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Abstract. We recapitulate the approaches of sensible heat flux (H) estimation, which is a
critical parameter in the remote sensing (RS)-based evapotranspiration (ET) models. We pro-
pose a classification scheme for the ET models considering their distinctions in approaches for
the estimation of H. Adhering to the proposed classification scheme, the theoretical back-
grounds ofH estimation in the single-source and two-source RS-based ET models are discussed
in brief, along with their unique characteristics. We addressed the role of critical parameters
that influenced the H computation under each model and presented the related progress in
the research. The importance of data assimilation techniques, as well as the application of un-
manned aerial vehicles for the uninterrupted estimation of turbulent heat flux, are discussed in
the context of single-source and two-source models. The influence of scale on the validation of
the models and the impact of the aggregation methods are discussed. We compared the per-
formance of the popular ET models for the estimation of H, utilizing the information obtained
from peer-reviewed articles. The limitations related to the RS datasets in terms of spatial and
temporal resolution and the scope of alleviating the shortcomings using the future satellite mis-
sions are discussed. We conclude by pointing toward the current challenges and the prospective
domain of research, which needs to be addressed critically in the future. © 2020 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.14.041501]
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1 Introduction

The sensible heat flux (H) and latent heat flux (λET) of the energy balance equation, have a
notable role in various domains of applications spanning from climate change to water resource
management. In the remote sensing (RS) perspective, sensible heat flux computation gained
more attention because of its sensitivity and computationally complex nature among all other
components in the surface energy balance equation.1,2 The sensible heat flux parameter has a
significant impact on the λET values as most of the RS-based models calculate λET as a residual
of the surface energy balance equation as follows:3

EQ-TARGET;temp:intralink-;e001;116;213λET ¼ Rn − G −H; (1)

where Rn is the net radiation (Wm−2), G is the soil heat flux (Wm−2), H is the sensible heat flux
(Wm−2), and λET represents the latent heat flux (Wm−2).

The RS-based evapotranspiration (ET) models attained much importance in the last four
decades due to the accelerated advancements in the satellite RS technology. Though the RS-
based models are preferred to other approaches due to their better estimation of H capability
under water-stressed conditions, there exist many challenges, such as lack of techniques for
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aerodynamic temperature measurements, use of radiometric temperature as a surrogate to aero-
dynamic temperature, and existence of heterogeneous partial canopy cover conditions.4

This review is an attempt to organize the outcomes obtained from the research carried out in
the realm of sensible heat flux computation focusing on RS-based ET models. This review tar-
gets to create a comprehensive link between the approaches through a new classification scheme
based on their mode of operation for the estimation of sensible heat flux.

1.1 Hybrid Nature of Sensible Heat Flux Estimation Approach

The sensible heat flux estimation could not be considered as a sole RS approach as many of the
models utilize the combination of micrometeorological and RS concepts. Though the RS models
consider land surface temperature (often referred as LST or Ts or Trad) as the primary boundary
condition, they could not account for the uncertainty due to canopy cover and turbulence in the
atmosphere. The parameters such as aerodynamic roughness of the surface and the wind velocity
are also crucial under the non-neutral conditions of the atmosphere. Therefore, the estimation of
H needs a hybrid approach by incorporating RS and micrometeorological concepts. This review
mainly focuses on the RS aspects of the hybrid approach.

1.2 Organization of the Paper

This review starts with the concepts of resistance-based models with historical developments that
guided the evolution of RS-based models. The RS-based ET models grouped under the proposed
classification scheme are linked to form a comprehensive account of the progress in the sensible
heat flux research in the succeeding sections. This review further discusses the importance of
data assimilation techniques, the influence of scale changes on field validation of the models, and
the recent developments in the use of unmanned aerial vehicles (UAVs) for the estimation of
turbulent heat flux. This review concludes with a record of historical milestones along with the
current developments in sensible heat flux related research.

2 Concepts of Resistance-Based Models for the Estimation of
Sensible Heat Flux

The concept of resistance in plant physiology dates back to 1900, and later Monteith proved that
the Ohm’s law-based resistance approach could simplify the estimation of H from natural
surfaces.5 The “Penman–Monteith” (PM) equation (“big-leaf” approach), which follows the
resistance-based concept, was the simple model used in the one-dimensional single-source
descriptions of ET process, which is expressed as6

EQ-TARGET;temp:intralink-;e002;116;282H ¼ ρCpðT0 − TaÞ
raa

; (2)

where raa is the aerodynamic resistance between the source (canopy) and the reference height,
T0 is the aerodynamic temperature (K), Ta is the air temperature (K), Cp is the specific heat of air
at constant pressure (J kg−1 K−1), and ρ is the mean air density (kgm−3). One of the well-known
practical application of the big-leaf approach is the FAO-56 (Irrigation and Drainage Paper
No. 56) of Food and Agricultural Organisation.7 The performance of big-leaf based models
mainly constrained to the rational calculation of an “excess resistance” term quantified by
kB−1. The term kB−1 [which is equal to lnðz0m∕z0hÞ] explains the difference between the height
of the equivalent surfaces for momentum absorption (z0m) and heat transfer (z0h).

8

The inability of the big-leaf concept to represent the canopy resistance for sparse vegetative
conditions led to the development of two-source models where the estimation of component
fluxes of soil and vegetation is essential.9 The two-source conceptual framework incorporated
the influence of soil and vegetation components separately and categorized as series and
parallel ET models.10 The presence of canopy structure with stacked multiple layers became
the impetus for the development of multi-source models. The turbulence within the canopy and
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the counter-gradient fluxes, which are prominent in multi-layered canopies, make the multi-
layered models complicated and limited.11

3 Importance of Radiometric Temperature and Aerodynamic
Temperature in ET Models

The radiometric surface temperature (Ts) derived from RS platforms is used as a proxy for aero-
dynamic temperature (T0) in RS-based models.3 The single-source models primarily rely upon
the relationship, which accounts for the difference between T0 and Ts. In the partially vegetated
areas, the difference between Ts and T0 can even reach up to 10°C resulting in the overestimation
of H.12–16 To overcome this difference, an extra resistance term rex, derived from kB−1 was
incorporated in the bulk transfer equation.17 Due to the uncertainty regarding the dependency
of kB−1 on surface temperature, wind speed, and ground cover conditions, many methods were
proposed without incorporating kB−1 parameter.14,18–20 Among them, the temperature gradient-
based approaches reduced the errors contributed by the air temperature and successfully adopted
in many of the current popular RS-based models.19,21

4 Atmospheric Stability Corrections and Aerodynamic Resistance

The earlier ET models assumed the existence of neutral atmospheric stability with homogeneous
land surface temperature and stable wind velocity profile at the near-surface layers. The occur-
rence of such neutral stability condition is rare in heterogeneous canopy cover with varying soil
moisture conditions.22 As the soil moisture depletes, the canopy temperature would rise, and
the air density above the canopy would reduce, and it creates unstable conditions with increased
heat transport. Similarly, at unstable conditions, the rate of decrease of air temperature with
an increase in elevation is higher than the adiabatic lapse rate, which promotes the increased
exchange of sensible heat flux. Contrary to this, at stable conditions, the rate of heat transfer
decreases. The incorporation of atmospheric stability correction procedures in the estimation of
aerodynamic resistance (rah) accounted for the aforementioned micrometeorological changes
that influenced the sensible heat flux computations.23,24 Numerous studies proposed Monin–
Obukhov (MO) stability parameter (ζ) or Richardson’s number (Ri) as the indicator of the
atmospheric stability conditions.16,17,19,25,26 Generally, an iterative procedure is adopted while
using ζ as a quantifier for atmospheric stability changes. Instead of ζ, many researchers had
used Ri to avoid the iterative procedures in various surface energy balance models.3,27,28

