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Abstract. Anomaly detection (AD) is a crucial task for detecting salient objects in cluttered
backgrounds. Classical AD algorithms based on statistical models or geometric models have
achieved acceptable detection results. However, most of them do not hierarchically extract deep
features or consider the spatial structure of the images. We propose a method that combines the
reconstruction error of autoencoder (AE) and spatial morphological characteristics to estimate
anomalousness. The reconstruction errors and the spatially dominant information are compre-
hensively considered. Specifically, given the compression capability of the AE, we use the
dimensionality reduction results obtained by encoding for analyzing local pixel difference; an
adaptive dual window is employed in this process. The morphological transformation commonly
used in edge detection is utilized to refine the small space anomalies. Experimental results on
different hyperspectral images show that the proposed AE and spatial morphology extraction-
based approach significantly surpasses several traditional alternatives. © The Authors. Published by
SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.15.038507]
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1 Introduction

In recent years, the successful launch of multiple hyperspectral satellites has dramatically
improved the data acquisition capabilities. With the increased availability of data, the application
of hyperspectral images (HSIs) is faced with more opportunities. Hyperspectral remote sensing
can provide spectral characteristics for distinguishing objects in hundreds of contiguous bands
other than two-dimensional information reflecting the spatial distribution of objects. The current
HSIs processing research studies mainly concentrate on dimensionality reduction,1,2 target detec-
tion,3 image classification,4,5 anomaly detection (AD),6 and pixel unmixing.7 Among them, tar-
get detection depends on prior knowledge in pre-investigation, and a large number of manual
labeling and field survey work are often combined. As an effective supplement and improvement
of target detection, AD has the advantage of detecting targets that have significant spectral
differences from the background without prior knowledge. It can detect anomaly targets or
anomaly situations and has substantial practical value in the military field.

Anomaly targets are generally defined as objects with a lower probability of occurrence than
the background.8 These pixels have distinctive spectral characteristics that differ from the sur-
rounding environment, such as local fires in the forest. To realize the real-time detection of data,
a series of hyperspectral AD algorithms have been proposed. For instance, the most widely used
reed-xiaoli (RX) anomaly detector9 uses the background spectrum of the entire scene to con-
struct the covariance matrix and determines the detected pixel below the threshold according
to the Mahalanobis distance (MD). As a representative based on statistical models, RX has the
convenience of implementation; however, the established background model is difficult to
describe complex scenes, which leads to a high false alarm rate of this algorithm. An enhance-
ment of background selection, such as local RX (LRX) detector,10 selects part of the pixels to
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calculate the background by adopting the sliding window containing the target and background
pixels. The cluster-based anomaly detector assumes that background pixels within clusters can
be modeled according to Gaussian distributions,11 whereas anomalousness deviates from the
distribution of the cluster. This work can detect man-made targets in the presence of natural
background clutter while ensuring a relatively low false alarm rate, but the above algorithm also
has a shortcoming, the background statistics always contain anomalies, which makes the dataset
contaminated. Aiming at the real and complex background of the image, modified algorithms
based on RX have been put forward. To deal with the high dimension and nonlinear character-
istics of data, a kernel RX algorithm is presented, which maps data to higher dimensional space
through a specific nonlinear mapping function.12 In addition, the regularized RX method forces
the filter coefficients to shrink through the regularization term,13 by introducing this idea, the
model can be made more stable and have better performance. Furthermore, the algorithm based
on subspace RX has also achieved good detection results.14

Banerjee et al.15 proposed a support vector data description (SVDD) algorithm for AD in
2006; this algorithm constrains the training sample in a hypersphere surrounded by it and utilizes
the minimum closed hypersphere to separate the sample from other classes, effectively averting
the problem that the assumption of Gaussian distribution is not consistent with the data distri-
bution. Collaborative representation-based detector (CRD), which achieves advanced detection
performance without assuming the background distribution, minimizes the norm of the weight
vector without estimating its covariance matrix, thereby enhancing the cooperation between
adjacent pixels.16 The sparsity score estimation framework analyzes the frequency of each
dictionary atom used for reconstruction based on the learned dictionary and the corresponding
sparse coding.17 Considering matrix decomposition and statistical information, the low-rank and
sparse matrix decomposition-based method uses MD difference to detect anomalies.18

