
RESEARCH PAPER

Object-based strategy for generating high-
resolution four-dimensional thermal surface

models of buildings based on integration of visible
and thermal unmanned aerial vehicle imagery
Alaleh Fallah ,a Farhad Samadzadegan,a and Farzaneh Dadrass Javan b,*

aUniversity of Tehran, College of Engineering, School of Surveying and Geospatial Engineering,
Tehran, Iran

bUniversity of Twente, Department of Geo-Information Science and Earth Observation (ITC),
Enschede, The Netherlands

ABSTRACT. The mitigation of energy usage in urban areas, especially in buildings, has recently
captured the attention of many city managers. Owing to the thermal images’ limited
resolution, especially at the edges, creating a high-resolution (HR) surface model
from them is a challenging process. This research proposes a two-phase strategy
to generate an HR four-dimensional thermal surface model of building roofs. In the
single-source modification phase, an enhanced thermal orthophoto is produced by
retraining the enhanced deep residual super-resolution deep network, and then,
using state-of-the-art structures from motion, semi-global matching, and space inter-
section. The final surface model’s resolution is raised by combining thermal data
with visible unmanned aerial vehicle images to overcome the limitation of single-
source methods in resolution increase. To this end, after visible orthophoto and dig-
ital surface model generation, buildings and their boundaries are extracted using
the multi-feature semantic segmentation method. Next, in the multi-source modifi-
cation phase, a fine-registered enhanced thermal orthophoto is generated, and
thermal edges are identified around the boundary of the building. The visible and
thermal boundaries are then matched, and any smoothness in the temperature
edges is eliminated. The results show that the average difference in position
between the thermal edges and building boundaries is reduced, and temperature
smoothness is completely eliminated at the building edges.
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1 Introduction
In the last few years, the mitigation of energy usage in urban areas, particularly in buildings as
the main urban objects, has attracted the attention of many city managers.1,2 Accurate surface
temperature data and their spatial distribution aid in identifying heat losses, air and moisture
leakages, cracks, insufficient insulation in roofs, and so on.3,4 Heat leakage from the roof of
a building includes about 25% of the total heat loss from a building.5 Therefore, the amount
of energy a building uses is significantly influenced by its roof, and their thermal inspection
can help increase life and reduce building maintenance costs.6
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Thermography allows recording, analyzing, and interpreting thermal abnormalities caused
by localized building damage or faults.7,8 The precise location of thermal defects cannot be
analyzed using two-dimensional (2D) thermographic images. In this respect, a thermal surface
model that displays three-dimensional (3D) information of buildings and thermal information is
required to detect, interpret, and measure abnormalities in building roof investigations.9

The spatial resolution of such a thermal surface model, especially at the edges, is one of its
limitations.10 In actuality, the spatial resolution of thermal images is typically quite coarse due to
the requirement for greater instantaneous field of view in thermal cameras (to ensure that enough
energy reaches the detector). Consequently, the thermal surface model created only from original
thermal images has a low spatial resolution and few details, which could make it difficult to
detect, interpret, and measure thermal anomalies. Therefore, it becomes important to provide
a process for creating a high-quality thermal surface model including thermal information
and high spatial resolution. In this research, this model is called an high-resolution (HR)
four-dimensional (4D) thermal surface model.

1.1 Related Works
Existing methods for producing an HR 4D thermal surface model are classified as single-source
and multi-source. In the first group, only thermal images are utilized to increase the quality of the
output. Meanwhile, in the second group, fusing thermal information with data from other sen-
sors, such as visible images, light detection and ranging (LiDAR), laser scanners, etc., is used to
improve the resolution of thermal surface models.11–16

In single-source methods, one solution to modify the quality of the thermal surface model is
to enhance the resolution of thermal images using “hardware” methods, which have higher
expenses and restrictions.17 In recent years, researchers have employed super-resolution (SR)
methods, which are single-source.18–21 These methods just use images from a single source
to produce HR images and then high-quality surface models. Studies show that increasing the
scale factor of SR methods to create spatially enhanced images can result in artificial structures.
Therefore, higher scale factors yield lower quality outputs than lower scale factors, which is
unacceptable.22

In recent years, the development of unmanned aerial vehicles (UAVs) has enabled cost-effec-
tive imaging in large numbers, making them an ideal tool for capturing visible images. Therefore,
among multi-source methods, the integration of surface models generated from visible images
obtained by UAVs with thermal information has attracted considerable research attention.

Nevertheless, the registration of thermal and visible data is a challenge in the production of
HR thermal surface models using multi-source methods. To overcome this challenge, some
researchers used joint camera systems to capture visible and thermal images concurrently.23,24

For many projects, joint systems are typically too expensive and uneconomical. Determining
the thermal camera’s internal orientation arguments requires accurate calibration between two
cameras, which is a challenge. Furthermore, separate flights in these systems are impossible with
a thermal and visible camera from the same area.