Though the Richardson’s number found its place in various studies, it was not usually preferred
over ζ since it is an unknown function of height and often approaches a constant value for
near-surface layer applications.25

5 Classification of ET Models Based on Sensible Heat Flux Estimation
Approach

The classification scheme unlocks opportunities to understand the characteristics of models sys-
tematically. One of the well-known classification methods developed by Courault et al. catego-
rized the ET models into four different classes based on the complexity, considering the balance
between the empirical and physical approaches applied in the models.29 The four categories are
direct empirical methods, the residual methods of the energy budget, the deterministic methods,
and the vegetation index-based methods. The direct empirical category includes RS-based semi-
empirical ET models, and the residual models use empirical and physical modules that are opera-
tional. The deterministic models are more complex models where the RS data are assimilated
at different modeling levels. The vegetation index-based category of models uses RS data to
compute reduction factors (e.g., crop coefficient and Priestley–Taylor coefficient) to estimate
ET. Later, a new classification scheme by Bhattarai et al. grouped single-source energy balance
models into three categories based on the methodology adopted for the estimation of H.
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The categories are hot and cold pixel-based full energy balance models, excess resistance-based
full energy balance models, and partial energy balance models.30

The current population of RS-based ET models that include single- and multi-source models
demands a generic theme of classification that facilitates a comprehensive approach with a better
distinction between the classes. The approach should also improve the flexibility to update future
developments. In view of these requirements, this review proposes a classification scheme for
RS-based ET models as an extension of the classification scheme by Bhattarai et al. The current
classification scheme considers the sensible heat flux estimation approach as the criterion for
categorizing the models.

The classification scheme (Fig. 1) broadly divides the models into iterative and non-iterative
models. The iterative models estimate H using an iterative procedure based on an initialization
and termination condition. The non-iterative models are further classified into feature space-
based and non-feature space-based models. The feature space-based models among non-iterative
category utilize two-dimensional feature space [e.g., vegetation fraction cover-land surface
temperature (VFC-LST) space] to estimate the parameters essential for the models. The non-
iterative, non-feature space-based models are simple and straightforward that retrieve the model
parameters without the aid of feature space or iterative procedure.

6 Sensible Heat Flux Estimation Approaches in Single-Source ET
Models

Statistics of the peer-reviewed articles published during the last 10 years (source: Ref. 31)
revealed that the surface energy balance algorithm for land (SEBAL), mapping evapotranspi-
ration at high resolution with internalized calibration (METRIC), and surface energy balance
system (SEBS) are the popular models of the single-source category [Fig. 2(b)]. Though these
models are more suitable for semiarid regions, the spatial distribution of the sites chosen
for executing these models are spread across all the climatic regions except polar group
(as per Köppen–Geiger climate classification32). Refer to Fig. 2(a) for the spatial distribution
of sites across the globe where popular models were tested.

6.1 Sensible Heat Flux Estimation Approaches in Iterative Single-Source
ET Models

The SEBAL,19 METRIC,21 and SEBS33 are the iterative models that follow the H estimation
procedure as a hybrid approach using micrometeorological and RS concepts. METRIC is an
improved version of SEBAL that provides relatively more accurate estimates of ET at a higher
spatial resolution and more suitable for advective conditions. The similarity of SEBAL and
METRIC in their theoretical framework, underlying assumptions, and data requirements for

Fig. 1 Classification of RS-based ET models based on sensible heat flux estimation approaches.
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H estimation makes both the models compatible with any common modifications.19,34 The lim-
itations of SEBAL to operate at different atmospheric stability regimes and its semiempirical
nature resulted in the development of a physically based model, SEBS.16 The SEBS uses relative
evaporation fraction for computing the surface energy balance components using calibration
limits called “wet” and “dry” limits using non-subjective procedure (use of equations). In con-
trast, METRIC and SEBAL use reference ET fraction, which is calibrated using hot and cold
pixels (anchor pixels) selected by the subjective judgment of the user.

In SEBAL and METRIC, the two anchor pixels from the scene with extreme climatic and
hydrological conditions (well-irrigated vegetation and dry open land) employed to calculate
near-surface temperature gradient (dT) for the estimation of H. Stability corrected rah and sta-
bilized dT values were obtained at the calibration pixels during the iterative stability correction
procedure using MO theory. These calibration pixels establish an empirical linear relationship
between dT and Ts that further calculates H for every Ts values. The iterative autocalibration
procedure called calibration using inverse modeling of extreme conditions (CIMEC) mitigate the
effect of error that occurred in Ts measurements METRIC and SEBAL.35 Due to the lack of arid
open land with very high radiometric heating in agricultural areas, the assumption of zero latent
heat flux (λEThot) in SEBAL was modified as non-zero latent heat flux in METRIC. This modi-
fied assumption also accommodates the presence of residual moisture content at hot pixels and
avoid the underestimation of H.36 Similarly, the assumption that equated the ET at the cold pixel
to 1.05 times the reference ETwas not considered in METRIC due to its non-applicability during
early growing seasons as well as non-growing seasons.34 The subjective nature of the anchor
pixel selection process and the higher variability in the surface conditions for higher Ts values
make the selection of hot pixels difficult.37 The utilization of available energy (Rn − G) as an
additional input along with NDVI and Ts were useful in retrieving the candidate pixels with
distinct variation.38 By considering the soil moisture and available energy as influencing aux-
iliary parameters for the endmember selection process, Mohan et al.39 proposed the integration of
synthetic aperture radar (SAR) derived soil moisture into SEBAL for anchor pixel selection
process. The semiautomatic statistical approach by Allen et al., a fully automatic procedure

(a)

(b) (c)

Fig. 2 (a) Study sites across various continents for single-source and two-source models;
(b) statistics of articles published in peer-reviewed journals focusing RS-based single-source
ET models; and (c) statistics of articles published in peer-reviewed journals focusing RS-based
two-source ET models. Prepared using the data collected from Ref. 31.
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based on exhaustive search algorithm by Bhattarai et al. and the modified version ASEBAL with
an automated endmember selection process are the recent related developments in the domain of
anchor pixel selection process.40–42

Single-source models use aerodynamic resistance as an essential parameter that captures the
spatial variability of H. The aerodynamic resistance and its component parameters (surface
roughness lengths) are characterized by spatially varying canopy architecture.43 The roughness
length calculation is sensitive to the changes in wind speed, soil, and canopy temperature and
may result in significant temporal variability. To account for these, a physically based model was
developed by Su et al.16 to incorporate the surface condition and the aerodynamic variables from
the ground. Such physical models require detailed information at the ground level at all scales of
applications, and the scaling of the models from local to regional scales demanded a considerable
amount of ground sampling.

