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Abstract. Quantitative estimation of wetland aboveground biomass (AGB) is an essential
aspect in evaluating the health and conservation of this valuable ecosystem. We combine
AGB field measurements and remote sensing data to establish a suitable model for estimating
wetland AGB in the Poyang Lake National Nature Reserve (PLNNR), which is included in the
Ramsar Convention’s List of Wetlands of International Importance. All field sampling points
cover four dominant vegetation communities (Carex cinerascen, Phalaris arundinacea,
Artemisia selengensis, andMiscanthus sacchariflorus) in the PLNNR. Wetland AGB is retrieved
from the Landsat-8 OLI image. To improve the accuracy of wetland AGB estimation, we
compare the performances of three machine learning algorithms, namely, random forest (RF),
back-propagation neural network (BPNN), and support vector regression (SVR), with linear
regression (LR) in estimating the AGB in the PLNNR. Results are as follows: (1) the RF
model with a root-mean-square error of 0.25 kgm−2 performs better than BPNN (0.29 kgm−2),
SVR (0.27 kgm−2), and LR (0.31 kgm−2) in our testing dataset, and AGB density in the
PLNNR is between 0 and 1.973 kgm−2. (2) The four most important features for AGB modeling
are near-infrared, short-wave infrared 1 band, enhanced vegetation index, and red band. Our
study presents an effective and operational RF model that estimates wetland AGB from Landsat
data, providing a scientific basis for floodplain wetland carbon accounting and possible future
studies, such as the linkage between wetland AGB and the great water level fluctuations. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JRS.12.046029]
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1 Introduction

In recent years, quantitative evaluation of the wetland vegetation biomass has attracted increas-
ing attention worldwide, considering that this method is an important index for evaluating
the health of wetland ecosystems.1,2 Quadrat survey, one of the main traditional methods,3,4

has considerable disadvantages when used in complex ecosystems, such as heavy workload,
huge costs, and large-scale information insufficiency when measured over a short time period.
In comparison with traditional methods, remote sensing technology can rapidly, accurately, and
nondestructively estimate the vegetation biomass of wetlands.

Studies of wetland biomass have focused mainly on aboveground biomass (AGB). Optical
remote sensing, synthetic aperture radar (SAR), and light detection and ranging (LiDAR) are
the three main methods for mapping wetland AGB. The differences among structure, crown
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width, and plant diameter allow SAR to utilize the backscattering ratio for predicting vegetation
biomass. Microwave technology not only interacts with the canopy but also can penetrate into
vegetation stalks.5 SAR can obtain the surface and body scattering information of vegetation due
to its capability to penetrate clouds and vegetation. Thus, SAR is suitable for inverting vegetation
parameters with evident structural characteristics, such as tall trees in forests. In addition, the
saturation problem of backscattering coefficients limits SAR application in wetlands. Therefore,
SAR is rarely used for the biomass inversion of wetland vegetation. Recently, the advantages of
acquiring structural information about objects on the ground have rendered LiDAR further
attractive to vegetation biomass inversion researchers. The earliest application of LiDAR
was in measuring forest biomass. Then, LiDAR was utilized successfully for wetland biomass,
especially mangrove forests in costal zones.6–9 However, LiDAR applications are restricted by
weak penetrability, low saturation in plants found in high-density canopies, and deficiencies in
spectral information, particularly with tall and lush trees, mangrove forests, and low-lying herbs
in freshwater wetlands.

Optical remote sensing technology is a common and well-tested method in terms of data
availability, processing simplicity, and extensive applications over a large region. However,
high-resolution remotely sensed images and LiDAR or SAR data are often restricted by
their limited spatial and temporal coverage. Accordingly, numerous researchers prefer
medium-resolution satellite images for measuring AGB over long time periods and at large
areas.10 Landsat is a trade-off of spatial, temporal, and spectral resolution; thus, it is a good
option for large-scale AGB modeling.11–14 Generally, the optical remote sensing method utilizes
the spectral characteristics of plants, particularly the huge difference in reflectance in the red and
near-infrared (NIR) bands, to construct a vegetation index (VI) for analyzing relationships.
Normalized difference vegetation index (NDVI) is the most commonly used VI;15–18 however,
it is greatly affected by the atmosphere, soil composition, and heavy saturation in dense
vegetation. Thus, researchers have proposed modified VIs, including soil-adjusted vegetation
index (SAVI),19 modified SAVI,20 and enhanced vegetation index (EVI).21 These indices are
widely used and frequently combined to overcome the effects of background noise and improve
the accuracy of biomass evaluation.22–25