Other studies capture thermal and visible images separately. To develop a model that inte-
grates the geometric correctness and HR of visible images with the thermal data obtained from
thermal infrared (TIR) images, Ref. 7 present a method based on the iterative closest point algo-
rithm. Sledz et al. in Ref. 25 projected TIR images onto the digital surface model (DSM) created
from visible images to create a much higher geometrically accurate orthophoto. Reference 26
suggested integrating visible and thermal point clouds to produce an HR thermal point cloud
from building rooftops. The final point cloud generated using their method has thermal infor-
mation and a high spatial resolution. Reference 27 proposed a method for combining visual and
TIR data obtained from UAVs to create a thermal surface model of an active volcano. In the study
by Paziewska,28 to merge thermal and visible data, point features from the thermal imaging point
cloud were interpolated onto the vertices of the visible model.

According to what is stated, single-source methods do not require data from different
sources to produce HR 4D thermal surface models. However, they have high costs and construc-
tion limitations in the hardware group, and in SR group, the limitation of scale increment exists.
On the other hand, the main problem of multi-source methods is accurate registration of data
from several sources with varying resolutions.
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In addition to the limitations of the methodologies adopted by the cited research, none of the
reviewed studies addressed the problem of temperature smoothness at the edges of objects due to
the low resolution (LR) of thermal images. Thus, overcoming the thermal images’ limitations,
which include LR, especially at the edges, is the main challenge in this research for producing
an HR 4D thermal surface model. Herein, a two-phase strategy is proposed to create an HR 4D
thermal surface model of building roofs using UAV aerial images to overcome the problems of
thermal images. In the first phase, an enhanced thermal surface model and an enhanced thermal
orthophoto with improved resolution are created based on the single-source method. The visible
data are used to integrate with thermal data to increase the resolution of the final surface model in
the second phase. To this end, buildings and their boundaries are extracted using a multi-feature
semantic segmentation method. Then, using the proposed method, the visible and thermal boun-
daries are matched, and the smoothness of the thermal edges is eliminated.

The generated HR 4D thermal surface model can be used to visualize the building roof’s
thermal state and detect thermal anomalies to optimize energy consumption.

2 Materials and Methods

2.1 Sensors
In this research, two datasets including thermal video and visible images are used. Thermal vid-
eos are recorded using a Keii HL-640S uncooled focal plane array camera. This camera detects
the middle and longwave IR spectrum, which is the TIR region of the IR spectrum. Additionally,
visible images are captured using an HR Sony a6000 24 MP camera. The visible and thermal
cameras employed in this research, are shown in Fig. 1. Table 1 provides more detailed infor-
mation about sensors.

2.2 Platforms
Flight is performed using a light weight, multi-rotor UAV with a roll and pitch axis stabilizer.
The UAV platform employed in this research is shown in Fig. 2. This UAV has eight motors,
its flight altitude is about 400 m, and its maximum flight time is about 35 min.

Fig. 1 (a) Visible camera. (b) Thermal camera used in this study.

Table 1 The technical characteristics of the used sensors.

Parameter Visible camera Thermal camera

Sensor CMOS Uncooled FPA

Focal length (mm) 35 25

Image size (pixels) 6000*4000 640*480

Pixel size (μm) 4.04 17

Fig. 2 UAV platform employed in this research.
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2.3 Study Area and Flight Plan
In the southern part of Tehran, Iran, a region serves as the study’s location. A UAV ground
control station software is used to schedule flights over the approximately 123;000 m2 region.
The study area and the flight plan are depicted in Fig. 3. Some details about the flight plan are
listed in Table 2.

2.4 Ground Control Points
In this research, 33 natural features in the area, such as the corners of buildings, etc., which can be
seen in both sets of visible and thermal images, were used as control points. The distribution of
these control points in the study area and examples of them in the visible and thermal images are
shown in Fig. 4.

Fig. 3 (a) The study area. (b) The flight plan.

Table 2 Flight plan details.

Parameter Value

Duration of flight 20 min

Speed of flight 60 km∕h

Height of flight 300 m

Overlap 70%

Sidelap 70%

Number of strips 17

Fig. 4 Control points distribution and samples of their zoomed view in visible and thermal images.
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2.5 Methodology
Given the problems of UAV thermal images and the pros and cons of single-source and multi-
source methods, a strategy that combines these methods in two phases is proposed to generate an
HR 4D thermal surface. Figure 5 displays the proposed method’s flowchart. The subsequent
sections provide specifics on each step.

2.5.1 Pre-processing of thermal data

Both the thermal and visible data need pre-processing to enter the main process of the proposed
method. In the case of thermal data, first, the captured video is converted into a string of thermal
images. Then, the camera calibration process is performed.

