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Abstract. Cloud detection in satellite images is a vital step for cloud/land recognition, cloud/
snow discrimination, and cloud shadow removal. Accurate cloud detection plays an important
role in land resource management, environmental pollution monitoring, and land target recog-
nition. Deep learning (DL) algorithms have shown great progress in cloud detection. However,
as the complexity of the DL-based model increases, cloud detection efficiency decreases. DL-
based cloud detection models are unable to successfully balance the performance-efficiency
tradeoff. In our study, a multi-dimensional and multi-grained dense cascade forest (MDForest)
is proposed for multi-spectral cloud detection. MDForest is a deep forest structure that automati-
cally extracts low-level and high-level features from satellite cloud images end-to-end; a
multi-dimensional and multi-grained scanning mechanism is introduced to capture the spectral
information of multi-spectral satellite images while enhancing the representation learning ability
of cascade forest. The experimental results on the HJ-1A/1B dataset show that MDForest
improves the performance of cloud detection and possesses a good inference efficiency com-
pared with DL-based cloud detection methods, which makes the proposed MDForest satisfy the
application where good performance and high efficiency are both required. © The Authors.
Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or repro-
duction of this work in whole or in part requires full attribution of the original publication, including its
DOI. [DOI: 10.1117/1.JRS.15.028507]
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1 Introduction

Accurate cloud detection in satellite images is a vital step for land object recognition, land re-
source management, and environmental pollution detection.1,2 The difficulties of satellite image
transmission and the high similarity that exists between cloud regions and ground objects (such
as ice, snow, and fog) make cloud detection a challenge,3,4 which drives researchers to develop a
fast and accurate cloud detection method. With the development of remote sensing technology,
the effective integration and processing of multiple spectral satellite images provide a way to
achieve accurate cloud detection by extracting rich information from multi-spectral satellite
images.5

In recent years, the robustness of cloud detection methods has been greatly improved. Based
on the optimization pattern of these methods, three groups have emerged: (1) threshold-based
methods,6,7 (2) machine learning (ML)-based handcraft feature designing approaches,8,9 and
(3) deep learning (DL)-based algorithms.2,10 Because of their reliable performance and simplic-
ity, function of mask11,12 and automated cloud cover assessment13,14 algorithms are two repre-
sentative approaches that have been widely employed for cloud detection. Aiming at addressing
the poor generalization of the threshold-based method, Yuan and Hu15 combined support vector
machine (SVM) and haze optimization transform technique to distinguish the fog, cloud-free,
and thick cloud areas from satellite imagery, by calculating the correlation between the spectral
responses. ManyML-based methods that combine handcraft feature engineering for cloud detec-
tion have been broadly explored, these works include SVM-based multi-feature fusion,16–18
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cloud detection implemented by random forest using spectral reflection characteristics,19 and fast
cloud detection realized by decision tree-based models.20 ML-based cloud detection models are a
group of algorithms that highly rely on the domain knowledge of meteorology experts.
Compared with ML-based cloud detection models, DL-based techniques extract low-level to
high-level features end-to-end and have shown great promise to distinguish cloudless areas and
cloudy regions.21,22 Based on the texture, spectral, and structural information, Shao et al.10 com-
bined a neural network and fuzzy theory to improve the performance of cloud detection.
Subsequently, Shao et al.23 proposed a multi-scale convolutional neural network (CNN) to auto-
matically extract spatial and spectral information from multi-spectral satellite cloud images,
which further enhance the prediction result of cloud detection. With the benefit from the
end-to-end low-level and high-level feature extraction mechanism, many DL-based cloud detec-
tion models have been established to reduce the detection error. These models include fully
CNN,24,25 deep CNN,26 cascade CNN,27 and residual network.22

DL-based algorithms have made great progress in the improvement of cloud detection.
However, there are some defects of DL-based methods that limit their practical application
in a cloud detection task. (1) It is widely known that the training of DL-based models requires
a great amount of labeled training data while the sample labeling process in cloud detection task
cost high.28 (2) NN is a pre-defined framework that may lead to under-parameterization or over-
parameterization, making the training of NN a complex hyperparameter fine-tuning process.29