Remote sensing methods for modeling AGB can be divided into two groups: statistical and
physical models. Physical models, such as SAIL, Kuusk, and PROSEPCT, have been used to
establish the link between the vegetation spectral reflectance (leaf or canopy) and biomass by
analyzing the entire radiation transmission process of light inside and outside the vegetation.
These models are useful under certain circumstances; however, their complexity, the over-
abundance of parameters, and the uncertainty of measurements limit their application in
large-scale regions.26 For statistical models, a single or multiple VIs are traditionally adopted
as the predictors for establishing a linear, exponential, logarithmic, or power model.27,28

The development of machine learning and artificial intelligence has allowed for improved pre-
dictive accuracy. Such techniques can produce complex nonlinear mappings due to advanced
learning strategies by utilizing the information contained in a set of reference samples. Another
advantage is that no assumptions have to be formulated about data distribution. Thus, nonlinear
machine learning methods are often regarded as distribution-free. Given this property, the
retrieval process can integrate data from different sources with poorly defined (or unknown)
probability density functions that relate well to the target variable. Regardless of the approach,
either empirical or physical models, the high complexity and nonlinearity of retrieval problems
require the development and usage of further advanced methods. The artificial neural network
(ANN)29 is a commonly used technique in the field of geo-/biophysical variable retrieval.30,31

The ANN, due to its effectiveness and relatively higher accuracy, is more effective for estimating
wetland AGB than the traditional linear model.32,33 Numerous studies34–36 have shown that
the ANN model exhibits better accuracy, stability, and computational speed than the other
investigated strategies.

Support vector regression (SVR)37 has also become popular in the last few years and is
particularly effective in the field of wetland AGB retrieval.30,38 Study results reveal the promising
features of this method, such as its good intrinsic generalization capability and its capacity for
overcoming noise interference when reference samples are limited. Ensemble methods, such as
random forest (RF),39 have successfully been used to enhance predictive accuracy in the ecology
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field.40,41 The RF algorithm is a nonparametric statistical technique that can synthesize regres-
sion or classification functions on the basis of discrete or continuous datasets. The RF can also
handle the complex relationships between predictors due to noise when using large amounts of
data and weighing the importance of each input variable. In the remote sensing field, the RF has
been widely applied in various domains as a classification algorithm.42–44 Mutanga et al.45 inves-
tigated the capability of RF to model AGB in iSimangaliso Wetland Park on the basis of
WorldView-2 images. Recently, Byrd et al.46 generated a remote sensing model based on
RF to model tidal marsh AGB and carbon stocks in the United States. Studies that compare
the effectiveness of several machine learning algorithms in modeling and mapping AGB
based on Landsat images are limited, particularly at a vegetation landscape scale for seasonal
lake wetland in floodplain areas. Therefore, such a study must be conducted.

In this study, we evaluated the effectiveness of linear regression (LR), back-propagation
neural network (BPNN), SVR, and RF models in estimating wetland AGB in the Poyang Lake
National Nature Reserve (PLNNR). The objectives of this study are as follows: (1) to explore
which machine learning algorithms and spectral features can yield the most accurate AGB,
(2) to estimate the AGB and their distribution and various characteristics in the PLNNR
quantitatively, and (3) to evaluate the importance of each input band variable derived from
Landsat images for predicting AGB.

