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Abstract. Stepped-frequency waveforms (SFWs) can use the digital signal processing method to
obtain high-range resolution with relatively narrow instantaneous bandwidth, which has been
used in synthetic aperture radar (SAR). However, SFWs have the disadvantages of poor anti-
jamming capability and a long period of transmission. Also, in the coherent integration time,
some echo data are frequently lost. A two-dimensional sparse imaging method in the space and
frequency domains for SAR is proposed based on compressed sensing (CS) theory. A sparse
SFW for SAR imaging is formed and analyzed first, which has the advantages of better anti-
jamming capability and a shorter time period of transmission. The range compression is com-
pleted by using CS theory. As to the sparse echo data in the space domain, the imaging operator
and the CS-based imaging scheme are constructed to simultaneously implement the range cell
migration correction and azimuth compression. Compared with the conventional SAR imaging
method of SFWs, a much smaller number of frequencies and a smaller amount of imaging
data are required for SAR imaging by using the proposed method. Finally, the effectiveness
of the proposed method is proven by simulation and experimental results. © The Authors.
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1 Introduction

Synthetic aperture radar (SAR) can realize imaging for the ground targets all day and under all
weather conditions, and can achieve a high resolution in range direction due to the use of high
transmitted-pulse bandwidth and in azimuth direction due to the storage of data over a certain
observation time.1,2 However, along with the improvement of range resolution, the bandwidth of
the transmitted signal will increase sharply, which is a huge challenge for sampling at the
receiver using analog-to-digital technology.3 Stepped-frequency waveforms (SFWs) consist
of sequences of single-frequency pulses where the frequency of each pulse is increased by dis-
crete steps.4,5 Thus, SFWs are able to use the wide radio-frequency band of a frequency-agile
radar with a narrow-band receiver which only needs simple hardware.6 Therefore, SFWs have
been widely employed to increase system bandwidth. However, the frequency-stepped value of
conventional SFWs is constant, and can be easily jammed. Meanwhile, SFWs are a group of
subpulses which require a long time period of transmission and may result in Doppler ambiguity.
These disadvantages dramatically reduce its applications.

In the last few years, the compressed sensing (CS) theory, which has been introduced in
Refs. 7 and 8, indicates that one can stably and accurately reconstruct nearly sparse signals

*Address all correspondence to: Qun Zhang, E-mail: zhangqunnus@gmail.com

Journal of Applied Remote Sensing 096099-1 Vol. 9, 2015

http://dx.doi.org/10.1117/1.JRS.9.096099
http://dx.doi.org/10.1117/1.JRS.9.096099
http://dx.doi.org/10.1117/1.JRS.9.096099
http://dx.doi.org/10.1117/1.JRS.9.096099
http://dx.doi.org/10.1117/1.JRS.9.096099
mailto:zhangqunnus@gmail.com
mailto:zhangqunnus@gmail.com


from dramatically undersampled data in an incoherent domain. With this prominent advantage,
the CS theory has been used in wide-ranging applications. Meanwhile, the idea of CS has also
been introduced in imaging radar system.9–15 In Ref. 10, a CS-based radar imaging method is
proposed in which the pulse compression matched filter is no longer needed. In Ref. 11, a
random-frequency SAR imaging scheme based on CS is put forward. The advantage of
this method is that only a small number of random frequencies are needed to reconstruct
the image of the targets. However, it does not consider the situation that some of SAR
echo data may be lost in the coherent integration time. In Ref. 12, the CS-based imaging
algorithm is proposed to obtain the super-resolving imaging result with full data for
stepped-frequency SAR. Also, the sparse recovery method is utilized to estimate the range
and Doppler of multiple targets with random stepped-frequency radar.13 Reference 14 pro-
poses a step-frequency radar system based on compressive sampling, which can use a smaller
bandwidth to achieve a high range and speed resolution. If a part of the subpulses of SFWs is
randomly selected for transmission, the interference frequency band will be avoided and the
time period to transmit will be shortened,15 which can improve the antijamming capability,
increase the equivalent pulse repetition frequency (PRF), and restrain the azimuth ambiguity.
Thus, a sparse SFW for SAR imaging is studied in this paper.