RS-based ET models explicitly do not consider soil moisture variations for the estimation of
H, relying upon the assumptions that the Ts and NDVI indirectly consider and incorporate the
influence of soil moisture.44 However, at water-stressed conditions, the radiometric temperature
is inadequate to represent the effect of soil moisture and biophysical parameters. At limiting
conditions of soil moisture, z0h increases whereas z0m decreases, which leads to the changes
in kB−1 values. The influence of kB−1 on varying soil moisture conditions contributed to the
development of various empirical approaches, which included the soil moisture information into
the bulk transfer equation in SEBS.44–46 In METRIC, the incorporation of soil moisture related
parameters is done through the Priestley–Taylor parameter (αPT) by choosing a value different
from the usual value of 1.26 according to the changes in soil moisture content. This modified
approach is often referred to as wMETRIC.47

In the case of METRIC and SEBAL, the estimate of Rn and H had a constant bias across the
scene. The radiometric accuracy of the satellite data, the assumptions related to the models, and
the uncertainties in the parameters used for the estimation of surface roughness and wind speed
were the significant factors that influenced the magnitude of the bias.40 The application of
METRIC and SEBAL in arid and non-agricultural areas resulted in the overestimation of H,
inferring that both the models are not suitable for sites with extreme climatic conditions.48,49

Unlike SEBAL and METRIC, the application of SEBS in non-agricultural areas becomes ver-
satile due to its non-subjective approach for the selection of the extreme wet and dry limits.
Among the single-source models, SEBS is more sensitive to changes in the surface to the air
temperature gradient (Ts − Ta) for the computation ofH compared to the individual effect of Ts,
and it is more sensitive than the surface aerodynamic parameters.50–52 The SEBAL and METRIC
avoided the direct use of Ts by adopting the near-surface temperature gradient (dT) estimated by
CIMEC process, which eliminates the systematic bias in the calculated Ts values.

53 When com-
paring the performance of the single-source iterative models, the major difference was observed
in the estimation ofH. SEBAL consistently underestimatedH and showed more than 65% varia-
tion from reference eddy covariance (EC) measurements.54 The deviations for METRIC and
SEBS were 34% and 56%, respectively.55,56 For λET, all three models exhibited less variations
(SEBAL-13.5%, METRIC-15.1%, and SEBS-20.6%) compared to H. The higher deviations of
H in these models could be explained by their inability to partition the soil and vegetation com-
ponent fluxes and their extreme sensitivity to the calibration pixels. A modified approach called
M-SEBAL was introduced to decrease the bias inH in SEBAL by determining the anchor pixels
from VFC-LST space. This approach minimized the deviation of H from 65% to 24.8%.54 The
above values are only for reference to show the general trend of each model outputs.

6.2 Sensible Heat Flux Estimation Approaches in Single-Source
Non-Iterative ET Models

The single-source models of non-iterative category compute H as a residual of other energy
balance components, using evaporative fraction (EF). Models such as surface energy balance
index (SEBI), simplified surface energy balance index (S-SEBI), simplified surface energy
balance (SSEB) model, and operational simplified surface energy balance (SSEBop) model
are listed under this category. Among these models, SSEB has tested for all climatic zones
except the polar zone, whereas its operational version SSEBop was tested only for tropical and
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dry climatic zones. Minimal studies are available for SEBI and tested for very few locations
grouped under continental and dry climatic zones. The S-SEBI, the simplified version of
SEBI, has successfully applied at dry, temperate, and continental zones.

6.2.1 Feature space-based models

S-SEBI is a simplified operational RS-based model, in which the extreme temperatures at the
boundary conditions are extracted from the Ts-reflectance spectral space. The two assumptions
followed in S-SEBI are the existence of constant atmospheric conditions as well as the presence
of calibration pixels within the area of application.57 S-SEBI utilizes Ts-reflectance feature space
to determine EF without any ancillary data sets or meteorological data from the field.57,58 S-SEBI
model is empirical, which restricts the extensive application of the model to global scales. Hence
it is essential to calibrate the model for diverse climatic conditions. For instance, in semiarid
areas with vegetation, EF exhibits very low values as a water deficit indicator, and therefore,
a non-evaporative fraction-based approach was proposed for estimating sensible heat flux.59

Since S-SEBI is a pure image-based model that entirely relies upon the feature space for model
parameters, the current focus of the research is to reduce the atmospheric and sensor related
errors from the feature space. The use of surface albedo calculated by weighted surface reflec-
tance approach is generally adopted for the feature space creation in S-SEBI. To improve its
performance, a proper view zenith angle correction is essential. The surface broadband albedo
calculated by the integration of bidirectional reflectance distribution function was found to be
effective for the estimation of surface energy balance components in S-SEBI.60 Regarding the
performance of the model compared to other single-source models, S-SEBI showed comparable
performance with SEBAL and METRIC at arid conditions and the model was less suitable for
wet conditions as it overestimated H.61

6.2.2 Non-feature space-based models

The SEBI became the precursor of RS-based ET models, which laid the strong theoretical foun-
dations for all the present-day single-source models. It is the modified parametrization of crop
water stress index developed by Jackson et al.62 and obtained by simultaneously solving the
energy balance equation and the profile equations for sensible heat flux and latent heat flux
at two extreme conditions of potential ET and zero ET in the study area. SEBI estimates the
H based on the difference between the plant surface temperature and air potential temperature
at the top of the atmospheric boundary layer.63 The model is unique because of its capability to
handle situations when sufficient wet and dry pixels are not available in the study area. It uses the
temperature difference obtained either from radio soundings or weather prediction models for
estimating boundary conditions. The requirement of essential meteorological variables from the
upper boundary of planetary boundary layer (PBL) made the model less operational as well as
less compatible for RS datasets.64

SSEB is a regional scale model that inherits the concept of “near-surface temperature gradient
(dT)” from SEBAL and METRIC for the actual ET estimation. The linearity assumption of
sensible heat flux in SEBAL (H is proportional to dT) is extended for the estimation of latent
heat flux in SSEB. The calibration pixels that correspond to zero ET and potential ET are used to
establish a linear relationship between the temperature gradient and the actual ET, which further
employed to derive the EF for any pixel within the study area. The SSEB model was modified to
SSEBop by predefining the hot and cold extremes, which enhanced its potential as a large-scale
operational RS model.65 The models such as SSEB, SEBAL, and METRIC designate the
candidate pixels for a limited period, during which a uniform hydroclimatic condition exists.
In actual field conditions, the candidate pixels change their locations within the same study area
as per the variations of environmental factors. Contrary to this, the assumption of changing can-
didate pixels was discarded in SSEBop as it found to be less influential in the context of the
accuracy of outputs obtained. Therefore, the candidate pixels were predefined and remained as
same for the entire period for which the fluxes are estimated. The underestimation of H at dry
open areas is a major limitation of the model. At vegetated areas, SSEB exhibits comparable
performance with SEBAL and METRIC.66
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7 Sensible Heat Flux Estimation Approaches in Two-Source ET Models

The two-source approach is more robust than the single-source approach due to its ability to
partition the canopy and soil flux components. It also handles the influences of atmospheric
and the sensor look angle effectively. The two-source models predict more accurate values
of H in sparse canopy conditions and provide a reliable physical framework for capturing the
variations of the aerodynamic resistance compared to single-source models.67,68 The two-source
models are differentiated based on the approaches adopted for partitioning the directional radio-
metric surface temperature into canopy and soil temperatures (TC and TS). Among iterative mod-
els, two-source energy balance-Priestley–Taylor (TSEB-PT) and two-source time integrated
model (TSTIM) and its operational versions such as atmosphere-land exchange inverse
(ALEXI) model were tested for all climatic zones except polar. Only limited studies are available
for two-source energy balance-Penman–Monteith (TSEB-PM), and it was tested only for dry
climatic conditions. Among non-iterative models, the best performing model hybrid dual-source
scheme and trapezoid framework-based evapotranspiration model (HTEM) was tested for dry
and continental climates only. The two-source energy balance model-two angle (TSEB-2A) that
utilizes two-directional surface temperature has few studies available and was tested for dry,
tropical, and continental climates [refer Fig. 2(a)]. The statistics of the peer-reviewed articles
published during the last 10 years showed that the TSEB-PT model gained more attention com-
pared to other RS-based TSEB models [Fig. 2(c)].

