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Abstract. Secondary succession is a process that is often observed taking place in former agri-
cultural ecosystems. Its characteristics are especially important in protected areas, for the pur-
poses of monitoring and protective measures. Effective mapping of succession is facilitated by
the development of automated methodologies based on remote sensing data, which are capable
of complementing traditional field research. The objective of this work is to determine whether
the classification of high-resolution hyperspectral and light detection and ranging (LiDAR) data
with the use of the random forest algorithm enables us to produce an accurate succession species
map. First, feature extraction techniques are applied to 1-m hyperspectral images and a
∼7 point∕m2 dense point cloud. Minimum noise fraction layers and vegetation indices are cal-
culated from the hyperspectral data and geometry related indices from the LiDAR data. Finally,
the recursive feature elimination algorithm is applied to the combined dataset and the reference
polygons to select the optimal set of features for subsequent classification. The results indicate
that the proposed methodology has the potential to be used operationally. The final classification
product is characterized by a relatively high Cohen’s kappa value of 0.68, with single species
classified with various accuracies, expressed by F1 scores ranging from 0.45 to 0.87. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JRS.13.034502]
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1 Introduction

The succession process is currently the subject of a large number of research projects all over
the world, for example in Europe,1–3 North America,4–9 South America,10–12 and also in Asia.13

The reason behind the interest in this topic is undoubtedly connected with its significance, which
can be seen from three different perspectives. In some areas, similar to the current research, the
secondary succession is perceived as a threat to certain ecosystems. This is because large areas of
seminatural nonforest communities, e.g., grasslands and meadows (and especially the less pro-
ductive parts) have been abandoned, resulting in secondary succession.14–16 The cessation of
mowing or grazing allows species with clonal growth to complete their full development and
induces changes in the quantitative and spatial structures of plant communities.17 One of the
results of this process is the disappearance of some groups of species (e.g., heliophilous ones)
and the formation of shrub and forest communities created by species that are better adapted to
poor light conditions. This situation leads to changes in the composition of species in an eco-
system,18,19 in not only plant species but also animal communities.20–22 As a result, secondary
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succession also leads to changes at the landscape level. This standpoint is generally taken if the
process threatens the existence of protected habitats or the vegetation involves invasive species.
This view is represented by Szostak et al.,2 Szostak et al.,3 Vanderlinder et al.,7 and others. In
other places, secondary succession is recognized as having a highly positive impact on climate
and biodiversity and as an important reservoir of carbon.8,9,11 In most cases, however, the impor-
tance of secondary succession is simply explained by the large size of the terrain encompassed,
land use and land cover changes, and the resultant need to assess its influence on ecosystem
functions and services.1,4–6,10,12,13

Regardless of the reason, studies of secondary succession focus mainly on identifying the
places, in which the succession occurs, estimating the size of this area3,7 and describing the
stages of the process,1,4–6,9–13 and rarely on determining other characteristics such as the stand
age or species richness.8 To the authors’ knowledge, few research projects have investigated the
subject of the differentiation of succession species. Although many studies have focused on the
identification of tree, shrub, or other plant species, only a small number of these have involved
the mapping of succession tree species.23,24 The majority of studies have been carried out in an
urban environment25–27 or in different types of mature forests.28–30 This indicates a need for
further research into succession-specific challenges, e.g., the possibilities of distinguishing dif-
ferent succession species based on their spectral and geometrical characteristics or approaches to
the processing of reference data. This study is a response to these needs. Its primary goals are to
(i) examine the possibility of effectively mapping succession species present in an agricultural
landscape via the use of simultaneously acquired high-resolution hyperspectral and light detec-
tion and ranging (LiDAR) data and (ii) to investigate the most important features of tree-species
classification using the recursive feature elimination (RFE) algorithm.

2 Study Area

The study area is located in the southern part of Poland, in the Silesian Voivodeship, near
Czestochowa city (50°45” N; 19°17” E). It encompasses an area of about 25 km2. This area,
according to the physiographic regionalization of Poland,31 is located in the macroregion of the
Krakow-Czestochowa Upland, the mesoregion of the Czestochowa Upland, and the microregion
of the Mirowsko-Olsztynska Upland. The area is located in the Warta basin, east of
Czestochowa, at the northern end of the Czestochowa Upland, being an enclave of natural and
seminatural ecosystems, present between the highly urbanized areas of Silesia and Czestochowa
industrial districts.

The thermal conditions of the area are typical for the climatic region of the central highlands,
with an average annual temperature of 7.6°C. The coldest months of the year are January and
February, and the average temperatures during these months are relatively low, approaching
−3°C. The average annual air temperature amplitude is typical of western and central
Poland, amounting to 20.8°C. Due to the thermal conditions, the vegetation period lasts for about
210 days per year. Snow cover, for which the durability depends on a negative air temperature,
persists in the upland area for about 50 to 70 days. Precipitation is relatively high, exceeding
700 mm per year.