In addition, it frequently occurs that some of SAR echo data are contaminated or lost in the
coherent integration time. The contaminated data must be abandoned, which leads to the conven-
tional SAR imaging method being invalid. Due to the transmitted signal is the sparse SFW, the
SAR echo data are two-dimensional (2-D) sparsity both in the frequency and space domains. In
this paper, a novel 2-D sparse SAR imaging method is put forward. First, after analyzing the
imaging model with the sparse SFWs, the range compression is completed by using CS theory
instead of the inverse discrete Fourier transform (IDFT) processing. Second, in azimuth imaging
processing, the imaging operator is constructed by multiplying the diagonal 2-D decoupling
frequency function by the azimuth compression function. Thus, the range cell migration cor-
rection and azimuth compression are implemented simultaneously by the CS-based imaging
scheme. The main advantages of our method can be concluded as follows:

1. By using the sparse SFWs, the antijamming capability of the SAR imaging system is
improved and PRF is increased, which can restrain the azimuth ambiguity.

2. Even if some of the echo data are contaminated or lost in the space domain, the range
cell migration correction and azimuth compression can be achieved by constructing
the imaging operator and the CS-based imaging scheme. In other words, we can obtain
the SAR imaging result with small amounts of data, which is very important for high-
resolution SAR imaging.

The organization of this paper is as follows. Section 2 analyzes the signal model for SAR
imaging with sparse SFWs. Then, after introducing CS theory, range compression is completed
by using CS theory in Sec. 3. In Sec. 4, the azimuth imaging method with the sparse echo data
in the space domain is proposed by constructing an imaging operator and CS-based imaging
scheme which can implement range cell migration correction and azimuth compression.
Simulation and experimental results are presented in Sec. 5 to validate the effectiveness of
the proposed approach. Finally, we make some conclusions in Sec. 6.

2 Signal Model for Synthetic Aperture Radar Imaging with Sparse
Stepped Frequency

2.1 Sparse Stepped-Frequency Waveforms

The SFW is a kind of synthesized bandwidth signals which can use a sequence of single-
frequency pulses to achieve an ultrawide bandwidth, and the frequency of each pulse is increased
in steps. The SFW can be expressed as

snðtÞ ¼ uðt − nTpÞ expðj2πðf0 þ nΔfÞtþ θnÞ; (1)
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where n ¼ 1;2; : : : ; N, N is the number of pulses in one sequence, uðtÞ denotes a rectangular
window, Tp is the window width (this also refers to the time duration of each pulse), f0 is the
carrier frequency, and Δf is the frequency-stepped size.

The sparse SFW is directly expanded from the full-band SFW: if only portions of full-band
subpulses are transmitted, then a sparse SFW is formed, which can shorten the time period of
transmission. For example, the processing interval is NTp when transmitting a full-band SFW
for a burst, whereas the processing interval is MTp when MðM < NÞ subpulses are transmitted
for a burst. So the processing interval is reduced and the equivalent PRF is increased, thus the
Doppler ambiguity can be restrained. Meanwhile, the sparse SFW cannot be interfered with by
external radio-frequency sources. With the prior information of interferences, a sparse SFW
radar system would be programmed to step over the frequency bands with interferences so
that clean echo signals can be obtained.

To make the notation clear, the frequency-stepped value of sparse SFW is denoted by
fm ¼ nmΔf, where nm is a subset of ½1∶N�, and m runs from 1 to M. The m’th subpulse in
a burst of sparse SFW can be expressed as

smðtÞ ¼ uðt −mTpÞ expðj2πðf0 þ nmΔfÞtþ θmÞ: (2)

The sparsity level of sparse SFW is defined as

γ ¼ N −M
N

: (3)

In the following section, the SAR imaging model is analyzed by this sparse SFW.

2.2 Synthetic Aperture Radar Imaging Model with Sparse Stepped-Frequency
Waveforms

The geometric model for SAR imaging with sparse SFWs is shown in Fig. 1. The SAR system
adopts the “stop-and-go” model. The imaging scene is modeled by using the point-scattering
model, which includes I scatterers with the scattering coefficients σi, i ¼ 1;2; : : : ; I.

