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Remote sensing is an extremely active area of research that impacts global topics like agriculture,
disaster monitoring and response, defense and security, weather, and non-earth observations. The
technologies that power remote sensing—i.e., allow us to observe the universe—include hyper-
spectral imaging, synthetic aperture radar (SAR), electro-optical, thermal, light detection and
ranging (LiDAR), etc. However, while we have advanced optical tools to sense the universe,
we lack in computational sophistication to automatically transform this objective data to
human-centric decisions. Specifically, humans have been the architects to date of features, algo-
rithms (e.g., classifiers) and their fusion within and across sensors and platforms (e.g., satellites,
UAVs, etc.). In recent times, it has become clear that even the best experts are not always able to
decide what set of transformations (features, classifiers, etc.) is sufficient for a given problem.
The last two decades have represented an uprising against “hand-crafted solutions” in areas like
signal/image processing, computer vision, and machine learning. The most famous of these
revolts is deep learning, a resurrection of neural networks. The crux of this approach is that
machines are better than humans at tasks like those outlined above. This special section is cen-
tered on recent advancements in deep learning (and just feature learning in general) in the area of
remote sensing.

Deep learning has become the de facto for tasks like detection in computer vision on RGB
imagery. However, it has not yet made the same impact on remote sensing. In part, this is because
remote sensing has many unique challenges. For example, geospatial systems are plagued by
factors like lack of (spatial, spectral, and temporal) labeled training data, high (spatial, spectral,
and temporal) dimensionality, domain constraints (e.g., physics), and the need to integrate multi-
ple sources (humans, machines, and sensors), to name a few. Whereas we are excited about the
potential of deep learning for remote sensing, we are equally nervous about whether this tech-
nology can deliver. Furthermore, deep learning typically results in black-box solutions that give
us little to no insight into how they are working and why we should trust them. Regardless of its
fate, it is an analytics tool to help us better understand these sensors, platforms, and applications.

In this special section, we requested a combination of theory and applications papers on a
variety of topics in remote sensing to showcase what has been done, what is being done, and
what big questions remain and need to be tackled by the community. The special section encom-
passed twenty papers, which included one survey paper; three SAR papers; two papers on ocean
remote sensing; four papers on classification and labeling; two papers using multi-modal
processing; two papers utilizing spectral-spatial processing for hyperspectral image analysis;
three papers on object tracking and recognition; one paper studying how deep networks
need to be for remote sensing; one paper on domain adaptation; and one paper on feature extrac-
tion methods. These papers are discussed briefly below, where we highlight the main contribu-
tions and how certain challenges are overcome in the proposed methods.

A common theme encountered was the use of nonremote sensing pretrained networks and
transfer learning. Most articles used or extended convolutional neural networks (CNNs) and
were application oriented, with a few providing new deep learning models and modules. Most
papers exploited electro-optical data, but there were some SAR, hyperspectral, and multitemporal
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modalities. Many diverse methods were used to combat sparse training data: dilated convolutions,
which allowed more shallow networks but still provided large receptive fields; using multitemporal
data to augment training; and using an inception module with parallel 1 × 1 convolution layers.
Articles in this special section also highlighted the need for more labeled community benchmark
data sets—to train the networks but to also facilitate comparisons between methods and repro-
ducible research—and new theory is needed to fuse (and understand) single and multisensor data.

1 SAR Processing

In SAR processing, traditional results mostly utilize hand-crafted features for feature extraction.
The following papers utilized deep CNNs to extract higher-quality features for classification and
change detection in SAR imagery analysis. Amrani et al. in “Deep feature extraction and com-
bination for synthetic aperture radar target classification” utilized a pretrained VGG-S net that
was fine-tuned on MSTAR SAR data to extract features and a K-nearest neighbor algorithm was
used to classify the results. Liu et al. in “Change detection in multitemporal synthetic aperture
radar images using dual-channel convolutional neural network” utilized dual CNN channels to
extract deep features from SAR imagery for change detection. It is worth noting that their algo-
rithm required no preprocessing or presegmentation. Quach in “Convolutional networks for
vehicle track segmentation” overcame the problems of continuity and parallelism in detecting
vehicle tracks using current methods by applying small-sized dilated convolutional networks,
which exponentially increase the network’s receptive field size in a small number of layers.
Dilated convolution places spaces between the pixels.

2 Ocean Processing

The oceans cover roughly 71% of the Earth’s surface, making ocean remote sensing a very
important task. Yao et al. in “Ship detection in optical remote sensing images based on deep
convolutional neural networks” is a complicated problem due to the small size of ships and
interference from clouds, waves, etc. A deep CNN extracts features and a region proposal net-
work discriminates ships and provides accurate detection bounding boxes. Lima et al. in
“Application of deep convolutional neural networks for ocean front recognition” investigated
AlexNet, CaffeNet, GoogLeNet, and VGGNet and then developed a custom CNN with
fewer layers for this task. In addition to detecting ocean fronts, they also classified them
into weak and strong fronts (based on gradient intensity). The reduced model had the smallest
learning time and all networks achieved high results despite the small number of training
samples.