The area includes a complex of limestone hills (absolute heights range between 278 and
374 m) with numerous karst forms, such as caves, crosses, fissures, sinkholes, and so on.
The hills are covered by natural forest communities (mostly beech and hornbeam forests) or
seminatural species-rich grasslands.32 The areas adjacent to the hills are occupied by cultivated
fields and pine forests. The area is characterized by a wide diversity of habitats, with a consid-
erable wealth of plant and animal species;33 it is, therefore, protected as a Natura 2000 site known
as Ostoja Olsztynsko-Mirowska (PLH240015) (Fig. 1).

The most important threatened nonforest habitats in this area are two types of grassland
(codes 6120 and 6210), which were analyzed in this research. The first type, habitat 6120, con-
sists of dry, frequently open grasslands on more or less calcareous sands with a subcontinental
centre of distribution, comprising seminatural, moderately open to closed, relatively low-grown
mesoxeric grasslands on slightly calcareous sands in the lowlands, and medium height moun-
tains throughout temperate Europe. These grasslands are mostly dominated by tussock-forming,
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narrow-leaved grasses of the Festuca ovina aggregate, often accompanied by Agrostis capil-
laris, Poa angustifolia, or Carex praecox. If they are in good condition, they are relatively rich
in herbs, which form an important nectar source for insects.34

The grasslands of habitat 6210 are among the most species-rich plant communities in Europe
in the number of plant species they support per unit area.35 The calcareous grasslands of north-
west Europe, for instance, consist of up to 80 plant species per square metre.32,36 They also
contain a large number of rare and endangered species, including the priority species listed
in Annex II of the Habitats Directive, as well as various bryophytes and lichens.37 In
Poland, the floristic diversity of these grasslands is created by the many rare species of vascular
plants, including orchids.38 The invertebrate fauna associated with this habitat, particularly
butterflies, is also rich37 and includes a number of species listed in the Habitats Directive.39

In moderate climate regions, both types of grasslands described above depend on extensive
agricultural management, and primarily grazing. The abandonment of agropastoral activities
results in the development of “scrubland facies,” represented by thermophile scrub with an inter-
mediate stage of the thermophilous fringe vegetation (Trifolio-Geranietea).40 Calcareous grass-
lands evolve toward formations such as Rosa spp., Prunus spinosa, Rhamnus cathartica,
Crataegus spp., Cornus sanguinea, Juniperus communis, and Betula pendula (10 to 15 years)
and, in the succession process, toward the formation of more complex forest (of the order

Fig. 1 An overview of the study site: (a) the area of airborne data acquisition and botanical field
measurements and (b) land use/land cover map prepared based on Corine Land Cover 2018 data.
A part of the area belongs to the Ostoja Olsztynsko-Mirowska Natura 2000 protected site (hatched
blue lines). The location of the study area is presented in the lower image.
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Fagetalia), over 70 years or more.41 Scrub encroachment is the most frequently documented
reason for change in 6210* sites; this is considered to be an acute threat because it can result
in an increase in soil nutrients and a decline in the richness of grassland species42 as the suc-
cession progresses.

An overview of the landscape and selected succession species of the study area is presented
in Fig. 2.

3 Materials and Methods

3.1 Data

The research described here was carried out using two types of data: remote sensing and field
data. Remotely acquired data consisted of hyperspectral images, RGB images, and LiDAR data
(Fig. 3). The technical parameters characterizing the sensors and the data they provided are pre-
sented in Table 1. The collected field data could be divided into two groups: the first was spec-
trometer measurements that were needed for the evaluation of the atmospheric correction of
hyperspectral imagery, and the second comprised botanical measurements acquired in the form
of GPS points, with supplementary attributes characterizing the trees and shrubs occurring in the
area under study (i.e., the height of an object, its crown density, crown radius, level of discolor-
ation, level of defoliation, and neighboring vegetation type). The species were divided into two
groups: (i) species playing a role in the early stages of the succession process, referred to as
“promoters” (seven species) and (ii) nonsuccessive species referred to here as “other,” which
comprised the remainder of a diverse range of species occurring in the study area. The total
number of collected polygons was 406 (Fig. 4); after processing, they served as a classification
reference.