2 Materials and Methods

2.1 Study Area

Poyang Lake, the largest freshwater lake in China, is located at 115°47 to 116°45’E and 28°22’ to
29°45′N on the southern bank of the Yangtze River (Fig. 1). The lake is fed primarily by five
tributaries (Ganjiang, Fuhe, Xinjiang, Raohe, and Xiushui Rivers) and is connected to the
Yangtze River at Hukou. Poyang Lake has a subtropical monsoon climate with an average annual
temperature of 17.6°C and mean annual precipitation level from 1450 to 1550 mm, with the rainy
season generally occurring in summer. Interactions among the hydrology, soil, and plants of
Poyang Lake have formed a unique wetland ecosystem, which provides essential functions,
such as water supply, floodwater storage, and biodiversity maintenance. Poyang Lake wetlands
are home to 102 species of aquatic plants from 38 families and to 122 species of fish from 23
families. More than 280 bird species are also available, representing 12 genera and 51 families,
including 50 rare species.

Fig. 1 Location of the PLNNR and the distribution of field sampling points in 2016. (a) Ganjiang
River delta, (b) Sidu Island, (c) Dachahu sublake, and (d) Dahuchi sublake.
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The PLNNR is located northwest of Poyang Lake, at the intersection of Ganjiang and
Xiushui Rivers (Fig. 1). The PLNNR, with an area of 224 km2, was established in 1988 to
preserve wintering birds.47 Twenty-three threatened species in the International Union for
Conservation of Nature and Natural Resources red list48 were found in the PLNNR, and approx-
imately 95% of the entire population of critically endangered Siberian cranes (Grus leucoger-
anus Pallas), nearly 80% of endangered Oriental storks (Ciconia boyciana), and over 70% of
vulnerable white-naped cranes (Grus vipio) wintered in the PLNNR.49,50 For these reasons,
Poyang Lake was one of the first wetlands to be included in the Ramsar Convention’s List
of Wetlands of International Importance.51

Complex inflow, outflow, and backflow patterns lead to large seasonal water level
fluctuations.52 The plant distribution of the PLNNR wetland, accompanied by the fluctuating
water level, is characterized by a typical concentric pattern along the elevation gradient from
the lake to the shoreland.53 Four main types of plants are abundant in the PLNNR wetlands,
namely, Carex cinerascen, Phalaris arundinacea, Miscanthus sacchariflorus, and Artemisia
selengensis. They form three belts, namely, bulrushes (Miscanthus sacchariflorus or
Phragmites australis communities), sedges (Carex cinerascen or Artemisia selengensis com-
munities), and sparse emergent vegetation (Phalaris arundinacea communities), which occur
naturally along a moisture gradient from the higher lands to the lake shoreline. Wetland veg-
etation in the PLNNR is distributed in different types of bottomlands, which are often inundated
during flood season. These bottomlands include the littoral land of the main lake, inflow river
delta, sublakes detached from the main lake during autumn and winter, and small islands season-
ally submerged during summer. From October to December, water levels are low, thereby expos-
ing the areas of these vegetation communities in Poyang Lake. At this time of the year, emergent
vegetation (e.g.,Miscanthus sacchariflorus) experiences a heading stage and subsequently with-
ers and dies; sedges (e.g., Carex cinerascen), which have a long growing period, continue
blooming; and sparse emergent vegetation (e.g., Phalaris arundinacea and Artemisia selengen-
sis) begin to wither and die. During this period, the spectral characteristics and AGB of these
vegetation communities do not change considerably. Thus, this type of phenology phenomenon
necessitates the implementation of a field work that covers all four dominant vegetation com-
munities in the PLNNR.

2.2 Field Surveying and Data Collection

The field campaign was conducted on November 23 to 30, 2016. We selected four typical bot-
tomlands, which are representative of PLNNR wetland for sampling, and a total of 94 sampling
points, which covered the four main vegetation communities in Poyang Lake wetland (Fig. 1 and
Table 1). Then, in view of the concentric pattern of vegetation communities along the elevation
gradient, a predetermined fixed number of 1 m × 1 m sample plots at each bottomland were
created from the shoreline to the relatively higher land, where flood cannot overflow. The
interval between plots is 50 to 120 m (in accordance with the distribution of slop and vegetation
belts in the sites) to cover all the main vegetation communities at different elevations in various

Table 1 Number of sample points in every sample field in 2016.