In this study, the traditional camera calibration method is adopted for thermal camera
calibration. Before using the photogrammetric methodology, these techniques are utilized to
calculate the camera arguments based on image data, such as points or lines with accurate

Fig. 5 The proposed method to produce an HR 4D thermal surface model for buildings.
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coordinates.29 A proper test field must be designed to achieve this. To better detect targets and
increase contrast in thermal images, the designed test field for thermal camera calibration should
be heated first. Then, images are taken using Zhang’s method from various directions and
orientations.30 The camera calibration arguments are then determined using the projection
between the features’ location in the image and their object coordinates using the following
equations (collinearity equations):31

EQ-TARGET;temp:intralink-;e001;114;664x ¼ −c
r11ðX − X0Þþ r21ðY − Y0Þþ r31ðZ − Z0Þ
r13ðX − X0Þþ r23ðY − Y0Þþ r33ðZ − Z0Þ

; (1)

EQ-TARGET;temp:intralink-;e002;114;615y ¼ −c
r12ðX − X0Þþ r22ðY − Y0Þþ r32ðZ − Z0Þ
r13ðX − X0Þþ r23ðY − Y0Þþ r33ðZ − Z0Þ

: (2)

In the equations above, x and y are image coordinates; X0, Y0, and Z0 are coordinates of
the projection center; c is focal length; X, Y, and Z are object coordinates; and r represents
components of the rotation matrix. Using Brown model equations, lens distortion parameters
are determined [Eqs. (3) and (4)]32

EQ-TARGET;temp:intralink-;e003;114;547x 0 ¼ xð1þ k1r2 þ k2r4 þ k3r6 þp2ðr2 þ 2x2 þ 2p1xyÞÞ; (3)

EQ-TARGET;temp:intralink-;e004;114;511y 0 ¼ yð1þ k1r2 þ k2r4 þ k3r6 þp1ðr2 þ 2y2 þ 2p2xyÞÞ; (4)

where x 0 and y 0 depict the undistorted image coordinates, r is the Euclidean distance between the
image coordinates and coordinates of the projection center, pi is tangential distortion coefficient,
and ki is radial distortion parameter. The accuracy of the calibration technique in geometric
calibration can be calculated based on the mean re-projection error.

2.5.2 Single-source modification

Surface models generated from thermal images have lower accuracy because of the lower
resolution of these images. On the other hand, a better registration outcome can be obtained by
matching and bringing the data resolutions closer to one another.33 For this purpose, in this phase,
an enhanced surface model and an enhanced thermal orthophoto are produced using only
thermal data.

There are two main processes in this step. A deep learning (DL)-based single-image SR
(SISR) model is trained in the first step to create HR thermal images from LR ones. In the next
step, the enhanced surface model and enhanced orthophoto are produced using the outcomes of
the earlier steps. The next sections provide details on these two steps.

Image resolution enhancement. A convolutional neural network, named enhanced deep
residual super-resolution (EDSR) network, is utilized to apply SISR to improve the thermal
image resolution.34 The EDSR network was selected because of its ease of execution and
satisfactory performance, according to recent studies.35

The objective in EDSR network training, is to train model f, which is represented in Eq. (5).

In this equation, cThHR shows predicted HR thermal image, and ThLR is LR thermal image.
In other words, by reducing the distance between fðThLRÞ and ThHR (HR thermal image), the

EDSR network creates a resolution-enhanced image cThHR
EQ-TARGET;temp:intralink-;e005;114;199

cThHR ¼ fðThLRÞ: (5)

According to Ref. 34 compared to L2, the mean absolute error loss function (L1 loss) pro-
duces better convergence. Therefore, the L1 is used to train the EDSR network instead of the L2.
Equation (6) gives the L1 loss function that needs to be minimized

EQ-TARGET;temp:intralink-;e006;114;136e ¼ 1

mn

Xm−1

i¼0

Xn−1
j¼0

kThHRði; jÞ − fðThLRði; jÞÞk: (6)

In Eq. (6), m stands for the number of image rows, n for the number of image columns,
i for the index of each row, and j for the index of the column.
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After training, a map is created to predict HR images from LR input images. This technique
can be applied to super-resolve any LR image to generate an HR image. In the next steps, the
enhanced surface model and enhanced orthophoto are created using these enhanced thermal
images.