It is especially important that all of the data mentioned already were acquired simultaneously.
Acquiring all remote sensing data at the same time enabled subsequent uncomplicated and

Fig. 2 Succession promoters present in the Ostoja Olsztynsko-Mirowska Natura 2000 protected
site: (a) grasslands being overgrown by Scots pine, Pinus sylvestris, silver birch, Betula pendula,
and common hazel, Corylus avellana; (b) common juniper, Juniperus communis, and buckthorn,
Rhamnus cathartica, on a limestone hill; (c) silver birch, Betula pendula; (d) hawthorn, Crataegus
spp.; (e) Scots pine, Pinus sylvestris.
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precise (low registration error) data fusion. Remote sensing data were acquired in early autumn,
between September 10 and 13, 2016, that is, at a time of intensive discoloration of the leaves,
which provided the opportunity to discriminate between species. Field data were gathered as
close as possible to the date of the flight: botanical field campaign measurements were made
on September 29 and 30, 2016.

3.2 Overview of Workflow

The research involved several steps, which are presented schematically in Fig. 5.
First, the raw hyperspectral and LiDAR data were the subject of initial processing. The accu-

racy of the atmospheric correction of hyperspectral imagery was evaluated, making use of spec-
trometer measurements made on surfaces that were assumed to be unchangeable, such as asphalt.
Raw RGB images were also orthorectified and the final product served for visual interpretation

Fig. 3 (a) RGB orthophotomap, (b) hyperspectral imagery, and (c) DSM generated based on
LiDAR data for a part of the study area.

Table 1 Technical parameters for the sensors used and the data they provided.43,44

Technical parameters

Sensor type

Airborne laser
scanner (FWF)
Riegl LMS-Q680i

Hyperspectral camera
HySpex

Medium format
camera RGBVNIR-1800 SWIR-384

Flight altitude (m) 735

Point density (points
per square meter)

7 — — —

Spatial resolution (m) — 0.5 1 0.1

Spectral resolution 1.55 μm 430 bands encompassing
0.4- to 2.4-μm spectral range

Red, green,
and blue bands

Spectral sampling (nm) — 3.26 5.45 —

FOV max (deg) 60 34 34 52

Overlap (%) 62.7 30 30 55.8

Overlap width (m) 855 450 450 720
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Fig. 5 The main steps of the research described in this paper.

Fig. 4 Location of measured trees and shrubs as referenced data.
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throughout all the stages of the research. In the second step, dedicated to feature extraction,
preprocessed hyperspectral and LiDAR data were used to prepare new informative products.
The hyperspectral imagery alone and the datasets created by combining it with the LiDAR data
are known to be powerful sources of information about vegetation and have been used in many
research studies involving species discrimination.23,25,26,28–30,45

In the next stage, botanical field measurements were manually processed, which made it
possible to determine the outlines of the research objects. The polygons created at this stage
were later used as a reference for species classification. The supervised feature selection done
in the fourth step made it possible to choose an optimal set of features for subsequent classi-
fication. The result of the classification process was then masked based on three criteria: height,
land cover, and the presence of shadows. In the final step, the result was evaluated using stat-
istical measures.

The whole process is described in detail in the following sections, which discuss each of the
aforementioned issues.

3.2.1 Preparation of reference data

The source data for preparation of the reference polygons were botanical field measurements
indicating the location and characteristics of the research objects, which were trees and shrubs.
Points were collected using a differential global positioning system (DGPS) receiver, with error
values of between 0.3 and 0.5 m on average and never exceeding 1 m. Although the measure-
ment accuracy was high, the creation of a reference polygon in the form of a buffer around a
point would not be an ideal approach. Bearing in mind the relationship between the measurement
accuracy and the size of the object, it could be expected that several valid pixels would be omit-
ted and some invalid ones added to a reference set in this way.

The procedure chosen in the first step assumed the creation of a buffer whose radius was
determined to be the object’s radius, as measured by the botany expert in the field, plus a few (2
to 3) meters. The additional enlargement of the buffer was done to account for a DGPS meas-
urement accuracy, as well as possible little misalignments between the measurements and remote
sensing data. The prepared vectors, i.e., circles, were then projected onto the pixel grid of the
hyperspectral data, dividing each circle into a number of elements reflecting pixels. In the last
step, these elements were visually evaluated against the presence of an object (a tree or a shrub),
mixed pixels on the border of an object and its surroundings, and the presence of shadows. This
work was carried out by a botany expert, who utilized many different materials: orthophotos,
hyperspectral mosaic, and a crown height model (CHM). An example of the resultant polygons
can be seen in Fig. 6.

A few nonsuccessive species present on the research area occurred mostly in high forest
stands, and therefore, reference polygons created for these specimens could not be based on
precise dGPS measurements. However, they were highly different spectrally and in crown shape,
thus easy to identify visually and vectorize on the remote sensing materials.