Sample field C.C Pha.A A.S. Mis.S Total

(a) Ganjiang River delta 5 4 6 2 17

(b) Sidu Island 2 2 3 1 8

(c) Dachahu sublake 28 7 0 7 42

(d) Dahuchi sublake 11 6 3 7 27

Total 46 19 12 17 94

Note: The locations of sample fields are shown in Fig. 1. C.C, Pha.A, A.S, and Mis.S refer to Carex cinerascen,
Phalaris arundinace, Aremisia selengensis, and Miscanthus saccharifloruss communities, respectively.
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types of bottomlands (Fig. 1). Once the sample plot was located, we recorded its geographic
coordinates and elevation through GPS (Trimble) with an accuracy of 0 to 0.20 m for position
and 0.10 m for elevation. Then, all plant types in the plot were identified, recorded, and exca-
vated. All dead materials were removed from clipped plants and fresh biomass was measured
immediately using a digital scale. Then, the average fresh AGB per plot was calculated from
these measurements (n ¼ 3). The Landsat 8 image, which was acquired from USGS,54 with
11 bands (bands 1 to 7 and 9 to 11 with a spatial resolution of 30 m and band 8 with a spatial
resolution of 15 m) from December 16, 2016, covering the PLNNR, was used to complete
the study.

2.3 Data Preprocessing and Preparation

Image preprocessing, executed via ENVI 5.2, included geometric, radiometric, atmospheric
corrections, and spatial subsets. On the basis of the georeferenced images of Poyang Lake,
the root-mean-square errors (RMSEs) in the image registration were ensured at <0.3 pixel
for the seven images. The FLAASH atmospheric correction module, a feature of ENVI 5.2,
was used to finish the atmospheric correction. NDVI, SAVI, EVI, and the second band from
the Kauth–Thomas transformation55 were added to the Landsat 8 OLI image with 7 multispectral
bands by layer stacking to create an 11-band layer-stacked Landsat image. Then, the layer-
stacked image from December 16, 2016, was used to extract 94 spectral sampling points,
based on geographical coordinates recorded by GPS in preparation for image classification.
The proposed methods are briefly explained in the flowchart (Fig. 2).

2.4 AGB Model Methods

We selected eight variables, namely, NDVI, SAVI, EVI, B3 (red band), B4 (NIR band), green-
ness (the second band from the Kauth–Thomas transformation), B6 (SWIR1, short-wave infra-
red 1 band), and B7 (SWIR2, short-wave infrared 2 band), as inputs. The descriptions and
computational formulas of four VIs in this study are shown in Table 2. The variable values of
94 sampling points were extracted in accordance with their geographic coordinates. The effec-
tiveness of LR, BPNN, SVR, and RF models in estimating AGB in the PLNNR was evaluated.
Then, we utilized the trained models with the highest testing accuracy to map AGB in the
PLNNR. We used spectral features as predictors to improve the accuracy of the models.

Fig. 2 Flowchart used to map AGB in Poyang Lake using Landsat images.
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2.4.1 RF model

The RF model is an ensemble learning technique developed by Breiman to improve the clas-
sification and regression tree method by combining a large set of decision trees.39 In RF regres-
sion, each tree is constructed by selecting a random set of variables and a random sample from
the training dataset via a deterministic algorithm. Three parameters must be optimized in
this model: (1) ntree, the number of regression trees grown based on a bootstrap sample of
the observations, with a default value of 500 trees; (2) mtry, the number of predictors tested
at each node, with a default value 1/3 of the total number of variables; and (3) node size,
the minimum size of the terminal nodes of the trees. To determine the ntree and mtry values
that can most accurately predict the wetland biomass, the two parameters were optimized on
the basis of the RMSE. In addition, as the importance of each predictor is measured by an
increase of mean squared errors and node purity, we excluded these predictors individually
from the RF models. In our study, we tried 500 parameter sets, including ntree, mtry, and node
size, for the RF model and selected the one with the highest accuracy.