(3) DL-based cloud detection models are widely criticized because of their black-box attribution,
which relates to an implicit learning process.30,31

Based on the above considerations, an improved multi-dimensional dense deep forest is pro-
posed for multi-spectral cloud detection. The proposed algorithm has the following character-
istics: (1) it is a deep framework that ensembled by the decision trees, (2) end-to-end learning,
(3) multi-dimensional multi-scale scanning mechanism, and (4) dense connection. The above
features make the proposed methods have the following advantages. (1) The deep structure based
on tree algorithm effectively extracts the features of cloud samples from satellite cloud images,
improving the efficiency of training and reasoning. (2) End-to-end learning avoids complex
manual feature design, allowing it to extract low-level and high-level features from the original
satellite images. (3) The multi-dimensional and multi-scale scanning mechanism effectively cap-
tures the spatial and spectral information of cloud images. (4) The dense connection improves the
feature reuse abilities of deep forest, enabling the information extracted from each layer to be
exploited more efficiently.

2 Methodology

2.1 Proposed Method

Given a dataset Sð0Þ ¼ fxð0Þi ; yigNi¼1 with N cloud detection samples, where xð0Þi represents the
original input sample and yi is the label corresponding to the i’th sample. In the cloud detection
task, the input x is the cloud detection image samples that contain four spectral information;
yi ∈ f1; 2; 3g, where yi ∈ f1g represents the cloud-free area, yi ¼ 2 is the area of thin cloud,
and yi ¼ 3 indicates the thick cloud area. In this study, a multi-dimensional and multi-grained
dense deep forest (MDForest) is proposed for multi-spectral cloud detection.

Figure 1 shows the structure of MDForest. MDForest consists of two parts: multi-dimen-
sional and multi-grained scanning and dense cascade forest.32,33 Multi-dimensional and
multi-grained scanning realizes the re-representation process of features. The multi-scale fea-
tures are captured by a multi-grained scanning mechanism to enhance the representation learning
ability of the cascade forest. Also, it possesses the ability to process multiple spectrums, which
can effectively distinguish the similarity between the spectrums in satellite images. Cascade
forest is a deep forest that simulates the representation learning of neural networks and achieves
good prediction accuracy and efficiency through hierarchical image information processing. To
realize multi-spectral cloud detection, we first collect the satellite images with four spectrums
from Chinese satellites HuanJing-1A and HuanJing-1B (HJ-1A/1B)34,35 and effectively integrate
them into multi-spectral satellite images. Then, the multi-dimensional and multi-grained
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scanning mechanism is applied to extract spatial information and spectral information from
cloud samples. Next, a cascaded forest is established to realize the representation learning based
on the re-represented features. HDForest is constructed in a cascading way, making HDForest an
ensemble framework to process information layer-by-layer. In addition, the designing of a
densely connected structure, which borrowed from DenseNet,36 is introduced in this study to
avoid overfitting by maximizing the utilization of spatial information and spectral information.

2.2 Dense Cascade Forest

Figure 2 shows the structure of the dense cascade forest. According to the hierarchical
processing mechanism of the neural network, a deep forest structure can be described as
xl ¼ FðlÞðxðl−1ÞÞ ¼ ½Fðl1Þðxðl−1ÞÞ; Fðl2Þðxðl−1ÞÞ; : : : ; FðlmÞðxðl−1ÞÞ�, where l ∈ f1; 2; : : : ; Lg repre-
sents the probabilistic output of l − 1’th layer. FðlÞ represents the cascaded forest of level l and
FðliÞ the i’th random forest in the cascade forest of the level l. As can be seen from Fig. 2, a dense
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cascade forest simulates the layer-by-layer information processing mechanism of the neural net-
work, the output of l − 1’th layer is considered as the input of l’th layer. However, such a struc-
ture is prone to overfitting when the number of layers increases, which hinders the diversity of
individual learners. Each layer of the cascade forest is only related to the previous layer, which
leads to the homogenization of based learners. One way to solve this problem is to design a dense
connection structure to maximize the feature reuse rate. In this study, to improve the utilization of
features, the dense connection is borrowed to build a dense deep forest, thus avoiding the over-
fitting problem. Based on above analysis, the layer-by-layer information processing mechanism
can be re-expressed as