Finally, the prepared reference polygons were divided into training and validation samples
using stratified random sampling. Each stratum was a combination of a species and the values of
parameters that in the authors’ opinion characterized the most important of its features: its height,
crown density, and size defined by the radius. This operation ensured diversification of both the
training and the validation sets for each species. The final number of reference polygons used in
the classification process is presented in Table 2.

3.2.2 LiDAR data processing

Raw LiDAR data were preprocessed and oriented according to the standard procedure in Riegl’s
dedicated software RiProcess (RIEGL Laser Measurement Systems GmbH, Horn, Austria).46

Full-wave signal decomposition was also performed in Riegl’s software (RIEGL Laser
Measurement Systems GmbH, Horn, Austria),47 using a Gaussian decomposition technique
to describe the recorded signal, its extracted echoes and their descriptive parameters such as
the echo width and amplitude. Next, the preprocessed point clouds were classified using
Axelsson’s algorithm48 into ground, vegetation, and unclassified, according to the ASPRS
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LAS classification standard, in Terrasolid software (Terrasolid Ltd., Helsinki, Finland).49 The
result of the automatic classification was manually checked using cross sections views of the
point cloud in TerraScan and all detected errors were manually corrected by the airborne data
provider.

In the next step, LiDAR-based rasters, an input dataset for species classification, were gen-
erated. The processing of point clouds was performed using TU Wien OPALS software50 and
standard rasterization methods. To calculate several raster models, several additional calculations
were needed directly in the point clouds, for example for the normalized height or echo ratio
parameter51 of each point. The final raster datasets were divided into three groups based on the
point cloud class used to create each raster and according to the scheme used in BCAL soft-
ware:52 an ALL group (generated based on the points of all classes except noise), a GRD group
(generated based on ground points only), and a VEG group (generated based on vegetation

Table 2 The number of reference polygons used in the classification process.

Species name Number of calibration polygons Number of validation polygons

Silver birch, Betula pendula 14 18

Scots pine, Pinus sylvestris 15 19

Common juniper, Juniperus communis 20 25

Buckthorn, Rhamnus cathartica 13 20

Hawthorn, Crataegus spp. 15 19

Blackthorn, Prunus spinosa 13 17

Common pear, Pyrus communis 13 20

Other species 71 94

Fig. 6 (a) CHM, (b) hyperspectral imagery, and (c)–(f) overlaid with the reference polygons and
close-up of the study area fragment.
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classes points). This kind of division not only makes it possible to describe the parameters of the
vegetation itself more effectively but also to gather information about other parameters depend-
ing on penetration (i.e., the number of ground returns) and the ratio of vegetation to nonvege-
tation points. These models include, for instance, total vegetation density, vegetation cover, or
Interquartile range of height (IQR).53 All of the products generated in this way are listed in
Table 3. Similar features characterizing the structure of the analyzed objects were also used
in research studies by Chance et al.,25 Alonzo et al.,26 and Shen and Cao.28

3.2.3 Hyperspectral data processing

The processing of hyperspectral data started with the transformation of single raw images into
the useful product: a true orthomosaic. First, the images were radiometrically calibrated using
Hyspex RAD software (Norsk Elektro Optikk AS, Skedsmokorset, Norway),54 and a geometric
correction was then applied using PARGE software (ReSe Applications GmbH, Wil,
Switzerland).55 Next, the images were subjected to atmospheric correction, which was done with
the use of ATCOR4 software (ReSe Applications GmbH, Wil, Switzerland)56 omitting correc-
tions for terrain topography using variable water vapor and visibility estimation and predeter-
mined aerosol type (rural). The bands covering wavelengths longer than 2.35 μm contained high
noise, were cropped, leaving 430 bands that were subjected to the spectral polishing process
using the Savitzky–Golay algorithm with a range of 13 bands.57 In the last step, the single cor-
rected images were merged to produce a mosaic. The mosaicking process was carried out in
PARGE (ReSe Applications GmbH, Wil, Switzerland),55 using the “center cropped” option that
finds the middle of the overlapping areas between the images as a cut line. As mentioned in the
overview above (Sec. 3.2), the results of the atmospheric correction were evaluated based on
field measurements done using ASD FieldSpec 4 spectroradiometer (ASD Inc., Longmont,
Colorado). All of this work was done by the airborne data provider.

The output of the processing specified already was used in the next step to produce new,
informative products. The choice on the set of products followed extensive research studies
which aimed at determining the datasets that perform best in distinguishing between species.
Feature extraction involved calculating the minimum noise fraction (MNF)58 and vegetation
indices. MNF is a linear transformation consisting of principal component analysis rotation,
smoothing, rejection of the most noisy components, and finally retransformation to the original
spectral space.58 It was performed using ENVI software (Harris Geospatial Solutions,

Table 3 LiDAR-based raster dataset used in the experiment.

