-independent eigenvalues of the relative permittivity dyadic ̳ε rðzÞ. Typically, dis-
sipation is small enough to be ignored and εa;b;c > 0; hence, ̳ε rðzÞ is positive definite.5

Figure 1 shows a cross-sectional image of a chiral sculptured thin film. For SCMs of this
kind, the adequacy of the continuum constitutive equations (1) at sufficiently large free-space
wavelengths has been established experimentally.6,7 A nanoscopic-to-continuum model based on
the Bruggeman homogenization formalism has also been developed.8

The optical signature of an SCM is a circular-polarization-sensitive stopband. The center
wavelength and the width of this stopband depend on the direction of the wavevector of an
incident circularly polarized plane wave. Most significantly, the stopband is exhibited when
the incident plane wave’s handedness is the same as the structural handedness of the SCM,
but not otherwise. The stopband is best seen when the thickness of the SCM exceeds a certain
number of helical pitches.6,9–11 When dissipation is small enough to be ignored, ̳ε rðzÞ is positive
definite, and the variations of εa;b;c with respect to the free-space wavelength λ0 are also small
enough to be ignored, the circular-polarization-sensitive stopband can be delineated as4

λ0
2Ω

∈

8><
>:

h ffiffiffiffi
εc

p
;

ffiffiffiffiffi
εd

p i
cos1∕2 θ; εc < εd;h ffiffiffiffiffi

εd
p

;
ffiffiffiffi
εc

p i
cos1∕2 θ; εc > εd;

(4)

where θ is the angle of incidence with respect to the z-axis and

εd ¼
εaεb

εa cos
2 χ þ εb sin

2 χ
: (5)

Provided that Re½εσ� ≫ jIm½εσ �j for all σ ∈ fa; b; cg, the estimates provided by Eq. (4) can be
used with εc replaced by jεcj and εd by jεdj. The exhibition of the circular-polarization-sensitive
stopband is called the circular Bragg phenomenon.

During the last 10 years, attention has been paid to dielectric-magnetic materials with indefi-
nite permeability and permittivity dyadics.12,13 Although the practical realization of such mate-
rials remains a matter of conjecture, there is no doubt of the existence in nature of dielectric
materials the real parts of whose permittivity dyadics are indefinite.5 Graphite,14 triglycine sul-
fate,15,16 sapphire,17 and bismuth16 are examples. Metal nanowire arrays18 and periodic metal/
dielectric multilayers19 provide examples of manufactured anisotropic dielectric materials whose
effective permittivity dyadics have indefinite real parts.20 Periodic graphene/dielectric multi-
layers have also been proffered as candidates.21 Although dissipation due to conduction in metals
and graphene has been predicted to be offsetable by using dielectric materials with optical
gain,22 the effective-medium approximations underlying such predictions must be handled
with some care.23

Fig. 1 Cross-sectional scanning electron micrograph of a chiral sculptured thin film made by
thermal evaporation of a chalcogenide glass.
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Experience with ambichiral materials24,25 indicates that hyperbolic, dielectric SCMs ought to
be practically realizable as nanoengineered periodic multilayers. Avariety of physical deposition
techniques—such as thermal evaporation, electron-beam evaporation, and sputtering26—can be
used to deposit alternating layers of a metal and a dielectric material on a suitably rotating planar
substrate.4 In these fabrication techniques, collimated vapor fluxes of both materials must be
directed veryobliquely toward the substrate in order to engender biaxiality. Furthermore, the nomi-
nal thickness of eachmetal layermust be a small fraction of the nominal thickness of each dielectric
layer,23 and all layers must be electrically thin.27,28 Equation (1) would still apply, although the use
of the nanoscopic-to-continuummodel8 developed for chiral sculptured thin filmsmay be perilous
if the metal volume fraction is not sufficiently small.29 Anyhow, either one or two of ReðεaÞ,
ReðεbÞ, and ReðεcÞ could be negative, with the remainder being positive. Then, with dissipation
assumed to be sufficiently small, the estimates provided byEq. (4)would become dubious. Indeed,
the question arises: will a hyperbolic SCM exhibit the circular Bragg phenomenon?