2.4.2 SVR model

Support vector machine (SVM) is a supervised nonparametric statistical learning technique, with
no requirement for data distribution. The SVM can solve regression problems, which are gen-
erally regarded as the SVR. The two advantages of this technique include unique and globally
optimal architectures and its easily accepted results. Nonlinear SVR maps input data X to a high-
dimensional feature space using a kernel function. For our study, we utilized the commonly used
RBF kernel, because it is associated with fewer numerical difficulties than any other kernel.
Given the training data [ðx1; y1Þ; ðx2; y2Þ: : : ðxn; ynÞ], where xi and yi are the input and output
data, respectively, we used ε-SVR to determine the function fðxÞ with the most ε deviation from
the input data and that is as flat as possible. The RBF kernel formula is as follows:

EQ-TARGET;temp:intralink-;e001;116;416fðx; wÞ ¼
Xn
j¼1

wj expð−γkx − xjk2Þ; (1)

where γ is a parameter and vector xj denotes the training data input. The unknown vector of w is
determined to minimize the function:

EQ-TARGET;temp:intralink-;e002;116;344

min

w ∈ R
: : :

1

2
kwk2 þ C �

XN
1¼1

max½jyi − fðxi; wÞ − ε; 0�; (2)

where cost ðCÞ > 0 controls the trade-off in the flatness of fðxÞ, and deviations greater than ε are
tolerated. Further details are provided by Awad and Khanna.56 We adopted the most commonly
used method, in which γ, C, and ε are calibrated to a certain range by a grid search. Similarly,
500 pairs of parameters were tried, and the set with the best performance is selected.

2.4.3 BPNN model

BPNN has a good generalization capability,57,58 and it consists of input, hidden, and output
layers, including their nodes and activation functions. The main mathematical expression of
BPNN is as follows:

EQ-TARGET;temp:intralink-;e003;116;175yj ¼ fð
Xn
i

wjixi þ bjÞ; (3)

xi is the i 0th node value of the previous layer, yj denotes the j 0th node value of the present
layer, wji represents the weighted value connecting xi and yj, n refers to the number of nodes in
the previous layer, and f indicates the activation function. The BPNN model is discussed in
further detail by Buscema.59 Levenberg–Marquardt algorithm was used to determine the
weighting and bias matrices for each iteration. We selected a bagging method (n_estimators:
400, max_samples:0.2) to ensure the stability and robustness of the trained model.
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Figure 3 shows the structures of the three models for estimating the AGB of Poyang
Lake.

2.4.4 Accuracy assessment

In this study, we implemented all four modeling methods through packages in Python: scikit-
learn.60,61 Considering that we do not have enough sample points for every year, we divided the
94 sample points from the field survey in 2016 into two parts: training (80%) and testing (20%)
datasets. We used three criteria, namely, RMSE, coefficient of determination (R2), and mean
absolute error (MAE), to evaluate the performance of these models in predicting AGB. RMSE
[Eq. (4)] is a standard metric for measuring the discrepancies between the simulated and
actual AGB values; however, it is easily influenced by outliers.62 Therefore, MAE [Eq. (5)]
is suggested to be used with RMSE for determining the variations of errors in the model.63

R2 [Eq. (6)] is utilized to determine the collinearity between the predicted and observed AGB
values. RMSE and MAE values close to 0 and an R2 value close to 1 indicate that the model is
an accurate predictor:

EQ-TARGET;temp:intralink-;e004;116;196RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðyis − yitÞ2
n

s
; (4)

EQ-TARGET;temp:intralink-;e005;116;143MAE ¼
P

n
i¼1 jyis−yitj

n
; (5)

EQ-TARGET;temp:intralink-;e006;116;104R2 ¼ 1 −
P

n
i¼1 ðyis−yitÞ2P
n
1¼1 ðyis−ȳisÞ2

: (6)

Fig. 3 Structures of: (a) RF, (b) SVR, and (c) BPNN models for estimating the AGB of the PLNNR.

Table 2 Descriptions and computational formulas of four VIs in this study.