Feature type Statistics generated ALS classes

Amplitude Min, max, mean, and variance ALL, GRD, and VEG

Echo width Min, max, mean, and variance ALL, GRD, and VEG

nDSM Min, max, mean, and variance ALL and VEG

nDSM Range, quantiles 0.05 to 0.95 VEG

DTM Min, max, mean, and variance GRD

Echo ratio Min, max, mean, and variance ALL, GRD, and VEG

Intensity Min, max, mean, and variance ALL, GRD, and VEG

Point density Number of pts∕m2 ALL, GRD, and VEG

Total vegetation density Vegetation to ground points ratio —

Vegetation cover Vegetation to all points ratio —

IQR, interquartile range of height Range between quantiles 0.75 and 0.25 —

Slope DSM-based slope map ALL
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Broomfield, Colorado)59 and the resultant layers were put through a preselection process, in
which the noisy layers were deleted and only informative layers were kept. Vegetation indices
were calculated using both ENVI (Harris Geospatial Solutions, Broomfield, Colorado)59 and
EnMAP-Box software (The Environmental Mapping and Analysis Program, Earth
Observation Center EOC of DLR, Germany),60 and many different vegetation features were
characterized.

3.2.4 Feature selection

In the next step, the products of the LiDAR and hyperspectral data processing underwent a fea-
ture selection procedure. As described by Archibald and Fann61 and Singh et al.,62 the appli-
cation of feature selection is an important step that should be implemented before classification,
as it can reduce the time taken to build the learning model and increase the accuracy of the
classification result, improving its generalization ability as well. These benefits can be achieved
by removing redundant and insignificant features. In this research, the feature selection process
was performed using the RFE algorithm based on a random forest estimate of feature impor-
tance. The chosen algorithm is categorized in the literature as a wrapper approach.62

As a standard part of the random forest learning algorithm, an internal assessment of the
variable importance is calculated. For every model learned using the random forest classifier,
an estimation of the importance of each feature used for classification is available in the form of a
value between 0.0 and 1.0.

When used in an RFE workflow, this possibility is used in the following way. First, a clas-
sifier is learned using the full set of features. The resulting importance of the variable (or feature)
is then analyzed and typically one feature (or sometimes more) with the lowest score (i.e.,
the least useful in discriminating between target classes) is eliminated from the feature set.
The next round of learning is then performed, eliminating the next weakest feature, and this
procedure is repeated until all the features are exhausted or the accuracy of the model starts
dropping significantly, which happens as the number of features gets too small to discriminate
the classes.

A full set of validation metrics was calculated at each stage of this procedure (i.e., number of
features, Kappa values calculated in both hard and fuzzy way, validation accuracies on the train-
ing, as well as on validation set), then the metrics from the whole procedure were plotted on a
graph. Example of the selected metrics is presented in Fig. 7. The number of features considered
“best” was selected after manual analysis, aiming for relatively small number of most inform-
ative features still resulting in good learning/validation performance for a given dataset.

These properties of the algorithm made it possible to choose an optimal set of features for
classification, a combination of hyperspectral and LiDAR-based layers, making use of Cohen’s
kappa value63 to characterize each of the models.

3.2.5 Classification and postprocessing

As indicated in the previous sections, the classification involved making use of both the set of
layers determined during the feature selection stage and the reference polygons. The classifi-
cation was done using a pixel-based random forest algorithm, treating the succession species
as separate classes, and the rest of the species present in the research area as one class, in a
similar way to Colgan et al.45 and Graves et al.23

The result obtained from a classifier was an image indicating one chosen class for each pixel,
meaning that the research area was completely classified. Given the way in which the algorithm
works, there was no measure that specified the degree of similarity between the model (training
data) and each pixel analyzed. Therefore, areas that were outside the interest of the research
could not be eliminated automatically in the same step.

The exclusion process was realized by preparing a specific mask. Four types of deletion
criteria were defined:

• Anthropogenic objects (i.e., nonvegetative areas outside the analysis in the research) were
selected using 0.4 threshold value of the normalized difference vegetation index (NDVI).
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• Shadows (i.e., places without proper spectral information, where a correct classification
result could not be expected) were delineated using 0.2 threshold value of a selected near-
infrared band (band 140–0.86 μm).

• Very short vegetation, that is, mainly grasses, short herbal, and agricultural species, but
sometimes also young individuals representing succession species (the first group do not
take part in an ongoing succession process, whereas the second could not be properly
classified using data characterized by the parameters specified in Sec. 3.1), was delineated
using 0.3-m threshold value of the CHM.