EQ-TARGET;temp:intralink-;e001;116;462

�
xðlÞ ¼ ½xð0Þ; FðlÞðxðl−1ÞÞ� ¼ ½xð0Þ; Fðl−1Þðxðl−2ÞÞ; Fðl−2Þðxðl−3ÞÞ; : : : ; Fð1Þðxð0ÞÞ�; l ¼ f2; : : : ; Lg
xðlÞ ¼ FðlÞðxð0ÞÞ ¼ ½Fðl1Þðxð0ÞÞ; Fðl1Þðxð0ÞÞ; : : : ; FðlmÞðxð0ÞÞ�; l ¼ 1

:

(1)

The final prediction results are averaged by the output of the last layer. Figure 3 shows the
probabilistic prediction generation process of a random forest. As shown in Fig. 3, the construc-
tion of l’th level cascaded forest is not only related to the output of level l − 1, but also all the
outputs of the layers before the level l − 1. Each level of the cascade forest is the concatenation
results of the probabilistic prediction that are produced by four random forests while the pre-
diction of random forest can be calculated according to Fig. 3.

As shown in Fig. 3, the probabilistic predictions of random forest can be concretely calcu-
lated by the following rules: (1) observe the class distribution on each leaf node of each decision
tree in the random forest; (2) calculate the proportion of samples of different classes at all the leaf
nodes; (3) take the probabilistic result at leaf node as the prediction result of decision tree for the
given instance; (4) average all the probabilistic results of all the decision trees as the prediction of
the random forest. Based on the prediction process of a random forest and the structure of the
dense cascade forest, we concatenate all the class vectors that are generated by four random
forests as the output of each level of the dense cascade forest. To further alleviate the overfitting
problem, K-fold cross-validation37–39 is incorporated in each layer of the dense cascade forest to
get the robust probabilistic prediction result. As can be seen from Fig. 3, given an instance x,
cloud detection can be modeled as an identification process of cloud-free, thin cloud, and thick
cloud regions. As a result, a decision tree generates a three-dimensional class vector. The output
of a forest is regarded as the average of the outputs of all the decision trees in a random forest.

In this work, four random forests are used as base learners to establish a cascade layer of
HDForest, two of which are general random forests and two of which are completely random
forests. Each random forest consists of 800 decision trees. Each tree in a completely random
forest randomly selects a feature as the parent node for splitting. The training of the decision tree
finished when there are less than 10 samples at each leaf node. Different from the completely
random forest, a general random forest randomly selects

ffiffiffi
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features as candidates for node

splitting, where d is the number of features. In the growth of each tree, we utilize the Gini index
as the criteria for node splitting.
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Fig. 3 Illustration of a random forest.
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2.3 Multi-Dimensional and Multi-Grained Scanning

The multi-dimensional and multi-grained scanning mechanism is inspired by the convolution
operation of the CNN, which refers to a sliding window similar to CNN. In this study, the
input size of each satellite cloud image sample is 28 × 28 × 4, suppose we set the dimension