Recently, neural network-based AD has shown strong strengths in modeling and generali-
zation of complicated data. Ma et al.8 employed reconstruction errors generated by deep belief
networks as adaptive weights combined with local Euclidean distance to determine anomalies.
Xie et al.19 proposed the structure of combining discriminator and autoencoder (AE) to form a
new network. The background input to the network for training derives from clustering, and then
the original HSI was tested by AE. Reference 20 adopted the fully convolutional AE and adap-
tive loss function for image reconstruction. The main innovation is to upgrade the network struc-
ture to adapt to the background and realize auto-detection. Both of the above two methods
consider improving the network to fully learn the background, so as to separate the anomalies.
One uses a semi-supervised approach, and the other is unsupervised. The main difference
between this paper and the above is that the significance of the targets in the spatial domain
is considered while using stacked AE obtained characteristics of the spectral domain.

Based on the AE and the connectivity between background and anomaly pixels in the spatial
domain, a method for AD is proposed in this paper. The first step is to preliminarily determine
the anomaly pixels by the reconstruction errors between the input data and the reconstruction
results in AE. In terms of spatial morphology, the compressed results from the encoder are
obtained to analyze the local pixels discrepancy using the sliding window structure. Then mor-
phological transformations are implemented to extract the shape features in small regions to
complete the refinement of the anomalies. At last, the above-mentioned processes are merged
by matrix multiplication. The main characteristics of this paper are as follows: attempt to employ
reconstruction error to estimate anomalies in a stacked AE; design a local spatial representation
to apply information in the spatial domain; and introduce the morphological profile operations to
extract anomalies. The details of the proposed method are described in the following section.

2 Related Methods

2.1 Autoencoder

The AE performs encoding and decoding to compress and restore the feature distribution of the
original data. Since the spectral anomaly is tiny compared with the surrounding environment and
is obvious in the spectral domain, the background usually occupies most areas of the HSI. In the
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case of sufficient samples, the learning ability of the AE for background pixels is much stronger
than that for anomalies. Therefore, the AE can obtain more similar reconstruction results and
more minor reconstruction errors for the background pixels than the unusual pixels. AE includes
encoder and decoder, which can be regarded as a self-supervised learning algorithm. Its purpose
is to learn to reconstruct the original input by minimizing the reconstruction loss. The HSI (X) is
input to the network pixel by pixel, and all spectral band data of a pixel are input at a time. The
network structure of the AE is illustrated in Fig. 1.

The encoder of AE uses function σð·Þ∶x → h to project the input x into the latent layer h, and
the decoder uses the function δð·Þ∶h → x̃ to reconstruct the latent layer h to ensure the output x̃.
Mapping functions represent nonlinear activation functions, which make the neural networks
possess the nonlinear ability. In this study, the Relu and sigmoid functions are selected. The
output of each layer multiplied by the weight is the input of the next layer, and the output is
considered to be a restored image.

Let X ∈ Rm×n×L represent an HSI withm × n pixels and L bands in the spatial domain. X can
be interpreted as a set of m × n vectors of L bands, i.e., 2D images of X ¼ ½x1; x2; · · · ; xm×n�,
where xi ∈ RL×1. Given the input xi ∈ RL×1, the encoder maps xi to the latent layer h ∈ RB

shown in Eq. (1). B and L denote the dimensions of the layer,

EQ-TARGET;temp:intralink-;e001;116;390h ¼ σðWexi þ beÞ; (1)

where h represents the latent layer, We and be are the weight matrix and bias of the encoder,
respectively, and σð·Þ is the activation function. Then decoder projects the potential layer to the
output layer x̃i ∈ RL, as shown in Eq. (2):

EQ-TARGET;temp:intralink-;e002;116;324x̃i ¼ δðWdhþ bdÞ; (2)

where δð·Þ represents the activation, andWd and bd are the weight matrix and bias of the decoder,
respectively. The loss function is related to the reconstruction errors between the input and output
units of the AE, using the root mean square loss function:

EQ-TARGET;temp:intralink-;e003;116;261MSE ¼ 1

K

XK
i¼1

ðxi − x̃iÞ2; (3)

where K is the number of inputs for a given training set. During the iteration, AE learns to
minimize the reconstruction error and use it to estimate anomaly score. High scores are deemed
more likely to occur in anomaly pixels.