• High vegetation including old trees, some of which could also originate from succession
but which were not of primary interest in the research, was delineated using 7-m threshold
value of the CHM.

The defined threshold values were determined visually in an expert approach.

4 Results

4.1 Feature Selection Result

The procedures described in the previous section gave rise to the following products. The first
one was an optimal set of features (hyperspectral and LiDAR-based raster products) for species
discrimination and thus for use in classification. From the 177 features entered into the feature
selection algorithm, a set of 24 were chosen, as listed in Table 4.

The set comprised 11 LiDAR-based products and 13 hyperspectral ones (five vegetation
indices and eight MNF products) suggesting that both types of information are important and
a diversified set is needed. Similar conclusions were drawn by Alonzo et al.,26 Shen and Cao,28

Colgan et al.,44 and Dalponte et al.29

LiDAR-based products express the geometrical characteristics of the analyzed objects. The
ability of airborne laser scanning (ALS) to penetrate the vegetation and register multiple echoes
allows the determination of many features of trees and shrubs, such as the heights and shapes of

Fig. 7 Selected validation metrics used in the feature selection procedure.
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individuals, the relative proportions of different parts of the objects, and, indirectly, leafage-type
characteristics. The use of these kinds of variables in the feature selection process makes it pos-
sible to find the unique characteristics of the species or ranges of values with which the species
may be described. As the results show, discrimination between succession species in the research
area was mainly achieved in the geometrical domain by the use of features representing different
statistics of the normalized digital surface model (nDSM), and therefore focused on the height of
the objects. Additionally, three of the chosen features were statistics of the echo ratio, which is a
measure of local transparency and roughness.51 Two other features that were used were also
connected with roughness. Sigma 0, which is the standard deviation of the distance between
the points and a fitted plane, was calculated from the nDSM with a three- or five-pixel kernel.
The set of features chosen in the feature selection process also included a variable characterizing
the intensity of the LiDAR signal. Since the amount of reflected and registered laser energy
depends on the character of an object, this phenomenon also follows the shape and complexity
of a tree and is consequently relevant in the differentiation of species.

Table 4 Set of features chosen at the feature selection stage.

No. Feature category
Feature name (for LiDAR-based:

class, type, and statistic)

1 LiDAR-based ALL nDSM max

2 LiDAR-based ALL nDSM mean

3 LiDAR-based ALL nDSM min

4 LiDAR-based ALL nDSM variance

5 LiDAR-based ALL Echo ratio mean

6 LiDAR-based nDSM sigma 3 sigma 0

7 LiDAR-based nDSM sigma 5 sigma 0

8 LiDAR-based VEG nDSM mean

9 LiDAR-based VEG echo ratio mean

10 LiDAR-based VEG echo ratio min

11 LiDAR-based VEG intensity mean

12 ENVI vegetation indices ARI2

13 EnMap-box vegetation indices LCI

14 EnMap-box vegetation indices LWVI2

15 EnMap-box vegetation indices PSSrc

16 EnMap-box vegetation indices SRtot

17 MNF Band 3

18 MNF Band 5

19 MNF Band 6

20 MNF Band 10

21 MNF Band 11

22 MNF Band 13

23 MNF Band 14

24 MNF Band 21
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The chosen hyperspectral raster products were complementary to the characterized LiDAR-
based features. Five vegetation indices turned out to be important for species differentiation:
anthocyanin reflectance index 2 (ARI2),64 leaf chlorophyll index (LCI),65 leaf water vegetation
index (LWVI2),66 simple ratio (SRtot),67 and pigment-specific simple ratio for carotenoids
(PSSRc).68 Four of these refer to vegetation characteristics that are related to the visible part
of the electromagnetic spectrum, i.e., the presence of leaf pigments (chlorophylls and carote-
noids). The amounts of the specified pigments are functions of time and may change differently
for different species; these are, therefore, significant in the analysis. The results of the study by
Alonzo et al.,26 which focused on urban tree species discrimination, confirm the high informa-
tion content of the visible spectral range when compared to other parts of the electromagnetic
spectrum.

The final index chosen LWVI2 is connected with the amount of water present in leaves, a
feature that is distinguished in the short-wave infrared part of the spectrum. The amount of water
(leaf turgor) is strongly dependent on the air (temperature and humidity) and soil (primarily
moisture) conditions, in which the plant grows. For individuals growing relatively close to each
other in similar habitat conditions, it can be expected that the amount of water in the leaves is
partially a function of the species.

Eight products of MNF transformation were difficult to analyze in detail; the spectral origin of
eachMNF band is not easy to trace, as it results from complex processing of source spectral bands.
It can only be observed that the chosen set did not comprise the most informative layers, that is, the
first ones. On the contrary, it included layers that were characterized by different information
contents, proving that the features needed to discriminate between species are very specific.