Enhanced surface model and enhanced thermal orthophoto generation. To pro-
duce an enhanced surface model from a collection of HR thermal images, first, the exterior
orientation arguments of images are computed using the state-of-the-art structures from motion
(SfM) method. The SfM algorithm uses the corresponding points found by the scale-invariant
feature transform algorithm and also ground control points (GCPs) in a sequential bundle adjust-
ment to establish the input images’ exterior orientation parameters. Then a 3D point cloud is
generated.36

Second, a disparity map is created by applying the semi-global matching (SGM) method to
HR thermal images.37 From a pair of rectified stereo images, SGM calculates a dense disparity
map. Numerous researchers have used the SGM because of its satisfactory results in dense
stereo-matching applications.37 A dense point cloud is then produced using space intersection,
the disparity maps created from each stereo pair of images, and the exterior orientation argu-
ments. Data gridding is performed to create the enhanced surface model after generating a dense
point cloud. After that, intensity values or digital number values, from the corresponding images
are assigned to the enhanced surface model,38 and the enhanced thermal orthophoto is produced.

2.5.3 Pre-processing of visible data

Visible images are an input for the second phase; thus, at this stage, this type of data is pre-
processed to create appropriate inputs for integration with thermal data. After determining cam-
era calibration parameters, DSM and visible orthophoto are generated from the visible images
based on the section “enhanced surface model and enhanced thermal orthophoto generation,”
except that its inputs are visible images.

2.5.4 Building extraction

This research focuses on accurately assigning the temperature data from thermal orthophotos to
buildings. Therefore, in this section, buildings are extracted using DSM and visible orthophoto
created in previous steps.

DL plays an important role in automatic extraction. It can classify objects accurately and
learn complex features. In addition, semantic segmentation methods have been applied in
remote sensing tasks like object extraction and detection.39,40 SegNet is an end-to-end network
for semantic pixel-wise segmentation,41 which is selected in this research due to its better
performance compared to other deep architectures, such as FCN, FCN (learn deconv),
DeepLab-LargeFOV, DeepLab-LargeFOV-denseCRF, and DeconvNet.42,43 The structure of
SegNet network is depicted in Fig. 6.

Fig. 6 SegNet architecture for semantic segmentation.
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An encoder network, a corresponding decoder network, and a pixel-wise classification layer
constitute the fundamental trainable segmentation architecture of the semantic segmentation
model SegNet. At the encoder, convolutions using 13 convolutional layers from visual geometry
group-16 (VGG-16)44 and max pooling are performed. The decoder in the reverse step consists of
13 deconvolution layers. Up-sampling and convolutions are carried out at the decoder. The clas-
sifier approach is the last layer in the network and uses the soft-max classifier method to forecast
the maximum probability of the number of classes.

Good results are obtained when buildings are extracted from a UAV photogrammetric image
dataset using a SegNet-based DL semantic segmentation technique in a supervised learning
model.45 Previous research indicates that combining visible images with additional feature bands
can increase building segmentation performance.46–49 Therefore, in this research, the SegNet
network and a combination of visible images and normalized DSM (nDSM) feature bands are
used to extract the buildings. The nDSM is generated by removing the digital terrain model
(DTM) from the DSM using the method proposed by Ref. 50. The data dimension is increased
by the nDSM to several views. Consequently, the nDSM feature helps distinguish between the
ground and the rooftop and between the shape of buildings and trees.47

The visible orthophoto, nDSM, and the image of training labels will be introduced to the
SegNet network for training. After the SegNet network has been trained, the generated visible
orthophoto and nDSM enter the trained model, and the buildings are extracted.

Although the SegNet network outperformed many other deep architectures, it is important to
note that deep architecture networks, including SegNet, generally yield predictions with poor
boundaries.51 Therefore, in this research, the building boundary refinement (BBR) method pre-
sented by Ref. 52 is adopted to enhance the building boundaries. In this method, boundary pixels
are detected for each building object. Subsequently, in a repeatable procedure, a specific rule is
utilized for neighborhood pixels to choose whether each boundary pixel region should grow or
shrink. At the end of this step, the accurate building objects are extracted.

2.5.5 Multi-source modification

After generating enhanced thermal orthophoto, DSM, and visible orthophoto from thermal and
visible sources, the second phase of the proposed method starts. In this phase, first, the enhanced
thermal orthophoto is fine registered to the visible orthophoto, and then, an object-based inte-
gration operation is performed.

Fine registration. Since GCPs are employed in the production of surface models, thermal
surface model, DSM, and their related orthophotos are registered. This step involves fine regis-
tration of enhanced thermal orthophoto and visible orthophoto using the B-Spline registration
algorithm.53 In this method, the input data are transformed under the control of a grid of B-spline
control points. An error measurement is employed to determine the degree of misregistration
between slave and master images. To achieve the best possible registration between the two sets
of data with the fewest possible registration errors, the control points are moved using the quasi-
Newton optimizer.