of the sampling window as 7 and the sliding step size as 7, ½ð28−7Þ
7

þ 1�2 ¼ 16 subsamples can
be obtained after performing a single sliding window on an original cloud sample with size
28 × 28 × 4. Likewise, in the process of multi-dimensional and multi-grained scanning, if
we perform two grained windows with sizes 7 and 14 with a sliding stride of 7 for feature rep-
resentation, we can get 25 subsamples that are slid from an original cloud sample, including 16
subsamples with the dimension of 7 × 7 × 4 and 9 subsamples with the dimension of
14 × 14 × 4. Subsequently, each subsample is used for training two completely random forests
and two general random forests, and each random forest predicts one subsample into a C-dimen-
sional class vector (in this study, cloud sample images are classified into three categories: cloud-
less, thin cloud, and thick cloud regions, therefore, C ¼ 3). All the outputs of the four random
forests can be concatenated as the representation of original samples. In conclusion, an original
cloud sample with size 28 × 28 × 4, which performed multi-dimensional and multi-grained scan-
ning with windows of size 7 × 7 × 4 and size of 14 × 14 × 4, can be transformed into a prob-
abilistic space with the dimension of 4 × 25 × 3 ¼ 300, where 4 is the number of random forests,
25 represents the number of samples that are slid from an original cloud sample, and 3 is the
dimension of each predictive class probabilistic vector (Fig. 4).

3 Results

The experimental data are collected from HJ-1A and HJ-1B. HJ-1A/1B are Chinese environ-
mental and disaster monitoring satellites. The HJ-1A satellite is equipped with a CCD camera
and a hyperspectral imager while HJ-1B has a CCD camera and an infrared camera. The design
principles of the two CCD cameras on the HJ-1A and HJ-1B satellites are the same. They are
placed symmetrically at the sub-satellite points, bisecting the field of view and observing in
parallel. HJ-1A and HJ-1B jointly complete the push-broom imaging with a swath of 700 km,
a resolution of 30 m, and 4 spectrum channels. In this study, cloud detection is modeled as the
recognition of cloudless, thin cloud, and thick cloud. To well balance the feasibility of patch-wise
cloud detection and the quality of the cloud detection dataset, we extract satellite cloud samples
with size 28 × 28 and 4 spectrum channels from satellite imagery. Table 1 shows band infor-
mation for the four spectral satellite pictures. In this study, 28,800 cloud detection samples are
collected for the experiment using HJ-1A/1B satellite images; 80% of the samples are picked
randomly for training, with 20% of the remaining samples for testing.

A brief comparison of single-spectral cloud detection is explored and numerical techniques
are adopted to validate the effectiveness of MDForest. In the study, several standard cloud sens-
ing ML/DL algorithms, which include SVM, decision tree, random forest, neural network, CNN,
ResNet-34,40 and MDForest, are initially chosen for single-spectral cloud identification. In the
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implementation of SVM, the radial basis function kernel41 is selected for the SVM. The decision
tree is trained under the determination of the criteria of the Gini index, and the number of deci-
sion trees in the random forest is determined by hyperparameters optimization of grid search.
The structure of the neural network used in our experiment is a structure with four hidden layers,
each hidden layer is composed of n neurons, where n is grid searched from the value set
f64; 128; 256g, each hidden layer is activated with ReLU function.42 In the output layer, the
SoftMax activation function is performed to get the probabilistic prediction. Learning rate, which
is an important parameter to the final predictive performance, is determined by grid searching
from the space of f10−4; 10−3; 10−2g.

In the implementation of CNN-based cloud detection, we adopt a CNN structure that is sim-
ilar to LeNet.43 CNN is composed of convolution layers and pooling layers. In this study, each
pool size of each pooling layer is set to 2. A convolution layer is first performed on single/multi-
spectral cloud detection images to extract the low-level features. We consider the parameter of
filters in each convolution layer as a hyperparameter that needs to be finetuned, and the searching
space of the number of filters in each convolution layer is set {64, 128, 256}. In the first convolu-
tional layer, kernel size is set to 5 to enlarge the receptive field. Similar to the activation pattern of
NN, each convolution layer is activated by the ReLU function, and the learning rate of CNN is
searched from the value set f10−4; 10−3; 10−2g.

Considering the running environment and the scale of the multi-spectral cloud detection,
ResNet-3440,41 is selected for further comparison. The training strategy of ResNet-34 inherited
the training pattern from NN and CNN. In this study, all NN-based cloud detection methods are
optimized by Adam optimizer.