4.2 Classification Result

As shown in the overview of the workflow (Sec. 3.2), the set of features chosen as a result of
implementing the feature selection algorithm became the subject of classification. Maps showing
the spatial distribution of the succession species in the research area are presented in Fig. 8.

Fig. 8 (a) Spatial distribution of succession species in the Ostoja Olsztynsko-Mirowska research
area and (b) and (c) close-up of the study area fragment.
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The maps reveal that the most frequently occurring succession species are Pinus sylvestris
and Betula pendula (mainly in the northern part of the study area). A large part of the research
area is also occupied by nonsuccessive species, referred to here as “other.” Both of the above
species, Pinus sylvestris and Betula pendula, occur in compact single-species patches. In most
cases, Pinus sylvestris is present close to the border between arable land and dense coniferous
stands, whereas Betula pendula occurs in various places. The rest of the classified succession
species do not form regularly shaped patches and are mostly scattered. In general, the trees and
shrubs shaping the succession process form elongated patches corresponding to the fallows on or
close to which they grow. This is obvious given that fallows, as unused land, are places with
mostly undisturbed ecological processes.

4.3 Accuracy Assessment

The classification result was evaluated using statistical measures as part of an accuracy assess-
ment. The report included the value of Cohen’s kappa, which characterizes the global accuracy
of the product; F1 scores, which provide information about the classification accuracy of each
species (Table 5); and a confusion matrix (Table 6).

The value of Cohen’s kappa of 0.681 suggests that discrimination between succession spe-
cies was relatively successful; however, individual species were classified with various levels of
accuracy. The highest F1 score of 0.919 characterized the “other” class, which could have been
predicted in view of the large amount of reference data in the class and the broad range of values
it encompassed. The confusion matrix indicates that this class had a very low omission error
(1.9%) and a higher commission error (13.5%), spreading into other classes, especially
Pyrus communis, Betula pendula, and Prunus spinosa. The same tendencies in the commission
error of the “other” class were observed by Colgan et al.45 and Graves et al.23

It can also be noticed that three succession species, Betula pendula, Pinus sylvestris, and
Prunus spinosa, were classified with high accuracy, with F1 scores of 0.756, 0.874, and
0.694, respectively. The four remaining species were classified with average accuracy, ranging
from F1 ¼ 0.451 for Rhamnus cathartica to F1 ¼ 0.603 for Juniperus communis.

5 Discussion

In this study, a methodology for identifying succession species in an agricultural landscape was
proposed and evaluated. The results obtained here indicate that the selected approach is valid,
although there are several points that can be further developed.

Table 5 F1 scores and Cohen’s kappa.

Species name F1 score

Silver birch, Betula pendula 0.756

Scots pine, Pinus sylvestris 0.874

Common juniper, Juniperus communis 0.603

Buckthorn, Rhamnus cathartica 0.451

Hawthorn, Crataegus spp. 0.456

Blackthorn, Prunus spinosa 0.694

Common pear, Pyrus communis 0.531

Other species 0.919

Cohen’s kappa

0.681
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The first of these is the reference set, which plays a critical role in the classification. The
way in which this is prepared affects all stages of processing. The reference polygons deter-
mine the training (class definition) and validation (selection of an optimal set of features during
the feature selection step, determination of accuracy assessment validity) data. The level of
difficulty characterizing the preparation of an appropriate reference set in the agricultural envi-
ronment can be realized by comparing the nature and size of research objects (trees and shrubs)
with the economically viable spatial resolution of the airborne imagery. The monitoring of
succession is mainly focused on small vegetation identified at an early stage of the process.
The sizes of the objects to be classified are predominantly equal to four or nine times the size of
a pixel and represent crown diameters of 1, 2, or 3 m, respectively. Additionally, every indi-
vidual can be characterized by a different crown density, usually ranging from 30% to 100% at
the time of airborne data acquisition. As a result of these two issues and the fact that borders
between neighboring image elements (pixel grid) are created randomly in relation to the
research objects, a relatively small number of pure pixels and a large number of mixed ones
are present. The spectral response from the mixed pixels is a different proportion combination
of the signal from the analyzed tree or shrub and other objects present below or next to the
crown, such as the ground or shorter or neighboring vegetation. The selection of pixels that
have been sufficiently well defined in the spectral and geometrical domains for addition to the
reference set is, therefore, very problematic, and it is important for future studies to specify
the minimal values for key parameters of the research objects (e.g., crown density) that will
allow for a good definition. Determining these lower thresholds will help make the con-
sumer of the final product aware of the map’s information content. It can also support botany
experts in planning field campaigns by identifying objects that are suitable or unsuitable for
measurement.