Object based integration. In this step, the temperature determined from the fine-registered
intensified thermal orthophoto should be assigned to extracted buildings. Due to the lower
resolution of thermal images, the temperature mapped from fine-registered enhanced thermal
orthophoto to DSM will be smooth at the edges. In addition, there is still some deficiency
in the accurate registration of temperature edges and the edges of the extracted buildings.
Figure 7(a) depicts a hypothetical building in that its temperature is lower than the surroundings.
If a cross-section is considered on this building, the temperature profile assigned to it will be
like Fig. 7(b). In this figure, the black profile shows a cross-section of a building in the DSM,
and the red profile depicts the temperature assigned to the cross-section. The deficiency in the
registration and edge smoothness is clear in the temperature profile. The following steps are taken
to accurately register the edges and eliminate temperature smoothness at the edges of the
building.
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• Finding the smoothness range of the temperature edge

Images are regarded in the imaging process to be the outcome of an imaging function Fð:Þ
applied to objects, which can be presented as the following equation:

EQ-TARGET;temp:intralink-;e007;117;559Imageðx; yÞ ¼ FðObjectðx; yÞÞ: (7)

The imaging function Fð:Þ is determined by taking into account the linear system
assumption as a set of 2D convolutions of objects with the point spread functions (PSFs).
The PSFs are made up of elements of the imaging system like PSFAtmosphere, PSFLens, and
PSFSensor

54

EQ-TARGET;temp:intralink-;e008;117;486Imageðx; yÞ ¼ PSFAtmosphere�PSFLens�PSFSensor � Objectðx; yÞ ¼ PSFSystem � Objectðx; yÞ: (8)

In optical analysis, a system’s line spread function (LSF), which depicts the picture of
an ideal line, is typically favored over the PSF because it is simpler to measure. The PSF and
LSF can be converted into one another. High-contrast edges are good objectives for assessing
the spatial response. Therefore, the object is often chosen so that the reflection is strong on one
side of the edge and weak on the other.

Edge profiles are produced at each edge point once edge locations are extracted. After
smoothing and consistency checks, the edge spread function (ESF) is incorporated into the
LSF calculation. In this research, the mean value of the ESFs computed for different edges
is calculated to obtain an ESF for the entire image. Then, differentiation is used on the mean
ESF profile to determine LSF. Next, a Gaussian function smooths and removes the noise from
the resulting LSF curve. The LSF calculation equation is expressed in the following equation:

EQ-TARGET;temp:intralink-;e009;117;329LSFðxÞ ¼ d
dx

½ESFðxÞ�: (9)

Figure 8 displays the visual relation between LSF and ESF. As shown in the figure, the
smoothness area of the edge is located within the range of blue dashed lines.

The difference between the two independent variable values at which the dependent variable
is equal to half of its maximum value is called the full width at half maximum (FWHM).55

If Eq. (10) is the density of a normal distribution, where σ is the standard deviation and μ is
the expected value the maximum value of the function of Eq. (10) is obtained from Eq. (11)

EQ-TARGET;temp:intralink-;e010;117;222fXðxÞ ¼
1ffiffiffiffiffi
2π

p
σ
· exp

�
−
1

2

�
x − μ

σ

�
2
�
; (10)

EQ-TARGET;temp:intralink-;e011;117;173fmax ¼ fXðmodeðXÞÞ ¼ fxðμÞ ¼
1ffiffiffiffiffi
2π

p
σ
: (11)

And so, on considering the definition of FWHM, its bounds satisfy the following equation:

EQ-TARGET;temp:intralink-;e012;117;141fXðxFWHMÞ ¼
1

2
fmax ¼

1

2
ffiffiffiffiffi
2π

p
σ
: (12)

Using Eq. (12), Eq. (13) can be developed and finally Eq. (15) is obtained to calculate full
width at one-thousandth maximum (FWThM) or the smoothness range56 by solving Eq. (14)

Fig. 7 (a) A hypothetic building. (b) The deficiency in the registration and edge smoothness for
a cross-section of a hypothetic building.
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EQ-TARGET;temp:intralink-;e013;114;502fXðxFWThMÞ ¼
1

1000
fmax ¼

1

1000
ffiffiffiffiffi
2π

p
σ
; (13)

EQ-TARGET;temp:intralink-;e014;114;460

1

1000
ffiffiffiffiffi
2π

p
σ
¼ 1ffiffiffiffiffi

2π
p

σ
: exp

�
−
1

2

�
xFWThM − μ

σ

�
2
�
; (14)

EQ-TARGET;temp:intralink-;e015;114;428FWThM ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 1000

p
σ: (15)

• Finding temperature edge

At the edge of buildings, there is usually a strong temperature difference between the build-
ing and non-building areas. The following steps should be performed to find the edge pixel in
fine-registered thermal orthophoto: first, a line should be fitted to each edge’s pixels for each
extracted building using the least square method.