2.2 Morphological Operation

The idea of morphology is to extract corresponding shapes from the input image through specific
structuring elements (SEs) for image analysis and target recognition. The dilation expands the
bright area while erosion expands the dark areas.21 They are widely used to eliminate noise,
connect adjacent units, and identify obvious maximum or minimum in image areas. Dilation
(Dilation �) is defined as the maximum value in the corresponding image area of the structural
element. Erosion (Erosion �) is the minimum value in the corresponding image area of the
structural element:

Fig. 1 Illustration of a stacked AE.
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EQ-TARGET;temp:intralink-;e004;116;735fðx; yÞ � SE ¼ maxffðxþ x 0; yþ y 0Þjðx 0; y 0Þ ∈ DSEg; (4)

EQ-TARGET;temp:intralink-;e005;116;701fðx; yÞ � SE ¼ minffðxþ x 0; yþ y 0Þjðx 0; y 0Þ ∈ DSEg; (5)

where DSE is the domain of SE and f is the input image, and x 0 and y 0 are the offsets for anchor
point ðx; yÞ. Opening is accomplished first by erosion and then dilation, which can eliminate the
brightness of the small area. Contrary to opening operation, closing eliminates the small black
holes by dilation and then erosion. The closing and opening operations in the morphology are
usually used for edge detection.22 Opening (ImO) and closing (ImC) are defined as follows:

EQ-TARGET;temp:intralink-;e006;116;632ImOðf; SEÞ ¼ ðf � SEÞ � SE; (6)

EQ-TARGET;temp:intralink-;e007;116;589ImCðf; SEÞ ¼ ðf � SEÞ � SE: (7)

It is worth noting that a specific SE is often chosen in mathematical morphology depending on
the geometric structure of the original signal.23 For example, for the image with a rectangular
target area, when the square SE is selected, the result of erosion or dilation is still rectangular.
If the rhombus structure slides on a rectangle, the result is an approximate octagonal shape.
Additionally, the circular SE can make the processed objects smooth. Take the image with arti-
ficial objects as an example, when the experiment primarily utilizes the objects such as cars and
roofs as the target, the square SE is selected according to their shape. In the subsequent experi-
ments of this article, the square SE is used to perform morphological processing on the images.

3 Proposed Framework

This section describes the framework of the proposed autoencoder and spatial morphology
extraction (AESME)-based method, as shown in Fig. 2. First, we construct an AE, including
several hidden layers. The size of the input and output layer is equal to the number of channels
of HSIs. There are seven neurons in the middle layer, representing encoder output and decoder
input. All band ranges of a pixel in the HSI are taken as the input data; each pixel is successively
inputted into the network, and reconstruction result is the same as the input image in rows,
columns, and bands. The residual error is employed to determine the anomaly degree of each
spectral signature; the anomaly degree is used as the evaluation:

EQ-TARGET;temp:intralink-;e008;116;344r ¼ 1

L

XL
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi − x̃iÞ2

q
; (8)

Fig. 2 Diagram of the proposed AESME AD framework.
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where r is the reconstruction error for each spectral signature, xi is the input pixel, L is the
number of spectral bands, and x̃i is the decoded output of the AE.

For the purpose of further improving the detection accuracy, the result passing through the
encoder is converted into a shape-transformed image M that is equivalent to the data dimension
of m × n × Lm, where Lm represents the output dimension from the encoder. A dual window
with a sliding structure is established on theM, and its specific structure is shown in Figure 3; the
outer neighborhoods of the window are counted asWout to estimate the local background. During
the sliding, the center pixel value is replaced by the difference between the local background and
the corresponding center pixel; for each spectral signature, it is expressed as

EQ-TARGET;temp:intralink-;e009;116;494Wc½t� ¼
1

Lm

XLm

j¼1

�
1

Lb

XLb

i¼1

jWout½j�½i� −Wc½j�½t�j
�
; (9)

whereWc½t� is the center pixel of the sliding window,Wout½j�½i� is the i’th local background pixel
in the j’th band, Wc½j�½t� represents the center pixel in the j band, and Lb is the number of local
background pixels for corresponding band. The pixel value in HSI is replaced by the average
pixel discrepancy between the center pixel of the window and the background pixel. The reali-
zation of this process is shown in Fig. 4(a). It excludes an extensive range of similar backgrounds
and retains areas different from the local background, mainly including pixel mutations in small
areas and transition zones. When the target is retained, the regions with visual significance will
be extracted, which will interfere with the anomalies extraction to some extent, so the morpho-
logical method is used to enhance the recognition of abnormal objects in space.

First, perform principal component analysis (PCA) to overcome redundant information and
noise pixels. By testing the subsequent experimental data, when the optimal detection effect is
obtained, the number of principal components Ln in PCA is selected variously in different
images. The specific analysis is discussed in the next section. Commonly used band average
fusion is employed after PCA and a new image with prominent spatial characteristics is obtained:

Fig. 3 Adaptive dual-window structure for hyperspectral AD.