7.1 Sensible Heat Flux Estimation Approaches in Iterative Two-Source ET
Models

The TSEB-PM69 and TSEB-PT70 are the two different approaches, under the iterative category of
two-source models, which differ mainly based on the fundamental equation used to estimate the
initialization parameter (λEC) for iteration. The TSEB-PT model calculates λEC by the PT equa-
tion, assuming potential transpiration whereas, in TSEB-PM the calculation follows PM equa-
tion. In TSEB-PT, the iteration begins by assigning the value of PT coefficient (αPT) as 1.26,
which progressively assumes smaller values in the subsequent iterations. The iteration procedure
dynamically estimates various energy balance components as detailed by Norman et al.69 During
each iteration, new values of TC and TS are calculated from TradðθÞ and used to estimate com-
ponent sensible heat fluxes (HC and HS) by substituting in bulk transfer equation. The soil com-
ponent of the latent heat flux (λES) is estimated during the progress of the iteration procedure as a
residual of overall energy balance components. During each iteration, the value of component
fluxes is progressively revised. When the λES stabilizes to a positive value the solution for com-
ponent fluxes are achieved. In the case of the water-stressed condition, the value of λEC is over-
estimated, which converge to a negative value of λES. In such cases, the λES is set to zero, andHS

and HC are recalculated. The use of the constant initial value of αPT (1.26) for all the cases of
atmospheric, soil, and ground cover conditions is the major limitation of TSEB-PT approach.
At advective conditions, the actual value of αPT is much higher than 1.26, which might lead to
overestimation of H.71 In order to account for varying ground cover conditions, the fractional
vegetation cover, f in the PT equation was modified by an empirical function of soil adjusted
vegetation index.72 The influence of changing atmospheric and soil moisture conditions was
addressed by a modified approach Gc-TSEB, which incorporated the canopy conductance
Gc (a function of LAI, water vapor deficit, and visible radiation) in the model to calculate the
energy balance components.73

Unlike the PT approach, the PM approach requires vapor pressure deficit and canopy resis-
tance information to execute the model. This could account for the increased transpiration rate
due to advective conditions as well as for the low relative humidity cases. TSEB-PM approach
estimated more accurate soil and vegetation component temperatures and showed slightly supe-
rior performance compared to the PT approach at normal conditions.74 The unavailability of air
temperature and wind speed measurements for a larger area hinder the applicability of TSEB-PT
and TSEB-PM approaches for larger-scale applications. When comparing the performance of
PT and PM approaches, both the models showed almost similar performance with a slight upper-
hand for TSEB-PM. The root-mean-square error (RMSE) of estimated H was 44.9 and
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47.5 Wm−2 for TSEB-PM and TSEB-PT, respectively.75 The λET also showed a similar trend
(TSEB-PM-70.6 Wm−2 and TSEB-PT-75.3 Wm−2).

TSTIM is a time-integrated iterative two-source model essentially meant for regional to
continental-scale applications.76 The model is an extension of TSEB models that use two instan-
taneous satellite acquisitions to estimate the sensible heat flux. The two satellite observations,
which are acquired just after the sunrise and before noon, reduce the effect of advection to a
reasonable extent and avoid the requirement of local calibration and precise air temperature
data.77 The two submodels associated with the TSTIM are surface layer component (SLC) and
PBL component. The SLC follows the TSEB modeling schemes that compute instantaneous
sensible heat fluxesH1 andH2 using radiometric temperature data at times t1 and t2 by assuming
a linear increase in the sensible heat flux.78 The ALEXI model is a well-known time-integrated
model that retrieve the surface energy fluxes at 5 to 10 km resolution using the two instantaneous
values of sensible heat flux.79 Most of the studies related to ALEXI used the LST from GOES at
a temporal resolution of 30 min or from Meteosat Second Generation (MSG) retrieved at every
15 min. The spatial resolution of GOES and MSG are 4 km and 3 km, respectively, at nadir.

7.2 Sensible Heat Flux Estimation Approaches in Non-Iterative Two-Source
ET Models

The requirement of locally measured surface roughness length and wind speed narrowed the
application potential of two-source iterative models for heterogeneous landscapes with non-
linear surface characteristics. In iterative PTand PM formulations, the ambiguity of the initializing
parameters induced significant biases in the H estimations. The use of directional radiometric
temperature to estimate the soil and vegetation component temperatures eliminates the use of
initializing parameter to estimate the canopy transpiration. The non-iterative two-source models
estimate component temperatures either using simultaneous observations of directional temper-
atures from two viewing angles, or by surface temperature measurements from a single viewing
angle. The retrieval of component temperatures by single Ts observation is complex and requires
a “VFC-LST feature space” and in situ meteorological data sets. Those models that utilize the
VFC-LST feature space are classified as non-iterative feature space-based models.

7.2.1 Non-iterative feature space-based models

The scatter plot of VFC versus LST forms a trapezoidal or triangular space for an area with a
wide range of land-use and land-cover types. The trapezoidal spectral space could adequately
account for the water stress, canopy transpiration, and the aerodynamic effects of the surface
compared to triangular space.80,81 The VFC-LST space-based models gained attention due to its
site-independent model parameterization capability. These models decompose the TradðθÞ into
TC and TS using soil surface moisture availability isopleths superimposed on trapezoidal space.81

The warm edge and the cold edge of the trapezoidal space (Fig. 3) define the boundary condition
for VFC-LST space-based models. There exist several isopeistic lines within these boundary
conditions that represent the same soil surface moisture availability for the same TS values.82

One of the earlier versions of the VFC-LST space-based patch model called two-source trap-
ezoidal model for evapotranspiration (TTME) utilizes the trapezoid framework and isopleths of
soil surface moisture availability to calculate energy balance components. The Ts;max that defines
the upper boundary conditions requires stability corrected aerodynamic resistance through an
iterative process (non-iterative for estimating surface energy balance components), and the
Ts;min corresponds to the spatially averaged air temperature (Ta). The TTME uses these boun-
dary conditions for decomposing radiometric temperatures into soil and canopy component tem-
peratures. These component temperatures are subsequently used for calculating component
evaporation fractions. The model estimates H as a residual of the energy balance equation, and
the values are sensitive to the boundary conditions.83 HTEM is a modified form of TTME model
that adopts a hybrid scheme of the layered and the patch approaches. The soil and vegetation
components ofH are estimated directly using component temperatures in bulk transfer equation.
The procedure for the retrieval of component temperatures is the same as that of TTME model.
Both TTME and HTEM rely upon the average value of Ta, albedo, aerodynamic resistance, and
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water vapor pressure of the entire image, which may lead to the incorrect temperature
transformations.84 The modified version of trapezoidal approach enhanced two-source evapo-
transpiration model for land (ETEML) focuses on estimating canopy–air temperature gradient
(TC − Ta) and soil–air temperature gradient (TS − Ta), which eliminates the need for spatially
varying air temperature. In ETEML, physically based theoretical equations define the boundary
conditions rather than the empirical equations. The conventional trapezoidal space used in
TTME, HTEM, and ETEML assumed to have a horizontal wet edge, which was determined
by the lowest air temperature in the study area. The invalid cold edge assumption often led
to the underestimation of the EF. The modified two-stage LST-VFC feature space-based,
“two-source model for estimating evaporative fraction (TMEF)” succeeded this limitation by
calculating the cold edge by PT equation.85 The comparison of LST-VFC space-based models
revealed that the H estimation of HTEM showed the least deviation (14.5%) from reference
EC measurements compared to ETEML (18%) and TTME (24.5%).83,86,87 In the case of λET,
the values are 9.1%, 1.5%, and 24.7% for HTEM, ETEML, and TTME, respectively.