In the design of MDForest, three grained sliding windows with a sliding ratio of 0.125, 0.25,
and 0.5 are first performed on original satellite cloud images. Next, one cascade layer accom-
plishes the realization of transforming raw cloud samples into a probabilistic feature space.
Dense cascade layers are designed to learn the information from the transformed features, each
layer of dense cascade forest consists of four random forests with T, where T is the number of
decision trees searched from the value set of f100; 200; 300; 400; 500; 600g. Since MDForest is
an ensemble algorithm that is integrated by random forests, random forest is the ensemble of
decision trees. Therefore, MDForest can be regarded as an “ensemble in ensemble” algorithm.
The high tree-based ensemble pattern makes MDForest a robust algorithm that has fewer hyper-
parameters to be finetuned. Therefore, in this study, we only focus on the fine-tuning of the
parameter of the number of the decision tree in each random forest; the other parameters are
consistent with the default implementation of random forest, which is realized in the scikit-
learn44 package.

Table 2 shows the performance comparison of various cloud detection algorithms on single-
spectral satellite images, all the experiments are run on CPU i7-10700K with a memory size of
48 GB, and the comparison results are the averaged results of the predictions on the four
wavebands.

As can be seen from Table 2, SVM performs worst for single-spectral satellite cloud detection
and MDForest outperforms other cloud detection methods. Compared with SVM, the decision
tree algorithm improves the performance of cloud detection while achieving quick training speed
and high inference efficiency, which indicates that tree-based approaches are better choices for
single-spectral cloud detection than SVM. Compared with the prediction result of the single
classifier such as decision tree and SVM, the random forest classifier gets a higher accuracy
for single-spectral cloud detection, which demonstrates the effectiveness of ensemble-based
approaches for cloud detection. In comparison, random forest outperforms CNN and neural net-
work, which indicates that random forest can be a good solution for single-spectral cloud

Table 1 HJ-1A/1B CCD camera channel parameters.

Channel

Waveband

1 2 3 4

Wavelength (μm) 0.43 to 0.52 0.52 to 0.60 0.63 to 0.69 0.76 to 0.90
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detection. In the comparison of training time and testing time, as can be seen from Table 3, tree-
based single-spectral cloud detection methods are more efficient than neural network-based sin-
gle-spectral cloud detection.

To further testify the performance of the various cloud detection methods based on single-
spectral satellite images, we present the prediction results on the full single-spectral satellite
images based on various cloud detection methods in Fig. 6. Figure 6(a) is the real satellite cloud
image; Fig. 6(b) represents the prediction result of SVM; Fig. 6(c) indicates the prediction result
of random forest, which is formed by 1000 decision trees; Fig. 6(d) shows the prediction result of
the neural network, which has three hidden layers; Fig. 6(e) presents the predicted image of the
CNN; Fig. 6(f) provides the prediction result of MDForest with single-dimensional and multi-
grained scanning mechanism.

As can be seen from Figs. 5(a) and 5(b), SVM tends to misclassify the land region into the
thin cloud area, the cloud areas that are predicted by SVM greatly differ from the real cloud
distribution in Fig. 5(a). In contrast, random forest and neural network-based methods reduce
the misclassification error of the cloudless area. In the comparison of the CNN and neural net-
work, CNN shows the superiority in the prediction of the cloudless area, which mainly credits
the spatial information extraction of cloud images. Finally, as can be seen from the comparison of
neural network-based cloud detection methods and forest-based methods, forest-based cloud
detection methods show better predictive ability, the misclassification regions of forest-based
areas are smaller than that of neural network-based cloud detection methods. In conclusion, the
cloud detection algorithms have a large proportion of false detection regions in the prediction of
a single spectral satellite image, which motivated our exploration of multi-spectral cloud
detection.