Fig. 4 The processing results in the spatial domain. (a) Spatial representation of local discrep-
ancy. (b) Dimensionality reduction results. (c) Opening operation. (d) Closing operation. (e) The
absolute value of the difference between the S and ImO. (f) The absolute value of the difference
between S and ImC. (g) The final result of the morphological operation.
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EQ-TARGET;temp:intralink-;e010;116;735S ¼ 1

Ln

XLn

i¼1

Xi; (10)

where S represents the fused image, Ln is the total number of principal components, and Xi is the
i’th principal component image. It should be noted that although the encoder can play the role of
dimensionality reduction, the number of intermediate layers is fixed. The amount of information
after encoding may not be the optimal result and will not be suitable for extracting information in
images.

Since the morphological opening and closing operations can, respectively, remove the bright
and dark connection components in a small area and will not significantly change the area of
other objects, we introduced a simple operation to retain small area objects. The assumption in
this section is that the actual HSI anomalies are usually manifested as small areas composed of
interrelated pixels compared with the background; in addition, it also has a particularity in terms
of structure attribute in the spatial domain. By fulfilling morphological operations on the fused
image S, the anomalous spatial features are separated from the background. By selecting differ-
ent SEs to retain or remove the connected components, the particular spatial structure of HSIs
can be effectively described. Therefore, the difference map obtained is as Eq. (11) according
to Ref. 24:

EQ-TARGET;temp:intralink-;e011;116;514O ¼ jS − ImOj þ jS − ImCj; (11)

where the term jS − ImOj remains the bright connected components in a small region, and
jS − ImCj remains the dark connected components in a small region. The implementation of the
opening and closing operations and their joint application results are shown in Figs. 4(b)–4(g),
which can successfully erase the background.

4 Experiment

4.1 Experimental Data

The datasets employed to validate the performance of the different methods include real hyper-
spectral samples and their reference images. The first is San Diego dataset, which was collected
by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor25 in the San Diego air-
port area of California, and the noise band has been removed. Another Airport Beach City
(ABU) database contains 13 sample images of 100 × 100 pixels and their corresponding ground
reference images, which can be downloaded from its website,26 Urban-4 data were collected by a
reflection optical system imaging spectrometer (ROSIS-03) sensor,27 all others were collected by
AVIRIS sensors.

4.2 Experimental Result

To verify the proposed AESME method, four AD algorithms, including RX, LRX, SVDD, and
CRD, are used for comparison. Synthetic images for experiments and detection results of differ-
ent methods are indicated by Figs. 5–8. San Diego data correspond to Fig. 5, and Beach, Urban,
and Airport scenes of ABU data are displayed in Figs. 6–8, respectively. In general, the RX
algorithm is easy to implement and performs favorably in relatively simple scenes. LRX is

Fig. 5 Synthetic images of the (a) San Diego, (b) reference detection map; (c)–(g) are the detec-
tion maps of different methods: (c) AESME, (d) RX, (e) LRX, (f) CRD, and (g) SVDD.
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suitable for the case of significant local spectrum variation, and the selection of the sliding win-
dow size has a crucial influence on the detection performance. The selected windows size varies
according to different scenes. For example, the ABU-Beach and ABU-Urban images mostly use
(11, 7) windows, and the ABU-Airport images use windows ranging from (7, 5) to (19, 17). CRD

Fig. 6 Synthetic images of the (a) ABU-Beach scenes, (b) reference detection map; (c)–(g) are the
detection maps of different methods: (c) AESME, (d) RX, (e) LRX, (f) CRD, and (g) SVDD.

Fig. 7 Synthetic images of the (a) ABU-Urban scenes, (b) reference detection map; (c)–(g) are the
detection maps of different methods: (c) AESME, (d) RX, (e) LRX, (f) CRD, and (g) SVDD.
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can be properly employed in manifold scenes, and the best regularization parameter is set to
10−6. The σ value of the SVDD algorithm is set between 3 and 60. Though the SVDD algorithm
can be applied to various scenes, it cannot well suppress background interference. In the AESME
method, the number of the AE intermediate layer is 7, and the average number of principal
components is 3. In the end, the detection maps of the proposed method and the comparison
methods are indicated by gray from black to white.