7.2.2 Non-iterative non-feature space-based models

The directional radiometric surface temperature viewed from two different sensors can infer
the canopy geometry and the vertical canopy temperature profile. It also nullifies the direc-
tional influences of TS while substituting for T0.

88 TSEB-2A showed lesser mean absolute
percentage error compared to single-source iterative models (λE-15% and H-35% from EC
measurements89). The limited availability of sensors with simultaneous measurements in two
view angles made this concept less operational. The along track scanning radiometer
(ATSR) onboard ERS-1 satellite, advanced along-track scanning radiometer (AATSR) onboard
Terra satellite, and ASTR-2 onboard ERS-2 were used in various studies to prove the strength of
the dual view angle approach.90,91 The data from SLSTR of Sentinel-3 are a possible data source
to implement the dual angular approach (refer to Table 4 in Appendix A for sensor details). The
TSEB-2A calculates TC and TS, by solving two simultaneous equations for radiometric surface
temperature ðTradðθÞ ¼ ffðθÞT4

C þ ½1 − fðθÞ�T4
Sg

1
4Þ from two different view angles (θ1 and θ2).

The dual-angle approach eliminates the dumping of bias into H, as it directly calculates sensible
heat flux from TC and TS. The H estimation is extremely sensitive to the clumping of vegetation
cover, and its importance was proved in the initial trials of TSEB-2A using the airborne data
collected during First International Satellite Land Surface Climatology Project (ISLSCP) Field
Experiment (FIFE).89 The simplified two-source energy balance (STSEB) model is a simplified
patch version of TSEB model of non-iterative class, which excludes the PT approximation and
estimates the total sensible heat flux as the weighted sum of canopy and soil component fluxes at

Fig. 3 VFC-LST feature space, applicable to the models such as TTME, HTEM, and ETEML.
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the field scale. STSEB is an efficient model that requires fewer input variables compared to
iterative TSEB models but necessary to collect the field-measured component temperatures.92

8 Unmanned Aerial Vehicles for Turbulent Heat Flux Estimation

The lack of sufficient in situ data sources for the validation of ET models and the requirement
of the high-resolution dataset with frequent coverage prompted the utilization of UAV techniques
in the domain of surface energy budget.93 The UAVs provide economic and compact instrumen-
tation for real-time monitoring of fluxes in precision farming. The fixed-wing UAVs are preferred
over rotary wings for large-scale field applications where heavy RS cameras and micrometeoro-
logical sensors are required. The multi-spectral and thermal infrared sensors attached to the UAV
platform bridge the gap in scale between the field-based and satellite-based observations. Models
such as SEBAL, METRIC, and TSEB-PT have been tested for UAVapplications, and the TSEB-
PT have exhibited better potential for UAVapplications.94 These models are designed for satellite
images with medium to coarse resolutions and modifications are required while using it for high-
resolution UAV images. The larger data volume for smaller areas demands complex algorithms to
achieve better results. TSEB-2T95 and deriving atmosphere turbulent transport useful to dummies
using temperature (DATTUTDUT)96,97 are the two models that suit better for UAVapplications.
The TSEB-2T model employs contextual Trad-NDVI space to estimate the soil and vegetation
component temperatures. The model identifies pure pixels of vegetation and soil from the
high-resolution images for the estimation of TS and TC. In contrast to contextual models,
DATTUTDUT model estimates EF solely from surface temperature information. The small
multi-function research and teaching Sonde application proved the reliability of temperature and
humidity measurements from UAV platforms for the estimation of sensible heat flux.98,99

Another recent research related to surface flux estimations revealed that the wind speed, temper-
ature, and relative humidity from UAVs were in good agreement with ground-based values and
the data quality was sufficient for the computation of the bulk heat transfer coefficient.100

9 LST and ET Models

The accurate estimation of LST is crucial in RS-based ET models due to its importance as a
boundary condition. The first ISLSCP-FIFE reported an error of up to 100 wm−2 for instanta-
neous H measurements due to variations in measured thermal infrared measurements.101 The
appropriate calibration and atmospheric correction of satellite-based thermal infrared observa-
tions are essential to minimize these errors.102 Due to the complexities and cost of the technol-
ogy, there are very few operational satellites with thermal bands available to the user community
(refer to Table 4 in Appendix A for sensor details).

9.1 Thermal Remote Sensing Missions

The history of thermal RS related to ET models traces back to 1962 with the launch of TIROS-II.
During the early 1970s, the aerial RS was the only mode of getting thermal images for under-
standing agricultural crop stress. The launch of GOES (in 1975) and NOAA/AVHRR (in 1979)
satellites with thermal sensors became the significant milestones toward the use of satellite RS
technology for surface energy balance studies. These missions delivered thermal images with a
high temporal resolution (daily) and coarse spatial resolution (1 km). Landsat 5 mission (1985)
was the first mission that collected thermal images with a relatively high spatial resolution
(120 m) at the cost of its temporal resolution (16 days). Terra (1999) and Aqua (2002) missions
with MODIS were of the same category as that of AVHRR, in spatial and temporal resolution,
but with a large number of optical and infrared bands that could collect vegetation- and soil-
related information along with thermal bands. Suomi NPP or JPSS-1 (2011) with VIIRS sensor
improved the spatial resolution to 750 m keeping the daily temporal resolution. ERS-1 (1991)
and ERS-2 (1995) satellites delivered thermal images of the same area from two view angles in
tandem to facilitate the development of two-source ET models. The collection of thermal images
with a high spatial and temporal resolution was a challenge for both polar and geostationary
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satellites. Use of two polar-orbiting satellites (Landsat) in tandem was a solution to this problem
but constrained to the radiometric quality of the data due to two different sensors. ECOSTRESS
mission is a new solution to the problem mentioned above, where the thermal scanner is onboard
International Space Station, which would deliver thermal images with high spatial (69 m) and
temporal (daily) resolution. ECOSTRESS is a unique mission where the users are provided with
ready-made ET maps in 30-m resolution using ALEXI and PT-JPL (Priestley–Taylor Jet
Propulsion Laboratory) algorithm. The latest version of ECOSTRESS is expected in 2020
or 2021. There are missions such as HyspIRI and TRISHNA in the conceptual and planning
stage that could deliver similar products with high spatial and temporal resolution. Refer to
Table 3 for a comprehensive list of operational and future thermal RS missions.