If the coordinates of the building edge pixels are ðx1; y1Þ; : : : ; ðxn; ynÞ, then Eq. (16) is used
to determine the best line fitted to them

EQ-TARGET;temp:intralink-;e016;114;315y ¼ mxþ b: (16)

In this equation, m is the slope of best fitted line and b is the y-intercept.
In the second step, for each pixel of the edge by coordinate (xp; yp), the line perpendicular to

the best-fitted line should be extracted by the following equation:

EQ-TARGET;temp:intralink-;e017;114;255y ¼ −
1

m
xþ yp −mxp: (17)

Then, for each pixel in the desired edge, the temperature profile is extracted from fine-
registered enhanced thermal orthophoto in the direction perpendicular to the edge in a certain
range. This certain range can be determined depending on the accuracy of the registration in the
previous steps, as well as the resolution of the thermal data, by trial and error. The edge’s location
is the point with the greatest slope in the temperature profile.

• Fine matching temperature and building edges

After finding the temperature edge pixel, the temperature assigned to the building is modi-
fied by shifting the temperature profile in a direction perpendicular to the edge and matching its
edge pixel with the building’s edge. By performing these steps, the temperature assignment error
due to the mismatch of edges in thermal data and visible data is minimized. In Fig. 9(a), the
orange profile shows the cross-section depicted in Fig. 7(b) after fine-matching the edges.
The dashed line in this figure depicts the temperature profile before fine-matching the edges.

Fig. 8 The relationship between LSF and ESF.

Fallah, Samadzadegan, and Javan: Object-based strategy for generating. . .

Journal of Applied Remote Sensing 034504-10 Jul–Sep 2024 • Vol. 18(3)



• Remove temperature smoothness at the edges

The temperature within the smoothness range is determined by taking into account the
temperature of the last pixel on either side of the smoothness range. This results in the loss of
temperature smoothness in the building edges. Figure 9(b) displays the temperature assigned to
the cross-section of the building after removing temperature smoothness at the edges.

At the end of the implementation of the proposed method, an HR 4D thermal surface model
of buildings is generated in which the building’s temperature is accurate and sharp at the edges.

3 Results
In the following sections, the results of the proposed approach are assessed for the test area in
the south of Tehran.

3.1 Pre-Processing Results of Thermal Data
The thermal video is recorded by the thermal camera and then converted into images with a size
of 640 × 480 pixels. Then, thermal camera calibration is done using a rectangular calibration
board that has 13 × 17 hollow circles. To identify the locations of targets in various images, the
calibration board also includes six coded targets [Fig. 10(a)]. Imaging from multiple views is
performed after heating the calibration board [Fig. 10(b)].

Adaptive thresholding is utilized to produce binary images.57 The centers of the circles are
determined in the next stage58 [Fig. 10(c)] and are regarded as the image’s coordinates. Then,
the camera is calibrated after forming the object’s coordinates. A total of 221 calibration points

Fig. 9 (a) Remove the deficiency in the registration. (b) Remove temperature edge smoothness.

Fig. 10 (a) Calibration board, (b) camera positions, (c) finding the circles’ centers, and (d) mean re-
projection error chart.
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extracted from 13 images are used, and the average value of mean re-projection error is estimated
to be 0.315 pixels [Fig. 10(d)].

3.2 Results of Single-Source Modification
In this phase, first, the radiometric and spatial resolution of the thermal images is increased by
utilizing the EDSR network. In the training step, 434 images (the thermal video’s captured
frames) are utilized for training the EDSR network, and 186 images are used to assess the accu-
racy of the calculated trained model. The structural similarity index18 and peak signal-to-noise
ratio18 values are determined as 0.9401 and 36.72, respectively.

The trained model is employed to produce HR thermal images from the other 669 original
thermal images. The scale factor for generating HR thermal images in this research is two. The
size of the original images and enhanced images are 640 × 480 and 1280 × 960, respectively. In
addition, the pixel size of the original images and enhanced images are 17 and 8.5 μ, respectively.
Following the image resolution enhancement stage, the enhanced images are utilized to produce
an enhanced surface model with an 11 cm resolution. In addition, the resolution of the original
surface model is 22 cm.

Comparing the original surface model and the enhanced surface model with a DSM (created
from visible images) reveals that the enhanced surface model contains greater details than the
original surface model (Fig. 11). Furthermore, Fig. 11 illustrates that the edges of the objects are
clearly crisper in the enhanced surface model than in the original surface model.

The enhanced thermal orthophoto generated from super-resolved images and enhanced
surface model is depicted in Fig. 12.

3.3 Pre-Processing Results of Visible Data
In this step, DSM and visible orthophoto are generated from visible images to combine with
thermal data. DSM is generated from visible images with a size of 6000 × 4000 pixels. The
resolution of the DSM is 4 cm. The DSM and the visible orthophoto generated from visible
images are shown in Fig. 13.