To further improve the performance of cloud detection, we integrate spectral information for
multi-spectral cloud detection. Since random forest and neural network-based cloud detection
show good performance in cloud detection, we focus on the performance comparison of neural
network-based multi-spectral cloud detection. Figure 6 shows the performance comparison of

Table 3 Performance comparison of various cloud detection methods based on multi-spectral
satellite images.

Algorithm Testing accuracy (%) Training time (s) Testing time (s)

Random forest 89.438 54.497 0.427

Neural network 87.104 902.312 0.531

CNN 88.979 5863.212 0.920

ResNet-34 91.521 51023.231 1.766

MDForest 92.313 488.353 1.322

Table 2 Performance comparison of various cloud detection methods based on single-spectral
satellite images. All the results are averaged on the four spectrum channels.

Algorithm Testing accuracy (%) Training time (s) Testing time (s)

SVM 50.325 18.232 0.421

Decision tree 75.729 9.170 0.005

Random forest 84.132 21.013 0.207

Neural network 79.231 603.199 0.107

CNN 83.221 5932.431 0.995

MDForest 85.243 386.019 0.878
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neural network-based multi-spectral cloud detection methods. As can be seen from Fig. 6,
ResNet outperforms the CNN and neural network, which indicates that a deeper network struc-
ture has a stronger ability to extract features from low-level to a higher level. In addition, as
shown in Fig. 6, the training accuracy of the neural network is slightly higher than that of
CNN while its testing accuracy is slightly worse than that of the neural network, which implies
that CNN is more suitable for multi-spectral cloud detection due to its superior spatial and spec-
tral feature extraction ability. Based on the prominent performance of CNN-based multi-spectral

Fig. 6 Performance comparison of neural network-based cloud detection methods using multi-
spectral satellite images. (a) The comparison results of the training accuracy curves of the neural
network, CNN, and ResNet-34. (b) The comparison results of testing accuracy curves of the neural
network, CNN, and ResNet-34.

Fig. 5 Prediction visualization of a satellite image from HJ-1A/1B: in the illustration of the predic-
tion images, black color is the prediction of the cloudless area, the blue color represents the
regions of thin cloud, and the white color indicated the predicted area is covered with thick cloud.
(a) The original cloud image, (b) the prediction of SVM on the single-spectral satellite image, (c) the
prediction random forest, (d) the prediction of the neural network, (e) the prediction of CNN on
fourth waveband, and (f) the prediction of MDForest on fourth waveband.
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cloud detection, we further compared the performance of neural network-based cloud detection
methods to the forest-based cloud detection methods to verify the effectiveness of MDForest.

Table 3 shows the performance comparison of the neural network-based and forest-based
cloud detection methods. As shown in Table 3, MDForest achieves comparable accuracy to
ResNet while MDForest costs less on training/testing single-spectral cloud images than
ResNet-34. As can be seen from Table 3, though ResNet improves the performance of cloud
detection based on multi-spectral satellite images, the high complexity of ResNet limited its
applicability for practical cloud detection, which is not suitable for fast cloud detection. By com-
parison, MDForest satisfied the need where the high efficiency and good accuracy of cloud
detection are both required. Combined with Tables 2 and 3, it can be seen that random forest
is a robust cloud detection method that has good detection efficiency, but from the perspective of
the realization of accurate cloud detection, MDForest is the best choice.

Since NN-based cloud detection methods based on multi-spectral satellite images are good at
extracting spatial and spectral information, we further verify the generalization ability of neural
network-based cloud detection methods and MDForest. Figure 7 shows the comparison of the
prediction images of neural network-based methods and MDForest. Figure 7(a) shows the pre-
diction of the neural network based on a multi-spectral satellite image, and the real cloud image
is shown in Fig. 5(a). Figure 7(b) presents the prediction of CNN based on the multi-spectral
satellite image, Fig. 7(c) provides the prediction result of ResNet based on the multi-spectral
satellite image, and Fig. 7(d) shows the prediction result of MDForest based on the multi-spectral
satellite image.