The receiver operating characteristic (ROC) curve is an index for intuitive evaluation of AD.
The relationship between true positive rate pd and false positive rate pf under threshold (τ) can
be effectively illustrated by drawing the ROC curves of the two ratios ðpd; pfÞ. The area under
the ROC curve is called AUC, which is not greater than 1. A larger AUC value means the higher
authenticity of the detection method. AUC ¼ ∫ þ∞

−∞TRPðHÞFPR
0ðHÞdH defines the AUC value

when the detection map threshold is set to H. The study uses ROC and AUC to evaluate the
performance of the different methods.

The ROC curve of San Diego Airport is shown in Fig. 9(a), the curves of a scene from the
Urban, Airport, and Beach dataset, respectively, are shown in Figs. 9(b)–9(d), respectively. AUC
values of different HSIs are listed in Tables 1 and 2. For the visualization result of the San Diego
dataset, the proposed method retains the basic shape of the airport and a relatively pure back-
ground, whereas RX, LRX, and SVDD do not eliminate the interference in the background, and
the CRD method loses the shape information of the target. The AESME method obtains the
highest AUC scores for the ABU-Urban dataset, which extract anomalies more completely
in Urban-1, Urban-3, and Urban-5. AUC scores of Urban-2 and Urban-4 are high, but the visual
results of this method do not clearly show the shapes of anomalies. The RX algorithm also shows
good performance on the urban scenes except Urban-3. In Urban-4, LRX has a high false alarm
rate for the background, and CRD displays the target shape incompletely; the CRD, LRX, SVDD
methods cannot accurately identify the target in Urban-5. For the dataset of ABU-Airport, the
AESME method has false alarm in Airport-1 and Airport-2, and LRX can obtain approximate
AUC values. However, LRX and CRD have insufficient discrimination between target and back-
ground in Airport-3 and Airport-4, and the AUC values are low, whereas SVDD has a high false
alarm rate. The method presented in Airport scenes is still the best in overall detection perfor-
mance. For beach dataset, the proposed method shows good performance in Beach-1, Beach-3,
and Beach-4, but the coastline is not excluded in Beach-2, and the LRX method avoids the false
detection of linear features compared with other detection results. It is proved that this method

Fig. 8 Synthetic images of the (a) ABU-Airport scenes, (b) reference detection map; (c)–(g) are the
detection maps of different methods: (c) AESME, (d) RX, (e) LRX, (f) CRD, and (g) SVDD.
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still has a slight false alarm rate for a small number of bright features in the background, which
is caused by the false detection in the morphology extraction. For all experimental images, the
detection maps of the proposed method are generally more visually similar to the reference
images and also show a competitive performance in terms of the AUC scores of the results.
Moreover, its ROC curve is the farthest from the diagonal of the graph in Figs. 9(a)–9(d), indi-
cating its capability to distinguish anomalies. There is no significant difference in the discrimi-
nation effect of several detectors in Fig. 9(c).

4.3 Results Discussion

Since the overall result can be regarded as a combination of the three processes, we compared
the performance when adding different components through the average AUC value of the ABU
datasets. The AUC scores considering the effectiveness of different factors are shown in Table 3.
In practice, when only the reconstruction error of the AE is used for AD, the average AUC score
of ABU data can reach 0.951. Certainly, there is still potential for improvement. After adding the
spatial filtering method, the AUC score increases by 0.024, and the detection effect is signifi-
cantly improved. Considering the influence of the local spatial differences simultaneously, the
average AUC score increased from 0.975 to 0.983, which achieved the ultimate effect of this
method. By evaluating the detection effect of different factors, the influence of these processes

Fig. 9 ROC curves of anomaly detectors. (a) ROC curves of San Diego Airport; (b), (c), (d) are
the ROC curves of Urban-1, Airport-3, and Beach-4 of ABU datasets, respectively.

Table 1 The AUC value of different AD methods for San Diego
dataset.

HSIs AESME RX LRX CRD SVDD

San Diego 0.9890 0.9403 0.9095 0.9638 0.9085
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on the entire algorithm can be analyzed. In addition, Table 4 indicates the size of SE in the
morphological filter when achieving the AUC values in Tables 1 and 2. The size of the targets
in the image should be considered when using a specific size of SEs to extract the corresponding
shape. For most datasets, the appropriate size of SE is (5, 5), and for a small portion of the data,
the size of (3, 3) and (7, 7) is suitable. According to the effects to be achieved, the small size SE
can better retain the objects in AD.