3.4 Results of Building Extraction
Visible orthophoto and DSM are generated from visible images taken in a different zone of
Tehran to detect and extract buildings in the investigated area. Then, the nDSM is generated

Fig. 11 Visual comparison of the details and edges of the original surfacemodel and the enhanced
surface model to the reference DSM.
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from the DSM. The orthophoto and the nDSM are cropped into small parts with a size of
480 × 480 pixels. The cropped orthophotos are utilized as base maps to label the ground objects
as building and non-building. Thus, the final dataset for training the SegNet network consists of
862 labeled images, cropped visible images, and cropped nDSMs, which are all connected by the
same ID.

The SegNet network parameters used in the semantic segmentation learning process are the
same as those used by Ref. 41. The visible orthophoto, nDSM, and labeled image samples of
the training dataset are shown in Fig. 14.

After the network’s training, the visible orthophoto and the nDSM of the studied area are fed
to the network, and its output is a labeled image that determines the buildings in the area.

Fig. 13 (a) 3D view of DSM. (b) Visible orthophoto generated from visible UAV images.

Fig. 14 Samples of the training dataset for building extraction.

Fig. 12 (a) Enhanced surface model. (b) Enhanced thermal orthophoto.
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Figure 15 depicts an overview of all the buildings extracted from the study area. Figure 16
shows the original inputs and the segmentation into building and non-building classes from
a close-up view of two sample areas.

Subsequently, BBR is used to remove the remaining shortcomings in the extracted building
boundaries. Figure 17 illustrates the outcome of using the BBR to correct overshoot and

Fig. 15 Overview of all the buildings extracted from the study area.

Fig. 16 Samples of original inputs and segmentation to building and no-building class results.

Fig. 17 Result of applying BBR algorithm to the building objects.
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undershoot errors in several sample test areas. Evidently, the majority of remaining building
boundary errors are eliminated, and results are more acceptable.

3.5 Results of Multi-Source Modification
After detecting the building boundaries and generating fine-registered enhanced thermal ortho-
photo, temperature profiles are determined around each boundary pixel at the edges of buildings.
Temperature profiles for some edges with proper quality and distribution in the thermal image are
calculated to determine the smoothness of the edges. After that, the mean temperature profile is
determined for these temperature profiles. Figure 18(a) depicts these temperature profiles (color-
ful dashed lines) and their mean (thick green line). Considering this mean profile as the ESF
curve, the LSF curve is calculated and its FWThM is determined as equal to 13 pixels according
to Eq. (15). That is, on each side of the edge pixel, an average of 6 pixels are affected by the edge
smoothness. Figure 18(b) depicts the relationship between the calculated mean profile (green
curve) and its LSF (red curve).

The point with the highest slope in the temperature profile is searched in the range of twice
the smoothness of the edges to find the temperature edge around the boundary of the buildings.
After fine-registering the edges, the temperature smoothness at the edges is removed.

Figures 19 and 20 display a 2D view and a 3D view of HR 4D thermal surface model rep-
resentation of all the buildings in the studied area, respectively.

Fig. 18 (a) Temperature profiles and their mean profile. (b) Relationship between the calculated
mean profile and its LSF.

Fig. 19 2D view of HR 4D thermal surface model representation of all the buildings in the studied
area.
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4 Discussion
In this research, a method is proposed to generate an HR 4D thermal surface model of buildings
based on the integration of visible and thermal UAV imagery.

For data collection, visible and thermal imaging has been performed on two flights and at
two separate times because thermal imaging sensors can display hot areas with greater contrast at
night. The reason for this is that the ambient temperature, and more importantly, the core temper-
atures of unheated objects and surroundings, are often substantially lower at night than during the
day. In addition, using separate thermal and visible cameras is more cost-effective than using
multiple camera systems. Furthermore, in multiple camera systems, it is challenging to identify
the internal orientation characteristics of the thermal camera using precise calibration between
cameras.23

Considering the limited resolution of thermal images, even the enhanced surface model can-
not achieve the desired quality required in many fields due to the scaling constraint on increasing
the resolution.21,22 Therefore, this study attempts to generate an HR 4D thermal surface model of
buildings in two phases. In the first phase, it generates an enhanced surface model and an
enhanced thermal orthophoto from thermal images, the resolution of which is closer to that of
DSM and visible orthophoto, respectively and facilitates registration. In the second phase, an HR
4D thermal surface model of the buildings is created by integrating the DSM of the buildings and
the temperature extracted from the enhanced thermal orthophoto.

In the first phase, because the implementation of the EDSR network is easy, it is used for
the SR of thermal images. The use of other DL networks is suggested to reduce registration
challenges.