As explained in Sec. 3.2.1, the reference polygons used in this research were created man-
ually by selecting groups of valid pixels (in the expert’s opinion) based on field data (points
indicating the object’s location) and remote sensing data. This approach has both advantages
and drawbacks. On the one hand, the manually prepared outline of a crown is likely to be
more precise than one created with the use of an automatic tool. On the other hand, the manual

Table 6 Confusion matrix.

Other
species

Common
juniper

Scots
pine

Haw-
thorn

Buck-
thorn

Common
pear

Silver
birch

Black-
thorn Total

Producer
accuracy

(%)

Other
species

3909 8 3 15 2 3 17 27 3984 98.1

Common
juniper

13 73 1 9 4 0 0 11 111 65.8

Scots pine 45 1 264 3 0 6 0 1 320 82.5

Hawthorn 94 3 2 95 4 6 0 2 206 46.1

Buckthorn 28 10 1 28 48 1 0 27 143 33.6

Common
pear

161 0 2 37 3 129 7 1 340 37.9

Silver
birch

116 0 0 0 0 1 219 0 336 65.2

Blackthorn 154 36 11 24 9 0 0 344 578 59.5

Total 4 520 131 284 211 70 146 243 413

User
accuracy (%)

86.5 55.7 93.0 45.0 68.6 88.4 90.1 83.3
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treatment of mixed pixels may be inconsistent between different individuals, while an automated
tool would act in a reliable way and would create an approach that is better fitted to the data.
Future research on this subject should be focused on testing different segmentation methods or
other automated procedures. The results of research studies by Alonzo et al.,26 Graves et al.,23

Colgan et al.,45 and Shen and Cao28 suggest that these techniques can be used for the correct and
efficient delineation of single trees based on the remote sensing data.

The most problematic issue concerning the classification stage seems to be the definition of
classes. The approach applied in the current work is directly related to the project’s needs: each
succession species was treated as a separate class, whereas the rest of the vegetation occurring
in the study area was placed in the “other” class. The results of the accuracy assessment suggest
that a few species are very similar to each other, based on remote sensing measures, and that
merging these should probably be considered in the future. Incorporating an automatic analysis
of the separability of the classes into the methodology may be an optimal way of dealing with
this problem. This separability analysis needs to be done individually, not only for different
groups of species but also for other individuals (due to intraspecies diversity) and obviously
for remote sensing data acquisition dates, as a result of the vegetation’s phenological stages
over time.

The postprocessing of the final product is also a challenging task. An image resulting from
the application of the random forest classifier characterizes each pixel as belonging to a single
chosen class; that is, the research area is entirely classified. The correct delineation of the spatial
extent of the species, therefore, requires further processing. This can be done in several differ-
ent ways:

• By collecting the reference polygons for each of the classes present in the research area,
this may be time-consuming and therefore expensive, especially if the study site is char-
acterized by high biodiversity, i.e., a large number of species.

• By creating a special mask, i.e., a layer containing the objects and areas for which a refer-
ence was not provided and which are therefore to be deleted from the classification map.
This method has been proven to be effective for eliminating objects and areas that are
relatively easy to define, such as anthropogenic areas or water, but is often useless for
deleting nonsuccessive species that are very similar to the research objects.

• Using a measure of similarity between the model (training set) and an analyzed pixel. The
calculated values can be thresholded to select pixels with low similarity values, i.e., those
that should not be included in any of the analyzed classes. This is the most straightforward
approach, but is not always available for a given classifier, for example, the random forest
algorithm used in this research. This problem was also discussed by Alonzo et al.26

• By utilizing a combination of the aforementioned approaches.

As indicated in Sec. 3.2.5, the classification map was postprocessed using a combined
approach. Different nonvegetative objects and areas were delineated using a special mask, while
pixels representing nonsuccessive species were chosen by creating an “other” class from a selec-
tion of representative species. This approach is easy to implement: it does not require any com-
plicated calculations and can be applied without collecting a reference for each species.
However, it often overestimates the “other” class because of its high variance. The issue of the
definition of the “other” class should be studied further in the future.

6 Conclusion

The aim of this research was to determine the potential of an accurate identification of succession
species present in an agricultural landscape with the use of high-resolution aerial remote sensing
data. Promising results were obtained from classifying a dataset comprised of hyperspectral and
LiDAR-based products using the random forest algorithm. The use of the RFE algorithm also
enabled us to observe that both data sources are important in the correct discrimination of spe-
cies. The operational use of the methodology presented here requires several elements to be
developed further; these are the preparation procedure for the reference polygons and the def-
inition of the classes used in classification.
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