VI Description Calculation

NDVI A remote sensing index that reflects the state of land cover
vegetation. It is defined as the quotient of the difference and
sum between the reflectance of the NIR and visible light channels

NDVI ¼ ρNIR−ρRED
ρNIRþρRED

SAVI An SAVI based on NDVI and a large number of observations to
reduce soil background effects

SAVI ¼ ðρNIR−ρREDÞ�ð1þLÞ
ρNIRþρREDþL

EVI An optimized VI that increases sensitivity to high-biomass areas
and improves vegetation monitoring by decoupling canopy
background signals and reducing atmospheric effects

EVI ¼ 2.5�ðρNIR−ρREDÞ
ρNIRþ6�ρRED−7.5�ρBLUE

Greenness The second component from the Kauth–Thomas transformation
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yis is the i 0th simulated AGB value, yit denotes the i 0th real AGB value among the tested
sample points, ȳis represents the mean simulated AGB for all tested sample points, and n indi-
cates the size of tested samples. The RMSE, R2, and MAE in Tables 3 and 5 have an average
value after fivefold cross validation.

3 Results

3.1 Comparison of the AGB Simulation Accuracy of Various Models

Table 3 presents the specific value for the three criteria of four machine learning algorithms.
Among the 76 sample points from the training dataset, the SVR had the lowest RMSE
(0.25 kgm−2) and the highest R2 (0.84), and it also performed best in MAE (0.20 kgm−2),
which was considerably lower than that of the other three models. RF had the second best
performance in training dataset: RMSE (0.30 kgm−2), R2 (0.71), and MAE (0.31 kgm−2).
The BPNN and LR were similar in magnitudes of RMSE, R2, and MAE. For the 18 sample

Fig. 4 Performance of the four models in estimating AGB in the testing dataset: (a) LR, (b) SVR,
(c) RF, and (d) BPNN.

Table 3 RMSE (kgm−2), R2, and MAE (kgm−2) values of the four models for estimating AGB in
the training and testing datasets.

Model

Training dataset Testing dataset

RMSE R2 MAE RMSE R2 MAE

LR 0.49 0.39 0.36 0.31 0.53 0.26

SVR 0.25 0.84 0.2 0.27 0.64 0.22

RF 0.3 0.71 0.31 0.25 0.70 0.21

BPNN 0.47 0.39 0.34 0.29 0.59 0.23
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points from the testing dataset, the RF model showed a better generalization capability than the
SVR (RMSE, 0.25 versus 0.27 kgm−2; R2, 0.70 versus 0.64; MAE, 0.21 versus 0:22 kgm−2).
Finding an overfitting problem that occurs in the SVR is easy. Although the predicting capability
of BPNN and LR in the training dataset almost had no difference, the R2 (0.59) of BPNN is
considerably higher than that of LR (0.53) in the testing dataset, indicating that BPNN had
a relatively better generalization capability in this study. Figure 4 shows that the deviation
between the simulated and actual values of RF had a relatively even distribution compared
with the other models. From the scatter plot, the prediction values of the BPNN and LR had
a relatively more dispersed distribution around the fitting line than those of the RF and SVR,
indicating that these two models had worse stability of predictions. The least accurate model was
the LR, with the highest RMSE of 0.31 kgm−2 and the lowest R2 of 0.53 in the testing dataset.
No discernible difference among the generalization capabilities of the three models except LR
existed. Thus images with high spatial and spectral resolution might be essential to improve
modeling accuracy. We concluded that RF was a slightly better model for predicting wetland
AGB in the PLNNR that the other models.

3.2 Predicting AGB in the PLNNR

We utilized the most accurate model, namely, RF, for exploring the AGB distribution in
the PLNNR (Fig. 5). The maps show that the AGB density is between 0 and 1.973 kgm−2.
On the whole, a higher than average AGB value occurred in the north part, including the
Ganjiang River delta and Banghu sublake, whereas the south part, including bottomlands at
the Dahuchi sublake experienced relatively low AGB values.