In addition, the influence of parameter settings on the performance of the algorithm is ana-
lyzed. The first parameter is the local window size, where the outermost neighborhoods are used
asWout to predict the center pixel. As shown in the left column of Fig. 10, the AUC value is used
to evaluate the influence on the algorithm when the window size is set to (3, 1), (5, 3), (7, 5),
(9, 7), and (11, 9). The horizontal axis in the figure is the size of the outer window, and the

Table 2 The AUC value of different AD methods for ABU datasets.

HSIs AESME RX LRX CRD SVDD

Urban-1 0.9980 0.9907 0.9968 0.9887 0.9643

Urban-2 0.9977 0.9946 0.9044 0.9335 0.8855

Urban-3 0.9966 0.9513 0.9800 0.9707 0.9137

Urban-4 0.9972 0.9887 0.9062 0.9728 0.8715

Urban-5 0.9814 0.9692 0.9352 0.9438 0.9062

Airport-1 0.9618 0.8221 0.9665 0.9649 0.7541

Airport-2 0.9798 0.8404 0.9847 0.9608 0.7926

Airport-3 0.9662 0.9288 0.9467 0.9313 0.8869

Airport-4 0.9920 0.9526 0.8740 0.8376 0.9401

Beach-1 0.9911 0.9807 0.9608 0.9667 0.9790

Beach-2 0.9420 0.9106 0.9616 0.9188 0.9457

Beach-3 0.9994 0.9998 0.9998 0.9994 0.9355

Beach-4 0.9910 0.9538 0.9391 0.9396 0.8904

Table 3 The average results of ABU datasets considering different
factors during execution.

Factors
considered
in the
methods

Reconstruction
error only

Reconstruction
error and

morphological
filtering

Reconstruction
error, morphological
filtering, and local

discrepancy

AUC 0.95178 0.97560 0.98376

Table 4 The size of SE used for detection in morphological operations.

Size of SE Data name for this size

(3, 3) Beach-3 and Beach-2

(5, 5) Beach-1, Beach-4, Airport-1, Airport-2, Airport-4,
Urban-1, Urban-2, Urban-3, Urban-5, and San Diego

(7, 7) Airport-3 and Urban-4

Feng and Zhang: Hyperspectral anomaly detection based on autoencoder and spatial morphology extraction

Journal of Applied Remote Sensing 038507-10 Jul–Sep 2021 • Vol. 15(3)



corresponding size of the inner window isWout − 2. It can be seen that for San Diego and ABU-
Urban when the outer window is increased from 3 to 5, the detection performance improves
significantly and then tends to decrease slightly. As the window increases for ABU-Airport and
ABU-Beach, the AUC values present a continuous descending trend. Since the results of
extracting local differences will include boundary interference in the background, this is also
reflected in Fig. 4(a), where obvious boundaries with visual saliency are extracted. When the
window is properly enlarged, the target can be better framed, but the extracted boundary range
will also become broader, resulting in unstable or even lower AUC scores. For instance, ABU-
Beach (1) and (2) have explicit boundaries, the AUC value decreases when the window size
expands; when the ABU-Airport window becomes larger, the interference extraction compo-
nents in the complex image also increase, so the AUC value decreases. By contrast, the back-
ground of San Diego airport and ABU-Urban dataset is simpler, so increasing the window size to
fit the target has a more stable effect. The influence of the number of principal components is
presented in the right column of Fig. 10. When the number of principal components is less than
3, the detection effect of different data fluctuates greatly. When the principal components con-
tinue to increase, the AUC score will tend to stabilize. Therefore, the principal components with
stable detection results and small redundancy should be employed for hyperspectral data with
different spectral resolutions.

5 Conclusion

A hyperspectral AD algorithm combining spatial morphological structure and reconstruction
error is proposed in this paper. Our method constructs an AE network to learn the characteristics
of HSI data. In this process, the reconstructed image obtained through the network that retains
the typical features of the original input is adequate to calculate reconstruction errors with the
original image. To identify the specific spatial morphology of anomalies, the output from the
intermediate layer of the AE is transformed into a reduced-dimensional image, where a sliding
window is established to refine the local spatial information. Meanwhile, the different spatial
morphological filtering operations are introduced to extract the anomaly object of small targets.
We combine the reconstruction errors map, the local analysis result of the sliding window, and
the morphological filtering result to measure the contribution of each pixel of HSI. Experimental
results reveal that the method proposed in this paper has better detection capabilities on real
hyperspectral datasets in multiple scenes.
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