As can be seen from Fig. 7, which refers to the original satellite images in Fig. 5(a), the
prediction of the neural network is the poorest in the above comparison methods since the neural
network cannot effectively utilize spectral information. In addition, the learning mechanism of
the neural network is concluded as a fitting process, which cannot well extract the spatial infor-
mation of multi-spectral cloud samples, making the improvement insufficient compared with
other spatial and spectral information learning approaches. As shown in Fig. 7(a), the cloud
detection results of the neural network have a high false detection on the area of thin cloud
area, the predicted thick cloud region is larger than the other three cloud detection methods.

Fig. 7 Prediction results of advanced neural network-based cloud detection methods and
MDForest using multi-spectral satellite image #1. (a) The prediction of the NN on the multi-spectral
satellite image; (b) the prediction of CNN on the multi-spectral satellite image; (c) the result that is
predicted by ResNet based on the multi-spectral satellite image; (d) the multi-spectral cloud detec-
tion result of MDForest.
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Compared with the real images in Fig. 5(a), the misclassification error of thin cloud to thick
cloud is high, making the neural network not a suitable method for multi-spectral cloud detec-
tion. In comparison, the prediction results of CNN, ResNet, and MDForest are close to the real
image, and the misclassification areas of thin cloud have been greatly reduced. As can be seen
from the comparison of Figs. 7(b) and 7(c), the prediction of ResNet is comparable to the pre-
diction result of CNN since ResNet is a deeper framework that inherits the learning pattern and
feature extraction mechanism from CNN. As illustrated in Fig. 7, MDForest achieves the best
prediction result. Although the misclassification areas that are predicted by MDForest on the
complex ground cover (such as the river) are large when compared to CNN’s predicted image,
MDForest’s accuracy in predicting thin cloud patches is significantly improved.

To further validate the effectiveness of MDForest for multi-spectral cloud detection, two
groups on two random satellite multi-spectral cloud images are compared. Figures 8 and 9 show
the prediction results of CNN, ResNet-34, and MDForest; Fig. 8(a) shows the real satellite image
for the multi-spectral satellite image #2; Fig. 8(b) shows the prediction result of CNN for the
multi-spectral satellite image #2; Fig. 8(c) shows the prediction of ResNet-34; Fig. 8(d) presents
the prediction results of MDForest the multi-spectral satellite image #2. Figure 9(a) shows the
real satellite image #3; Fig. 9(b) shows the prediction result of CNN for the multi-spectral sat-
ellite image #3; Fig. 9(c) shows the predicted image of ResNet-34 for multi-spectral satellite
image #3; Fig. 9(d) shows the prediction result of MDForest for multi-spectral satellite
image #3.

As can be seen from Fig. 8, CNN and ResNet misclassified more thick cloud areas into thin
cloud regions than MDForest. Based on the comparison of prediction images of the neural net-
work, ResNet, and MDForest using multi-spectral satellite imagery, the prediction result of
MDForest has a higher similarity with the real image on the distribution of cloud-free areas,
thin cloud regions, and the land covered by thick cloud. In the prediction of the cloud-free area,
MDForest shows significant improvement compared with the prediction results of CNN and
ResNet-34. As can be seen from Fig. 9, in the area that is covered with rivers, MDForest gets
a relatively accurate prediction result while CNN and ResNet-34 classified more areas of rivers
into thin cloud areas or thick cloud regions.

Fig. 8 Prediction results of advanced CNN-based cloud detection methods and MDForest for
multi-spectral satellite image #2. (a) The real satellite image #2; (b) the prediction result of
CNN for multi-spectral satellite image #2; (c) the predicted image of ResNet-34 for multi-spectral
satellite image #2; (d) the prediction result of MDForest for multi-spectral satellite image #2.
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MDForest achieves good cloud detection performance using multi-spectral satellite imagery
due to the robustness of tree-based deep structure and the multi-dimensional and multi-grained
scanning mechanism. Compared with neural network-based cloud detection methods, the
parameters fine-tuning process of MDForest is much simpler. Consequently, we further study
the influence of different parameter settings on the performance of cloud detection. Figure 10
shows the performance of MDForest under a different number of trees in a random forest and