4 Discussion

4.1 Accuracy and Uncertainty of the Study

This study presents for the first time that a landscape-scale remote sensing model of the AGB for
seasonal lake wetland in floodplain areas has been developed on the basis of machine learning

Fig. 5 AGB density distribution in the PLNNR.
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algorithms and Landsat images. We used RMSE to compare the predictive performance of the
RF model to that of other models (Table 4). During our remote sensing analysis of wetland
biomass, we concluded that simple LR had the worst performance regarding simulation effects,
whereas the further advanced machine learning algorithm performed better with regard to
RMSE. In our study, the RF model had a 0.21 kgm−2 RMSE value in the testing dataset,
which is considerably lower than the mean level of ∼0.3 to 0.5 kgm−2. Researchers might select
different input variables; thus, the final simulated results would be affected by the randomness of
sample points and the species types in wetlands. However, we cannot ignore that the RF model is
useful and effective for predicting AGB in wetlands.

The time inconsistency of remote sensing imaging and sampling may cause the error on AGB
inversion. For example, the December 16 scene is the only appropriate Landsat image closest to
our field survey time in 2016. The atmospheric conditions of imaging time can affect the gray
value of each pixel, thereby resulting in a heterogeneous gray value of the same vegetation type
on the ground in different times. Thus, the training model generalization capability will be
reduced.

4.2 Implications of the Input Variables for Modeling AGB

The rank of a feature used as a decision node in a tree can be utilized to assess the relative
importance of that feature with respect to the predictability of the target variable. Features at
the top of the tree greatly influence the final prediction decision of a large fraction of the
input samples. Thus, the expected percentage of the samples that they contribute to can be
used to estimate the relative importance of the features. By averaging the expected activity
rates over several randomized trees, one can reduce the variance of such an estimate and
use it for feature selection. Fig. 6 shows the results of applying RF with least squares loss
and 500 base learners to the AGB in Poyang Lake wetland. Plot (a) shows the training and

Table 4 Comparison of the accuracy of various models for simulating AGB in wetlands.

Methods RMSE (kgm−2) References

LR 0.5 to 0.7 64 and 65

BPNN 0.3 to 0.4 66 and 67

SVR 0.35 67

RF 0.44 45

Fig. 6 Relative importance of all input variables identified using the RF model in this study.
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testing errors at each iteration. Plot (b) shows the feature importance, which can be obtained via
the feature importance property. Details on how the RF determined the importance of variables
are discussed by Genuer et al.68 When the number of trees is close to 450 or more, the test dataset
error is ∼0.2, which is the minimum value. Thus, we select 450 as the best N of the RF model in
this study. Furthermore, the top four most important features were NIR, SWIR1, EVI, and
red band. NIR performed best among all the variables, followed by SWIR1. NDVI was not
the best predictive factor for estimating AGB in the PLNNR, possibly because it is considerably
more affected by Poyang Lake wetland’s complex environmental background conditions than
the other modified VIs.

There is no doubt that EVI, SAVI, NDVI, NIR, and red band are highly correlated. However,
in general, the models would be further effective for estimation if their input variables were
independent of each other. Thus, we conducted an experiment to determine whether using
the NIR alone as the input variable of these four models would produce further accurate results
for estimating AGB in the PLNNR. Table 5 shows the specific performance. The RMSE, R2, and
MAE values changed remarkably in the training and testing datasets. The RMSE values for
the training dataset increased by 0.11 kgm−2 on average (RF, 0.15; SVR, 0.12; BPNN,
0.07; and LR, 0.03), whereas the R2 values decreased. In the testing dataset, a slight improve-
ment was observed in the LR. The RMSE and MAE decreased by 0.01 kgm−2 and R2 increased
by 0.02, indicating that LR could not cope with the collinearity of variables and could not
efficiently extract other variables’ useful information. The RMSE and R2 values of the other
three models were increased by more than 0.05 kgm−2 and reduced by 0.18 on average
(RF, 0.22; SVR, 0.19; and BPNN, 0.13). Therefore, we insisted that the RF and SVR had
better capability for processing further complicated information than the other methods. We
concluded that placing these VIs into models together, which may decrease the influence of
environmental background to some extent, improves the capability of the models for measuring
AGB in the PLNNR. This improvement surpassed the influence of the collinearity of variables
to some extent.