In order to answer this question, a one-point boundary-value problem was formulated and
solved. In this problem, the half space z < 0 is vacuous while the half space z > 0 is occupied by
the hyperbolic SCM, and a circularly polarized plane wave is obliquely incident on the interface
z ¼ 0 from its vacuous side. As it is known that the circular Bragg phenomenon develops as the
thickness of an SCM increases,4,10 an SCM half space should conceptually deliver the best devel-
oped circular Bragg phenomenon. The underlying boundary-value problem is introduced briefly
in Sec. 2, the detailed procedure to solve it being available elsewhere.30 Numerical results
are provided and discussed in Sec. 3. An expð−iωtÞ dependence on time t is implicit, with

Fig. 2 Reflectances RLL, RRL, RRR, and RLR as functions of λ0∕2Ω and θ, when εa ¼
3.26ð1þ 0.001iÞ, εb ¼ 4.46ð1þ 0.001iÞ, εc ¼ 3.78ð1þ 0.001iÞ, χ ¼ 60 deg, and h ¼ 1. The
color coding employs the spectrum of the rainbow with the deepest violet denoting 0 and the deep-
est red denoting 1.0.
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ω denoting the angular frequency and i ¼ ffiffiffiffiffiffi
−1

p
. The free-space wavenumber is denoted

by k0 ¼ ω
ffiffiffiffiffiffiffiffiffi
ε0μ0

p ¼ 2π∕λ0.

2 Boundary-Value Problem

Let the half space z < 0 be vacuous, while the half space z > 0 be occupied by an SCM described
by Eqs. (1)–(3). An arbitrarily polarized plane wave is obliquely incident on the interface z ¼ 0

from the vacuous half space. Without significant loss of generality, let the wave vector of this
plane wave lie wholly in the xz-plane and make an angle θ ∈ ½0 deg; 90 degÞwith respect to the
þz-axis. Accordingly, the electric field phasor of the incident plane wave may be written as

Einc ¼
�
aL

iûy − pþffiffiffi
2

p − aR
iûy þ pþffiffiffi

2
p

�
exp½ik0ðx sin θ þ z cos θÞ�; z ≤ 0; (6)

where aL and aR are the known amplitudes of the left- and right-circularly polarized compo-
nents, respectively, and the vectors

p� ¼ ∓ûx cos θ þ ûz sin θ (7)

are of unit magnitude. The reflected plane wave’s electric field phasor is given by

Eref ¼
�
−rL

iûy − p−ffiffiffi
2

p þ rR
iûy þ p−ffiffiffi

2
p

�
exp½ik0ðx sin θ − z cos θÞ�; z ≤ 0; (8)

Fig. 3 Same as Fig. 2, except that εb ¼ 4.46ð−1þ 0.001iÞ.
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with unknown amplitudes rL and rR. The procedure to determine rL and rR in terms of aL and aR
is described in detail elsewhere.30

The reflection amplitudes are related to the incidence amplitudes by the four reflection coef-
ficients entering the 2 × 2 matrix in the following relation:

�
rL
rR

�
¼

�
rLL rLR
rRL rRR

��
aL
aR

�
: (9)

The copolarized reflectances of the SCM half space are denoted by RLL ¼ jrLLj2 and
RRR ¼ jrRRj2, and the cross-polarized ones by RLR ¼ jrLRj2 and RRL ¼ jrRLj2. The principle
of conservation of energy requires that RR ¼ RRR þ RLR ≤ 1 and RL ¼ RLL þ RRL ≤ 1.

3 Numerical Results and Discussion

Parametric calculations were made with the SCM assumed to be structurally right-handed
(h ¼ 1), with all three of εa;b;c chosen to have very small and positive imaginary parts (that
are indicative of weak dissipation). The reflectances RLL, RRL, RRR, and RLR were computed
as functions of the angle of incidence θ and either (i) the normalized wavelength λ0∕2Ω for fixed
angle of rise χ or (ii) χ for fixed λ0∕2Ω.

In order to set a baseline for discussion, Fig. 2 displays all four reflectances as functions of
the normalized wavelength λ0∕2Ω and the angle of incidence θ, when χ ¼ 60 deg and the SCM
is of the regular (i.e., nonhyperbolic) type: εa ¼ 3.26ð1þ 0.001iÞ, εb ¼ 4.46ð1þ 0.001iÞ, and

Fig. 4 Same as Fig. 2, except that εa ¼ 3.26ð−1þ 0.001iÞ, εc ¼ 3.78ð−1þ 0.001iÞ, and
χ ¼ 15 deg.
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εc ¼ 3.78ð1þ 0.001iÞ. A sigmoid ridge of high values of RRR is evident in this figure. The limits
provided in Eq. (4) with εσ replaced by jεσj, σ ∈ fa; b; cg, are satisfied by this ridge. For
θ∼<70 deg, RLL is negligible in that portion of the ðλ0∕2ΩÞ − θ plane which is occupied by
the high-RRR ridge; additionally, both cross-polarized reflectances are very small. The huge
excess of RRR over RLL accompanied by very small values of the two other reflectances is
the chief manifestation of the circular Bragg phenomenon.

When the sign of ReðεbÞ was altered from positive to negative, the SCM of Fig. 2 became
hyperbolic and the sigmoid high-RRR ridge of that figure disappeared. However, a search with
somewhat higher values of λ0∕2Ω soon revealed a portion of the ðλ0∕2ΩÞ − θ plane in which
(i) RRR exceeds RLL by a large margin and (ii) the excess of RR over RL is even greater, with RLL

very close to 0. In Fig. 3, circular-polarization-selective reflection is clearly evident for λ0∕2Ω ∈
½1.95; 2.4� and θ ∈ ½0 deg; 20 deg� as well as in the upper left neighborhood of that rectangular
zone, for the hyperbolic SCM.