3 Classification and Labeling

Maskey et al. in “Deep learning for phenomena-based classification of Earth science images”
utilized AlexNet and fine-tuned it on remote sensing imagery in order to classify imagery based
on Earth science phenomena, such as dust, hurricane, smoke, etc. The CNN-based approach
provided superior results and demonstrated that transfer learning works from AlexNet trained
on the ImageNet database. Ha et al. in “Deep convolutional neural network for classifying
Fusarium wilt of radish from unmanned aerial vehicles” utilized unmanned aerial vehicles
(UAVs) to detect Fusarium wilt in radishes. The field are segmented into radish, ground and
mulch, then the deep learning system identifies infected radishes with much higher accuracies
than conventional methods. Sun et al. in “Semantic labeling of high-resolution aerial images
using an ensemble of fully convolutional networks” used a fully convolutional networks
(VGG and ResNet) were augmented with cross-scene learning and fused the results with a condi-
tional random field graph method. To handle the large size of aerial imagery, a split-and-merge
method was employed which split the image into tiles, and each tile creates a belief map, which
are then merged to form an overall belief map.

Maltezos et al. in “Deep convolutional neural networks for building extraction from orthoi-
mages and dense image matching point clouds” uses height information derived from the a dense
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image matching algorithm (which does not require LIDAR data or LIDAR/image co-registra-
tion) as additional inputs to the deep learning system to identify buildings. The system outper-
forms shallow methods that attempt LiDAR/image fusion.

4 Multimodal

Chen et al. in “Knowledge-guided golf course detection using a convolutional neural network
fine-tuned on temporally augmented data” use a knowledge-driven region proposal, a CNN
detector and knowledge-driven postprocessing. Knowledge-derived rules are applied to propose
candidate golf regions. Temporal data augmentation is used to enhance the training data. A final
postprocessing step removed errors.

Zhang et al. in “Collaborative classification of hyperspectral and visible images with con-
volutional neural network” utilized a CNN to extract deep spectral features. Next, effective binar-
ized statistical image features are learned as contextual basis vectors for the high-resolution VIS
image, followed by a classifier. Then decision fusion unites the spectral and spatial data and
statistical data together.

5 Spectral-Spatial Processing

Zhao et al. in “Hyperspectral anomaly detection based on stacked denoising autoencoders” uses
both spectral features and fused features extracted via a stacked denoising autoencoder from
clustered data to detect anomalies is hyperspectral data.

Abdi et al. in “Spectral-spatial feature learning for hyperspectral imagery classification using
deep stacked sparse autoencoder” uses an unsupervised stacked sparse autoencoder to extract
high-level feature representations of joint spectral-spatial information. A soft classifier is then
used to fine-tune the deep learning architecture.

6 Object Tracking and Recognition

Zheng et al. in “Object tracking by transitive learning using perspective transformation with
asymptotic stability” employs multiple frames of local invariant features on and around the
object are used to build an object and context template. A nonparametric learning algorithm
using transitive matching perspective transformation. The asymptotic stability is shown to be
drift-free in terms of long-term tracking. Wang et al. in “DeepPlane: a unified deep model
for aircraft detection and recognition in remote sensing images” proposes a model with dual
correlative deep networks: the first generates object proposals as well as feature maps; the second
network is cascaded upon the first to perform classification and box regression in one shot. The
“inception module” which consists of parallel layers of convolutions and pooling and a concat-
enation layer. This module contains several 1 × 1 convolution layers that provide feature dimen-
sionality reduction.

Marcum et al. in “Rapid broad area search and detection of Chinese surface-to-air missile
sites using deep convolutional neural networks” put forth a deep CNN-based chip detection
followed by spatial clustering to rapidly narrow down very large areas for identifying sur-
face-to-air missile sites. The search times were sped up by about 81 times.

7 Architectural Studies

Luo et al. in “Do deep convolutional neural networks really need to be deep when applied for
remote scene classification?” analyze five pre-trained networks (AlexNet, CaffeNet, VGG-
VD16, GoogLeNet, Resnet) and show that the features learned in shallow layers of deep
CNNs are not general enough for remote scenes and that the depth of CNNs seemingly enhances
the generalization power of learned features and is essential for remote scene classification. They
also provide a history showing how networks have become deeper over time, and provide a nice
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chronologic history over time of different approaches classification accuracies on the UC
Merced.

8 Domain Adaptation

Ma et al. in “Deep neural network-based domain adaptation for classification of remote sensing
images” utilizes class centroid alignment is used for unsupervised domain adaptation (assuming
that the class labels are only available in the source domain). Hyperion, NCALM, and
WorldView-2 imagery were analyzed. Also, different network configurations were studied and
optimization equations are provided in appendices.

9 Feature Extraction

Karim et al. in “Comparative analysis of feature extraction methods in satellite imagery” exam-
ined several different feature extraction methods for their ability to discriminate in shadowed
regions of the image.

10 Survey Paper

Ball, Anderson, and Chan contributed a survey paper, “Comprehensive Survey of Deep Learning
in Remote Sensing: Theories, Tools and Challenges for the Community,”which provides a list of
challenges and open problems in deep learning for remote sensing, discusses modifications of
DL architectures for remote sensing, provides an overview of deep learning tools, and gives an
extensive summary of remote sensing datasets. Challenges related to (i) inadequate data sets,
(ii) human-understandable solutions for modeling physical phenomena, (iii) big data, (iv) non-
traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral,
spatial, and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of
DL systems, (viii) high barriers to entry, and (ix) training and optimizing the deep learner were
discussed in detail. We sincerely thank the numerous reviewers and the authors for their hard
work. We also recognize that several papers were submitted that were not a good match to this
special section, and these papers were resubmitted to the Journal of Applied Remote Sensing as
regular papers.
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