Fig. 10 The performance of MDForest under different parameter settings. (a) The influence of the
number of trees in each forest on the performance of cloud detection using multi-spectral satellite
images. (b) The performance comparison with different scale sliding windows, training-0 is the
training curve of MDForest without multi-dimensional and multi-grained scanning mechanism;
testing-0 is the testing curve of MDForest without multi-dimensional and multi-grained scanning
mechanism; training-1 is the training curve of MDForest with 1-grained multi-dimensional scan-
ning; testing-1 is the testing curve of MDForest with 1-grained multi-dimensional scanning, and
so on.

Fig. 9 Prediction results of advanced neural network-based cloud detection methods and
MDForest for multi-spectral satellite image #3. (a) The real satellite image #3; (b) the prediction
result of CNN for the multi-spectral satellite image #3; (c) predicted image of ResNet-34 for
multi-spectral satellite image #3; (d) the prediction result of MDForest for multi-spectral satellite
image #3.
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different grained scanning. Figure 10(a) shows the testing accuracy comparison under different
numbers of trees in a random forest, Fig. 10(b) shows the comparison of training accuracy and
testing accuracy comparison under different grained scanning. As can be seen from Fig. 10(a),
MDForest is an adaptive deep forest that deepens its structure according to the complexity of
input data. When the number of decision trees in a random forest is set to 200, MDForest deep-
ens its structure to layer 4 while the three layered MDForest seems to be a model complex
enough to deal with the input data. Such character makes MDForest a superior data-driven cloud
detection method to NN-based cloud detection methods whose optimal structure is determined
by manually fine-tuning. Figure 10(a) demonstrates that MDForest gets the optimal testing accu-
racy in the setting of each forest is ensembled by 300 decision trees; when the number of decision
trees is determined as lower than 300, more decision trees for random forest in HDForest imply
the better performance HDForest can get; when the number of decision trees in a random forest
exceeds the threshold value of 300, overfitting occurs. Moreover, Fig. 10(b) indicates that more
grained sliding windows are beneficial to the performance improvement of cloud detection using
multi-spectral satellite images, which further verifies the effectiveness of MDForest.

4 Conclusions

Though CNN-based methods realized high-performance multi-spectral cloud detection by
extracting and integrating spatial and spectral information, the performance improvement on
cloud detection was based on the increase of model complexity, which hindered the progress
for fast cloud detection. In this study, we proposed a multi-dimensional and multi-grained dense
deep forest for cloud detection using multi-spectral satellite imagery. The proposed method was
a deep forest structure that simulated the layer-by-layer processing mechanism of NN. In addi-
tion, the multi-layered structure gave the proposed method the representation learning ability,
allowed it automatically to extract features of satellite cloud images end-to-end. Moreover, the
multi-dimensional and multi-grained scanning mechanism possessed the power to deal with
multi-spectral satellite cloud detection, which further improved the performance of cloud detec-
tion. Finally, a densely connected structure was borrowed in the proposed method to avoid the
overfitting problem. Experimental results on HJ-1A/1B demonstrated that the proposed
MDForest improved the performance of multi-spectral cloud detection while getting a better
cloud detection efficiency, which can be regarded as an alternative to CNN-based methods for
multi-spectral cloud detection.

MDForest improved the efficiency and performance of cloud detection based on multi-spec-
tral satellite cloud images. However, there are still some problems that need to be addressed in
future work, which include: (1) the recognition of ground area is not ideal enough, in the future
work, some noisy samples such as lakes, rivers, and fogs will be collected to enrich the diversity
of cloud detection dataset; (2) MDForest improves the efficiency of cloud detection, implemen-
tation on some mobile devices can achieve the goal of fast cloud detection. Therefore, in our
future work, embedding MDForest into some hardware would be a good solution for practical
cloud detection.
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