9.2 Data Assimilation Approaches

The two major approaches based on the use of LST for the estimation of turbulent heat fluxes are
the diagnostic/retrieval-based approach and DA approach.103 The retrieval approach mainly
focuses on instantaneous heat flux estimations from satellite images, and a variety of empirical
and physical models discussed in this review comes under this category. The retrieval methods
estimate the turbulent heat fluxes only for the available instances of LST observations. In con-
trast, the assimilation techniques capture the significant amount of information contained in the
temporal datasets of LST and estimate the turbulent heat fluxes for instances without LST
observations.104 The recent research in the field of DA techniques yielded numerous techniques
that are mainly grouped into variational data assimilation (VDA) techniques and ensemble tech-
niques. VDA techniques utilize the force-restore equation or full heat diffusion equation to pre-
dict LST by assimilating the known instances. By minimizing the difference between the RS
derived LST and predicted LST, the optimum values of the unknown neutral bulk heat transfer
coefficient (CHN) and EF are estimated. The CHN is a function of changing phenology that varies
monthly, whereas the EF changes daily, and it is affected by soil moisture and LAI. The CHN

scales the sum of turbulent heat fluxes, and EF scales the partitioning of turbulent heat fluxes.105

Among single-source and two-source VDA schemes, the performance of two sources is com-
paratively better due to the differences in cost functions for minimizing the observed and pre-
dicted LST.103 The VDA approach performed better for sparse vegetated dry regions compared to
dense vegetated wet areas. The incorporation of daily precipitation as forcing input improved the
results in wet areas.106 The main limitation of VDA is that it does not consider the mutual in-
fluence of water and energy in the soil plant atmosphere continuum. Therefore, soil moisture
assimilation has a powerful influence on the improvement in heat flux predictions.107 When
using predicted LST in surface energy balance models, the uncertainties in H estimation by
VDA schemes are mainly due to errors in the CHN and LSTestimates. Similarly, the uncertainties
in λET are influenced by EF, CHN, and LST measurements.103

The ensemble Kalman filter (EnKF) and ensemble Kalman smoother (EnKS) are the two
approaches that became better choices compared to the VDA approach. The ensemble approaches
are efficient due to their easy formulation, non-linear capture, the ability to account for a wide
range of measurement errors, and their capability to provide uncertainty estimates.108 The EnKF
and EnKS mainly differ in their selection of inputs for the prediction process. In the EnKF, the
prediction for a time t considers all available observations prior to and at time t, whereas in EnKS
the observations that are available prior to and subsequent to the time t are used. The critical
parameters related to the surface control and surface turbulence in ensemble methods are the
same as that of the VDA approach (i.e., CHN and EF), but estimated by a different approach
called “state augmentation method.” The H and λET estimates from the EnKS scheme revealed
that the uncertainty of the estimatedH is related to the errors in EF,CHN, incoming solar radiation,
and air temperature. Similarly, the uncertainty of λET depends only on the predictedH and EF.108

10 Influence of Scale Effects and Validation of ET Models

Validation and comparison of ET models have been conducted across the world in various
climatic zones by methods such as the Bowen ratio, lysimeters, EC system, and large aperture
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scintillometers. (refer Tables 1 and 2). It is essential to compare the performance of models by
maintaining similar site conditions, sensor and field validation method. Adhering to these, this
review compared the research outcomes of popular ET models at SMACEX site (Moisture–
Atmosphere Coupling Experiment in central Iowa) and HiWATER-MUSOEXE site (Heihe
Watershed Allied Telemetry Experimental Research in China) for various studies conducted
between 2006 and 2018 (refer to Fig. 4). The SMACEX (41.87°N to 42.05°N, 93.83°W to
93.39°W) and HiWATER-MUSOEXE (41.87°Nto 42.05°N, 93.83°W to 93.39°W) fall under
hot summer continental climate and cold desert climate, respectively. For SMACEX and
MUSOEXE sites, satellite data from ETM+ and ASTER, respectively, were considered for
comparison. The comparison based on RMSE and bias of λET and H showed that the VFC-
LST feature space-based model HTEM exhibited an overall better performance, followed by
TTME and ETEML for both the sites. Among single-source models compared at SMACEX
sites, the SEBAL showed better performance statistics compared to SEBS and METRIC, and
the same results were obtained in a site nearby Oklahoma using OLI/TIRS data.130 The superior
performance of SEBAL could not be generalized for all the ground cover conditions and climatic
zones.30

The validation of the surface energy balance models depends on the spatial resolution of its
outputs.131 The approach for validation of fine-resolution products is generally straightforward
due to its scale correspondence with the ground measurements. For coarser-resolution products
(>100 m, e.g., MODIS), the already validated fine-resolution products are used after up-scaling
or aggregation.132 The methods such as simple averaging, nearest neighbor sampling, bilinear
interpolation, or bicubic interpolation are the usual techniques used in the aggregation process.
The aggregation of the input bands of the ET models or the aggregation of its fine resolution
outputs (fluxes) are the two main aggregation approaches. The effect of aggregation varies with
models as well as the resolution to which the aggregation is targeted. A study conducted on the
aggregation of RS images from 5 m (very high resolution) to 1 km and its impact on surface
energy balance components revealed that at spatial resolutions <30 m the difference inH values
were negligible (2%) and it increased up to 24% at lower spatial resolutions.133 This could be
due to the impact of aggregation on the actual values of NDVI and Ts, and calibration pixels,
which could influence the values of estimated H. Scaling can affect the values of aerodynamic
resistance, calculated empirically from vegetation indices. In SEBS, the input aggregation
approach using a simple average of the pixel within a kernel window performed better in pre-
serving the magnitude and the spatial distribution of fluxes. Contrary to this, the simple aver-
aging procedure exhibited inferior performance in the case of flux aggregation.134 However, in
the case of SEBAL, both the input and output aggregation showed similar spatial patterns.135

In the case of METRIC, the sensible heat flux exhibited higher sensitivity to the aggregation
process than the latent heat flux due to the non-linear changes of surface roughness parameters
in the model.133 In the VFC-LST feature space-based ET models, the aggregation process has a
considerable impact on the shape of the trapezoidal scatter plot, which would change the boun-
dary conditions for ET estimation. The other components Rn and G are relatively insensitive to
the changes in spatial scales owing to the fact that these parameters are calculated from incom-
ing solar radiation whose spatial variability is not intensive as in the case of vegetation and soil
parameters.136 One of the main factors that hinder the scaling up of the popular RS-based ET
models is the need of in situ air temperature data and wind speed data for the estimation of H.
Though the single-source models such as METRIC and SEBAL avoided the use of near-surface
air temperature by adopting dT approach, the requirement of u for the stability correction
restricted its applications beyond the regional scale. Similarly, the dependence of TSEB-PT
model on the in situ air temperature values limits its scalability for larger areas. In cases where
the in situ air temperature data are unavailable, the capability of ALEXI to calculate Ta inter-
nally was utilized to estimate higher resolution turbulent heat fluxes. This is achieved by
ALEXI flux disaggregation approach popularly known as DisALEXI.119 Though the disaggre-
gation of ALEXI was proved to be efficient in estimating fluxes, the demand for computation-
ally simple and disaggregation free method resulted in the TSEB-I method. The TSEB-I is a
hybrid of single- and two-source approaches that estimates Ta by combining the self-calibration
concept of SEBAL and the physically based land surface representation of TSEB. The air tem-
perature was estimated using the cold pixel in the study area by sensible heat flux inversion
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method.137 A study conducted using DisALEXI, TSEB-I, and TSEB-PT revealed that the esti-
mated air temperature showed an average difference in the order of 1 K only.137 Similarly, the
need for spatially varying air temperature restricts the HTEM to scale its application from field
to regional scales. By coupling with a simple time-integrated ABL model, the modified HTEM
was able to perform better than its basic version and the RMSE was found to be <1 mmd−1. The
estimated value of Ta, by HTEM-ABL, was in close agreement with the in situ measured
values.138 The research outcomes revealed that the architecture of a model free from in situ
Ta measurement might not ultimately contribute to its scalability. The best instance is
TSEB-PT, where the use of simultaneous directional radiometric temperatures could alleviate
the need of Ta but its greater dependency on in situ wind speed disable the model for larger-
scale applications. A simple temperature domain two-source model (TD-TSEB) is a model that
does not use wind speed measurements to estimate sensible heat flux, but it requires in situ Ta as
an input parameter. The moderate sensitivity of TSEB-TD to Ta values promoted its successful
application for larger river basins.139