4.3 Limitations of Predicting AGB Using Optical Remote Sensing Data
such as Landsat

The complexity of species composition and the density of vegetation in wetland areas present a
huge challenge for remote sensing.1 In fact, VIs calculated from broadband sensors will rapidly
approach a saturation level when the AGB estimation is limited by the asymmetrical nature of the
relationship between the AGB and VIs calculated from medium-spatial-resolution (10 to 100 m)
multispectral sensors using NIR and red bands. Therefore, the RF model is likely to overestimate
biomass at low observed values and underestimate biomass at high observed values, which
may explain why errors are associated with high biomass values. Despite these limitations,
our findings showed that the Landsat NIR band was sensitive to the AGB in the PLNNR.
Recent efforts have been geared toward using narrow band VIs from hyperspectral data or
WorldView-2 (eight bands including red edge band and 2-m spatial resolution) to estimate
high canopy density biomass.15,23,69,70 Results from these studies have shown that modified

Table 5 RMSE (kgm−2), R2, and MAE values (kgm−2) of the four models for predicting AGB in
training and testing datasets using NIR as input variable.

Model

Training dataset Testing dataset

RMSE R2 MAE RMSE R2 MAE

LR 0.52 0.31 0.38 0.30 0.55 0.25

SVR 0.37 0.66 0.28 0.34 0.45 0.27

RF 0.50 0.36 0.36 0.30 0.48 0.23

BPNN 0.54 0.28 0.39 0.33 0.46 0.26
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VIs calculated from the red edge and NIR shoulder domains can more accurately estimate bio-
mass at a full canopy cover than the standard red/NIR indices.2,23 A reasonable explanation for
this finding is that the indices calculated from the red edge are more sensitive to vegetation
properties, such as canopy biomass and chlorophyll content, than that from other regions of
the electromagnetic spectrum. A slight change in vegetation properties could result in a shift
in the red edge curve, and NIR can minimize the influence of the atmospheric and water absorp-
tion as well as the soil background. However, the use of fine spatial and spectral resolution
sensors (<5 m and >100 bands) for estimating AGB is limited by the cost, availability, and
complexity of processing high-dimensional data.70,71 This technology may be widely used in
the future when costs decrease.

5 Conclusions

The quantitative estimation of wetland AGB is crucial for evaluating the health and conservation
of this vital ecosystem. Traditional methods do not meet the requirements for rapid, accurate,
and effective observation demands for a seasonal and changeable wetland such as Poyang Lake
wetland. Therefore, numerous researchers are compelled to conduct an overall estimation
of wetland AGB without considering the AGB information of different wetland vegetation
communities. Landsat is a good remote sensing method alternative due to its relatively high
spatial, spectral, and time resolution. In this study, we compared the performances of three
machine learning algorithms, namely, RF, SVR, and BPNN, in estimating the AGB in the
PLNNR. The RF model with 0.25 kgm−2 RMSE performed better than BPNN (0.29 kgm−2),
SVR (0.27 kgm−2), and LR (0.31 kgm−2) models in the testing dataset. Furthermore, the AGB
density in the PLNNR was found to be between 0 and 1.973 kgm−2 using the trained RF model
to map the ABG distribution.

Our results indicated that RF had a relatively better generalization capability than LR, BPNN,
and SVR in predicting AGB in the PLNNR. By considering the variable importance selection of
the RF model, we regarded NIR, SWIR1, EVI, and red band as the most critical variables for
estimating AGB in the PLNNR. Moreover, we found that the introduction of modified VIs can
greatly improve the estimation accuracy, as opposed to only using NIR as the input variable.
Furthermore, images with high spatial and spectral resolution are essential for improving AGB
modeling precision and overcoming the saturation problem. This study presents an effective and
operational RF model that estimates seasonal lake wetland AGB from Landsat-8 data, thereby
providing a scientific basis for floodplain wetland carbon accounting.
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