In the building extraction step, using nDSM instead of DSM in the SegNet-based DL seman-
tic segmentation strategy removes the effects of ground slope in extracting buildings. However, it
seems possible to increase the overall accuracy of building extraction by adding other features,
such as the vegetation mask, and enlarging the training data for segmentation. Besides, the BBR
method overcame some of the shortcomings of determining the exact boundaries of buildings.

Note that, in the second phase, the search range to find the temperature edge around the
boundary of the buildings should be proportional to the accuracy of registration. Determining
too large or too small a size of this search range can lead to errors in the process of assigning
temperature to the edges of buildings.

It is crucial to note that in the studies conducted so far, after creating a surface model (or
point cloud) from visible images, the temperature is assigned to the HR surface data using vari-
ous techniques, such as interpolation. In those studies, it is assumed that registration is carried out
with the maximum possible accuracy, and the possibility of shifting between the boundaries
extracted from thermal and visible data is not taken into account. However, in this research, the
average distance between the positions of thermal and visible building boundaries in the original
model (generated from original thermal orthophoto) is calculated to be about 6 pixels. However,
this distance was reduced to about 4 pixels in the enhanced model (generated from enhanced
thermal orthophoto) and less than 1 pixel in the HR model (generated from proposed method).
This means the average difference in the position of the temperature edges and building boun-
daries was reduced by about 83.3%. Examples of how the temperature profiles are positioned in
relation to the height profile of the building’s edge are illustrated in Fig. 21.

Fig. 20 3D view of HR 4D thermal surface model representation of all the buildings in the studied
area.
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This figure displays the temperature profiles in comparison to the height profile in three
modes: original, enhanced, and fine-matched. As it is clear in Fig. 21, the shift between the
temperature profiles compared to the height profile in the second row is less than in the first
row. Moreover, in the third row, the displacement value is reduced to less than one pixel.

In the proposed method, the smoothness of temperature at the edges is removed. A profile
perpendicular to the edge of each highlighted building in Fig. 19 is determined and analyzed to
investigate this issue. Figure 22 shows the 3D view of the highlighted buildings and the position
of the specified profiles.

Figure 23 depicts the profile marked on each building in Fig. 21 in more detail.

Fig. 21 Comparison of the temperature profile (red) and height profile (blue).

Fig. 22 3D view of selected buildings and edge profile position on each building.
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Fig. 23 Comparison of 4D thermal surface models and temperature profile data.
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In the comparison profiles in Fig. 23, the blue curve shows the height profile, and the red
curve shows the temperature profile. As shown in Fig. 23, the HR 4D thermal surface model has a
better match between the visible and thermal edges of the buildings in addition to the high spatial
resolution obtained from visible data. Furthermore, the smoothness of the edges is not present
in this model.

Note that the original profile has a wider range of temperature smoothness compared to the
enhanced profile. That is, if the single-source modification stage is skipped, the area where the
temperature changes would be larger. However, due to the proper performance of SR methods
in enhancing the spatial resolution, performing the single-source modification step increases the
accuracy of the assigned temperature.

Therefore, the main challenge in this research was the accurate matching of the thermal
boundary and the object boundary, as well as removing the temperature smoothness at the edges
of the buildings, which was successfully overcome. At the end of the implementation of the
proposed method, an HR 4D thermal surface model was generated that can be utilized to opti-
mize energy usage.

5 Conclusions
This research proposed a two-phase strategy to generate an HR 4D thermal surface model. In the
single-source modification phase, an enhanced surface model and an enhanced thermal ortho-
photo were produced using DL-based SISR methods. Due to the limitation of scale increment in
SR methods, visible orthophoto and DSM were first created from UAV visible images. Then, in
the building extraction step, after retraining a SegNet network, the nDSM and visible orthophoto
were fed to the trained model, and the buildings were extracted. After that, data integration was
performed in the multi-source modification phase. In this way, a fine-registered enhanced thermal
orthophoto was first generated. Following the temperature edges’ smoothness range determina-
tion, the building’s boundaries and the temperature edges first coincided, and then, the temper-
ature smoothness at the edges was eliminated.

The results demonstrated great accuracy in both thermal and spatial information of the pro-
duced HR 4D thermal surface model. The matching of temperature edges and visible boundaries
was increased by about 83.3%. The temperature smoothness at the edges caused by the LR of
thermal images was completely eliminated.

The quality of the generated model is directly affected by the accurate determination of the
building’s boundaries; thus, even though the evaluation confirmed the effectiveness of the pro-
posed method, future studies should be focused on more accurate extraction of buildings and
their boundaries. For more accurate investigations of thermal anomalies, the mismatch of temper-
ature edges and boundaries of objects on the roofs should be found and removed. Furthermore,
the temperature edges’ smoothness in the inner area of the roof of each building should be
removed. Additionally, to determine the absolute temperature, the thermal sensor radiometric
calibration is advised with the intention of employing the HR 4D thermal surface model for
interpretation.
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