10.1 Milestones

This review recapitulates the essential milestones of research and developments in the domain
of sensible heat flux estimation through RS-based methods (Table 4 in Appendix A) for the last
120 years. The events are selected based on the contribution of research outcomes for further
research associated with sensible heat flux. The milestones facilitate to categorize the research
period into different focal periods of development. Till 1970, most of the research focussed on
fundamental research related to micrometeorology, plant physiology, and its relation to ET,
canopy temperature, and aerodynamic resistance. The RS-based ET estimation attained more

(a)

(b)

Fig. 4 (a) Comparison of RS-based ET models using SMACEX data (SEBAL,54 METRIC,55

SEBS,128 TSEB-PM,55 TTME,83 HTEM,86 and ETEML87) and (b) comparison of RS-based ETmod-
els using HiWATER-MUSOEXE data (SEBS,56 TSEB-PM,75 TSEB-PT,75 HTEM,75 and
ETEML129).
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importance between 1970 and 1990 due to the accelerated developments in the satellite RS
technology. The evolution of the thermal imaging sensors and their capability to estimate
LST has revolutionized the RS-based ET research. The period after 1990 till 2019 was the
period of “RS-based ET models,” during which many single-source and two-source models
were proposed and validated.

10.2 Current Research Activities

Though the two-source models are gaining more attention within the research community, the
single-source models still continue to contribute through rigorous revisions for the last 10 years.
Among the single-source models, SEBS, SEBAL, and METRIC are mainly modified inten-
sively. In SEBS, the research activities are mainly focussed on the incorporation of the soil mois-
ture information into the model for the improvement of the accuracy of H estimation. The
domain of the anchor pixel selection process and its automation are the primary focus in the
case of SEBAL and METRIC. In TSEB models, the non-iterative VFC-LST space-based models
are getting more attention due to its simplicity and better performance. Current research activities
focus on delineating VFC-LST space boundaries appropriately. In two-source iterative models,
the research mainly focused on the value of αPT, which is an initialization parameter for the
iteration process. Between the years of 1990 and 2020 (period of RS-based ET models), the
main research focus was to improve the parameterization of roughness lengths, aerodynamic
resistance, canopy resistance, and soil resistance. Statistics of the research activities for the last
10 years revealed that the parameterization of roughness length and aerodynamic resistance was
the central area of research (Fig. 5). The application of UAV images in the context of turbulent
heat flux estimation is one of the primary focus of the current area of research. There is an
accelerated development in the UAV hardware and related algorithms in order to facilitate the
transition of the ET models to replace satellite images with UAV products. The near real-time
monitoring of ET is the need of the time by utilizing the UAV outputs as better inputs to two-
source models such as TSEB-PT, TSEB-PM, and TSTIM. Field crop-based calibration of the
models based on leaf area index or canopy height and growth stages makes the RS-based ET
domain more crop and field-specific. The application of UAV images in the context of turbulent
heat flux estimation need to be refined further by alleviating the challenges, which include the
radiometric accuracy of thermal images attributed to low signal-to-noise ratio, camera noise,
interimage sensor noise, and atmospheric conditions.140 The existing surface energy balance
models rely mainly upon optical dataset for retrieving the parameters of the model either direct
or in the indirect form and the potential of SAR dataset such as ESAs Sentinel-1A/1B with
6 days of temporal resolution is less explored. Its high spatial (20 m) and temporal resolution
(6 days) make the mission suitable for exploring the possibilities of retrieving crop structural
parameters and soil moisture that can be incorporated in the ET models. The thermal data with a
high temporal and spatial resolution for surface energy balance models are an ideal requirement,

Fig. 5 Thrust area of research between 1990 and 2020. Prepared using the data collected from
Ref. 31.
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and the possibility of disaggregating of MODIS LST using SAR data and Landsat 8 data is
being explored.141

11 Current Challenges and Perspectives

The synapse between the challenges and the developments of RS-based H estimation techniques
witnessed various facets of improvisations cornered mainly to the refinement of the architecture of
classical ET models. The unwrapping of challenges of most of the RS-based models knocks at the
role of the multitude of variant parameters that significantly contribute toward the robust model
architecture. This review attempted to identify the prominent challenges related to the RS-based
sensible heat flux estimation approaches using the insights obtained through the research out-
comes across the globe. This review tried to address minor challenges related to each model along
with model descriptions. The challenges listed below focussed entirely on the current thrust area
of research related to turbulent heat flux estimations using RS-based ET models.

• To modify the VFC-LST feature space-based models for ecosystems where the LST and
VFC are positively correlated. The assumption of the inverse relationship between LST
and VFC in trapezoidal feature space-based models will not be valid for all types of eco-
systems. At mid- and high-latitude regions (forest steppe ecosystem, high mountains, and
taiga), the increase in vegetation growth is proportional to the increase in temperature.142

At such conditions, the geometry of the trapezoidal space changes and the approaches for
the retrieval of boundary conditions to be modified.

• To incorporate a dynamic PT coefficient instead of a fixed value of 1.26 in RS-based
TSEB-PT model for the initialization of iteration. The fixed value of 1.26 applies to satu-
rated conditions and vary with a multitude of parameters such as soil water stress, vapor
pressure deficit, VFC, air temperature, and ground cover conditions.143 The TSEB model
did not account the changes in the vapor pressure deficit and stomatal conductance in the
model formulation leading to higher TC and lesser H. Though the modified approach
TSEB-PM has made a slight improvement in terms of RMSE of estimated flux, the night
time ET by both the models showed negative values (not always).74 The TSEB-PT con-
sistently showed this error and modification by a dynamic PT coefficient might address this
limitation.

• To modify the TSEB-2A model using satellite-based multi-angular thermal observations.
Using airborne data, the TSEB-multi-angular model was successfully implemented for
heterogeneous land surface conditions, which revealed its superior performance compared
to TSEB-2A model.89 The multi-angular implementation requires new satellite missions
that could procure more than two thermal images simultaneously.

• To incorporate downscaled soil moisture products into ET models to enhance turbulent
heat flux estimations. The spatial resolution available for soil moisture active passive mis-
sion (SMAP) is 30 to 40 km with a volumetric accuracy of 0.04 m3 m−3 in the top 5-cm
soil layer, covered with moderately thick vegetation with canopy moisture content
<5 kgm−3.144 The feasibility of downscaling soil moisture products to 1- to 5-km reso-
lution using thermal bands of MODIS or Sentinel-3, is to be checked in future studies to
support regional to continental scale ET estimations. There are successful attempts
reported in achieving soil moisture products at 10-km resolution using the synergy of
SMAP, AMSR2, and Sentinel-1 datasets.145 The soil moisture products obtained by down-
scaling could be used to derive surface energy balance components for all-weather
conditions.

• Need for thermal remote sensing missions with high spatial and temporal resolutions. The
need for increased cloud-free observations with the high spatial and temporal resolution is
essential to estimate crop water requirements daily or weekly basis. The current thermal RS
missions deliver thermal data with moderate resolutions at the cost of poor temporal
resolutions. The future missions such as ECOSTRESS (new version), HysPIRI, and
TRISHNA are promising thermal RS ventures that would provide better datasets for
ET models. Refer to Table 3 for future thermal RS missions by various space agencies.
Details of operational thermal RS missions are included in Table 4 in Appendix A.

Mohan, Kanchirapuzha, and Varma: Review of approaches for the estimation of sensible heat flux. . .