Next, for the computation of the reflectances presented in Fig. 4 as functions of λ0∕2Ω and
θ, the following parameters were used: εa ¼ 3.26ð−1þ 0.001iÞ, εb ¼ 4.46ð1þ 0.001iÞ,
εc ¼ 3.78ð−1þ 0.001iÞ, and χ ¼ 15 deg. Thus, two of the three eigenvalues of ̳εrðzÞ now
have negative real parts. Circular-polarization-selective reflection with RLL almost equal to 0
is evident in Fig. 4 for λ0∕2Ω ∈ ½2; 2.2� and θ ∈ ½0 deg; 70 deg� as well as on the outskirts
of this rectangular zone in the ðλ0∕2ΩÞ − θ plane.

Fig. 5 Reflectances RLL, RRL, RRR, and RLR as functions of χ and θ, when εa ¼ 3.26ð1þ 0.001iÞ,
εb ¼ 4.46ð−1þ 0.001iÞ, εc ¼ 3.78ð1þ 0.001iÞ, λ0∕2Ω ¼ 1.918, and h ¼ 1. The color coding
employs the spectrum of the rainbow with the deepest violet denoting 0 and the deepest red denot-
ing 1.0. The thin white strips for θ < 20 deg and χ ≈ 40 deg indicate a failure of the computational
algorithm (Ref. 30).
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The circular-polarization-sensitive stopband for normal incidence can be identified as
1.87∼< ðλ0∕2ΩÞ∼<1.95 in Fig. 2, 1.95∼< ðλ0∕2ΩÞ∼<2.4 in Fig. 3, and 1.8∼< ðλ0∕2ΩÞ∼<2.3 in Fig. 4.
Thus, a significant conclusion from these three figures is that hyperbolicity tends to widen
the stopband. However, this conclusion may have to be modified when material dispersion
manifested through the λ0-dependences of εa;b;c is taken into account.

The exhibition of the circular Bragg phenomenon by a regular SCM for fixed values of
λ0∕2Ω and θ is delineated by Eq. (4). One just has to ensure the appropriate choices of εc
and εd, the correct choice of the latter parameter being determined by the correct choices of
εa, εb, and χ. If all three of the eigenvalues of ̳εrðzÞ are fixed as well, then an appropriate
value of sin χ must be found. But no physical value of χ may emerge. Therefore, the exhibition
of circular-polarization-selective reflection by hyperbolic SCMs was investigated in the χ − θ
plane for fixed values of εa, εb, εc, and λ0∕2Ω.

Figure 5 shows all four reflectances computed as functions of χ ∈ ½0 deg; 90 deg� and θ ∈
½0 deg; 90 degÞ, when εa ¼ 3.26ð1þ 0.001iÞ, εb ¼ 4.46ð−1þ0.001iÞ, εc ¼ 3.78ð1þ 0.001iÞ,
and λ0∕2Ω ¼ 1.918. Thus, only one of the three eigenvalues of ̳εrðzÞ has a negative real part. At
least four distinct zones of high values of RRR accompanied by almost zero values of RLL and
very low values of both cross-polarized reflectances can be identified in this figure.

Similar data computed for εa ¼ 3.26ð−1þ 0.001iÞ, εb ¼ 4.46ð1þ 0.001iÞ, and εc ¼
3.78ð−1þ 0.001iÞ are displayed in Fig. 6. Now, two of the three eigenvalues of ̳εrðzÞ have
negative real parts. Circular-polarization-selective reflection with RLL ≈ 0 and very low values
of RLR and RRR is evident for χ ∈ ½0 deg; 15 deg� and θ ∈ ½0 deg; 70 deg�.

Fig. 6 Same as Fig. 5, except εa ¼ 3.26ð−1þ 0.001iÞ, εb ¼ 4.46ð1þ 0.001iÞ, and εc ¼
3.78ð−1þ 0.001iÞ.
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To conclude, the concept of hyperbolic SCMs was introduced in this communication. The
hyperbolicity was found to significantly alter—but not eliminate—the exhibition of the circular
Bragg phenomenon, which has long been known to be the distinctive signature of nonhyper-
bolic SCMs such as cholesteric liquid crystals9 and chiral sculptured thin films.6 Although
practical realization of hyperbolic SCMs has yet to occur, physical vapor deposition offers
suitable techniques to fabricate these materials. Significantly wider circular-polarization-
sensitive stopbands may be exhibited by hyperbolic SCMs in comparison to their nonhyper-
bolic analogs.
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