Journal of Applied Remote Sensing 041501-19 Oct–Dec 2020 • Vol. 14(4)



12 Conclusions

The current review spans across the research conducted to date in the area of sensible heat flux
computations using RS-based ET models. The evolution of new-generation surface energy bal-
ance models for turbulent flux estimation, integrated with satellite sensor advances in the field of
environmental RS, were discussed in the review, citing the milestones of developments starting
from classical PM equation. The conceptual framework of classical models that triggered and
accelerated the development of RS-based sensible heat flux models are emphasized in the begin-
ning sections. The relevant research outcomes of each model were analyzed and summarized the
essential characteristics related to sensible heat flux estimation in Tables 1 and 2. Spatial dis-
tribution of the sites where each model was executed is mapped based on the published articles
under each model. It aids in the comprehensive understanding of climatic zones, in which the
models are being tested. A simple classification scheme for the RS-based ET models was pro-
posed based on the different approaches followed for the sensible heat flux estimation as iterative

Table 3 Details of operational and future satellite missions with thermal infrared sensors

Sensora
Satellite or
payload Launch (year)

Revisit
(days)

Resolutionb

(m)
Space
agency

Future missions

TIRS-2 Landsat-9 2020 16 100 NASA

ECOSTRESS ISS Post-2020 3 to 5 69 NASA

FCI MTG 2021 Daily 2000 TAS France

SLSTR Sentinel-3C 1000 Daily 2021 ESA

VIIRS JPSS-2 Post-2021 Daily 750 NASA

SLSTR Sentinel-3D Post-2021 Daily 1000 ESA

HyspIRI SBG Conceptual Post-2023 5 60 NASA

TRISHNA (Feasibility stage) Post-2024 3 50 ISRO and
CNES

VIIRS JPSS-3 Post-2026 Daily 750 NASA

VIIRS JPSS-4 Post-2031 Daily 750 NASA

Operational missions

ETM+ Landsat 7 1999 16 60 NASA

MODIS Terra and Aqua 1999 and 2002 16 1000 NASA

SEVIRI Meteosat-8, 9, 10, 11 2002, 2005, 2012,
and 2015

Daily 3000 ESA

AVHRR NOAA-18, 19 2005 and 2009 Daily 1000 NASA

AVHRR/3 Metop-A, B, C 2006, 2012, 2018 Daily 1000 ESA

TIRS Landsat-8 2013 16 100 NASA

VIIRS Suomi NPP, JPSS-1 2011 and 2017 Daily 750 ESA

AHI Himawari-8, 9 2015 and 2016 Daily 2000 JAXA

ABI GOES-16, 17 2016 and 2018 Daily 2000 NASA

SLSTR Sentinel-3A, 3B 2016 and 2018 Daily 1000 ESA

ECOSTRESS ISS 2018 Daily 69 NASA

aSensors with spatial resolution ≤3000 m are considered.
bSpatial resolution of thermal bands.
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and non-iterative categories. This review also discussed the role of advance RS techniques such
as UAVs and the DA techniques under the purview of turbulent heat flux estimations in ET
models. The ET models tested at SMACEX and HiWATER-MUSOEXE sites revealed that the
two-source feature space-based model, HTEM performed better compared to all other models.

13 Appendix A: Milestones

Table 4 presents the chronological order of research and developments in the domain of sensible
heat flux estimation with emphasize on the remote sensing techniques.

Table 4 Milestones of research activities related to sensible heat flux estimation.

Year Key research contributions

1900 Concept of resistance for explaining the diffusion of water vapor from leaves5

1921 The wind speed, the water surface temperature, the eddy diffusivity, distribution of water vapor above
the surface, and their effect on evaporation was analyzed146

1930 The main driving factor for fluctuations in evaporation is the mean air temperature147

1940 Themain resistance to evaporation from a surface is due to a thin layer of air just above the surface148

1948 Penman’s equation1

1951 Big-leaf model149

1954 Experimental validation of MO similarity theory150

1956 Modified Penman’s equation by adding stability correction151

1960 Aerodynamic resistance could be calculated from wind speed and surface resistance152

1960 The actual source/sink for mass, heat, and momentum are located at different levels153

1962 Radiometric temperature and the air temperature difference is used for estimating ET154

1962 Leaf temperature and its relation with transpiration was studied155

1962 Surface temperature from meteorological satellite TIROS-II156

1968 kB−1 parameter8

1970 Flux gradient relationship for momentum readdressed (Businger–Dyer concept)157

1970 Formulation of Universal functions ψ for heat and mass transfer25

1972 The areal thermal scanner was used to understand water stress in cotton canopies158

1972 Priestley and Taylor equation159

1975 Launched GOES-1. GOES continuity missions continue to produce LST images

1976 The areal thermal scanner used for estimating ET160

1977 ET is linearly related to the difference between the air and the leaf temperature22

1978 Heat Capacity Mapping Mission data was used for evaporation mapping161

1979 Start of NOAA-AVHRR missions

1985 Landsat-5 mission (thermal sensor: TM, spatial resolution 120 m, and revisit: 16 days)

1985 Shuttleworth and Wallace’s model was developed10

1985 AVHRR data were used to show the importance of vegetation height and density162
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Table 4 (Continued).

Year Key research contributions

1986 Concept of blending height163

1987 The formal theoretical base for ET estimation by RS of surface temperature164

1989 EF, remained stable during daylight hours165

1991 ERS-1 mission (thermal sensor: ASTR-1, spatial resolution 1000 m, and revisit: 2 to 3 days)

1993 SEBI63

1995 ERS-2 mission (thermal sensor: ASTR-2, spatial resolution 1000 m, and revisit: 2 to 3 days)

1995 TSEB-PT69

1997 Two source approach by two radiometric temperature observations (TSEB-2A)90

1997 TSTIM76

1998 SEBAL19

1999 Massman’s model for estimating kB−1166

1999 Landsat-7 mission (thermal sensor: ETM+, spatial resolution 60 m, and revisit: 16 days)

1999 Terra satellite (thermal sensor: MODIS, spatial resolution 1000 m, and revisit: 1 to 2 days) (thermal
sensor: ASTER, spatial resolution 90 m, and revisit: 16 days)

2000 S-SEBI57

2002 ENVISAT satellite (thermal sensor: AATSR, spatial resolution 1000 m, and revisit: 35 days)

2002 AQUA satellite (thermal sensor: MODIS, spatial resolution 1000 m, and revisit: 1 to 2 days)

2002 Meteosat-8 (thermal sensor: SEVIRI, spatial resolution 3000 m, and revisit: daily)

2002 SEBS33

2005 MTSAT-1R or Himawari-6 (thermal sensor: JAMI, spatial resolution 2000 m, and revisit: daily)

2005 Pixel component arranging and comparing algorithm167

2005 ET mapping algorithm168

2006 Metop-A (thermal sensor: AVHRR/3, spatial resolution 2000 m, and revisit: daily)

2007 METRIC model21

2008 HJ 1B satellite (thermal sensor: IRMSS, spatial resolution 300 m, and revisit: 4 days)

2009 STSEB92

2009 Sim-ReSET estimation124

2011 SNPP (thermal sensor: VIIRS, spatial resolution 750 m, and revisit: daily)

2012 TSEB-PM70

2012 TTME54

2013 Landsat 8 mission (thermal sensor: TIRS, spatial resolution 100 m, and revisit: 16 days)

2013 HTEM86

2014 CBERS-4 satellite (thermal sensor: IRSCAM-4, spatial resolution 80 m, and revisit: 26 days)

2015 ETEML87

2016 GOES-16 satellite (thermal sensor: ABI, spatial resolution 2000 m, and revisit: daily)
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