Assuming that the radar system transmits sparse SFW, the expression of m’th subpulse in a
burst of sparse SFW is shown in Eq. (2). Thus, the received echoes can be expressed as

smðt; tqÞ ¼
XI

i¼1

σiuðt −mTp − 2RiðtqÞ∕cÞ expðj2πðf0 þ nmΔfÞðt − 2RiðtqÞ∕cÞ þ θmÞ; (4)

Fig. 1 Geometric model for synthetic aperture radar (SAR) imaging with sparse stepped-
frequency waveforms (SFWs). Pi denotes the i ’th scatter point and its coordinate is ðx i ; y i ; 0Þ.
P0 is the center of the observed scene and its coordinate is ðx0; y0; 0Þ.R0 andRi are the distances
of P0 and Pi to the air route, respectively.
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where t denotes the fast time, tq denotes the slow time, c is the propagation speed of electro-
magnetic wave, and RiðtqÞ is the distance of the i’th scatter point to radar at tq. From the
geometry model for SAR imaging as shown in Fig. 1, RiðtqÞ can be obtained easily:

RiðtqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvtq − xiÞ2 þ h2 þ y2i þ x2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvtq − xiÞ2 þ R2

i

q
: (5)

We use the local oscillator signal with a frequency of f0 þ nmΔf as the reference signal to
demodulate the received echo smðt; tqÞ. The demodulation process can be written as

scmðt; tqÞ ¼ smðt; tqÞ · s�mðtÞ

¼
XI

i¼1

σiuðt −mTp − 2RiðtqÞ∕cÞ expð−j4πðf0 þ nmΔfÞRiðtqÞ∕cÞ; (6)

where scmðt; tqÞ is the demodulated baseband signal. Sampling is performed after demodulation
of the received echo. In order to obtain the maximum amplitude of the echo signal, the echo
signal should be sampled at the center of the subpulse. The sampling time tm should be14

tm ¼ mTp þ
Tp

2
þ 2R 0

c
; (7)

where R 0 is the distance between the radar and the center of the imaging scene. The extracted
data are

scmðtqÞ ¼
XI

i¼1

σi expð−j4πðf0 þ nmΔfÞRiðtqÞ∕cÞ ¼
XI

i¼1

σi · expð−j4πnmΔfRiðtqÞ∕cÞ

· expð−j4πf0RiðtqÞ∕cÞ: (8)

It should be noted that the demodulated signal scmðtqÞ consisted of two phase terms, the first
term of which is linearly related to nm for a fixed RiðtqÞ. According to Refs. 14 and 16, if the
transmitted signal is full-band SFW, i.e., fnmg is uniform, then the range compression can be
completed by performing IDFT about nm. However, in the case of sparse SFW, conventional
methods for range compression would generate high side-lobes and grating lobes, which can
contaminate the range profiles. Thus, a novel range compression method should be presented.

3 Range Imaging with Sparse Stepped-Frequency Waveforms

3.1 Compressed Sensing Theory

Let h ∈ RN1 denotes a finite signal of interest. If there exists a basis matrixΨ¼fψ1;ψ2; : : : ;ψN1
g

satisfying h ¼ ΨΘ, where Θ ¼ fθig is a K-sparse vector (namely it can be approximated by its
K largest coefficients or its coefficients following a power decay law with K strongest coeffi-
cients17), then h can be reduced from N1-dimension to M1-dimension {M1 ≥ OðK logðN1ÞÞ7},
which is expressed as

uM1×1 ¼ ΦM1×N1hN1×1 ¼ ΦM1×N1ΨN1×N1ΘN1×1; (9)

whereΦ denotes a measurement matrix and u is the measurements’ vector of signal h. Generally,
recovery of signal h from the measurements u is an ill-posed problem because of M1 ≪ N1.
However, the CS theory tells us that when the matrix ΦΨ has the restricted isometry property
(RIP),8 then it is possible to recover the K largest coefficients from the measurements u. The RIP
is a requirement for the convergence of the reconstruction algorithm, and a detailed expression is
given as follows:
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1 − εK ≤
kΦΨΘk2
kΘk2

≤ 1þ εK; ðεK > 0Þ: (10)

When the RIP holds, the coefficients fθig of signal h can be accurately reconstructed from
measurements u. It is difficult to directly validate a measurement matrix satisfying the RIP con-
straints given in Ref. 18, but fortunately, the RIP is closely related to an incoherency between Φ
and Ψ, where the rows of Φ do not provide a sparse representation of the columns of Ψ and vice
versa. When ΦΨ satisfies the RIP constraints, the coefficients fθig of signal h can be recon-
structed by solving the following optimization problem:

min kΘk0 subject to u ¼ ΦΨΘ; (11)

where k · k0 denotes l0 norm, and min(.) denotes the minimization. How to solve this optimi-
zation problem is an important aspect of CS theory. Due to the discontinuousness of l0 norm, it is
difficult to solve Eq. (11) by a gradient method. The smoothed l0 (SL0) algorithm, which uses
the continuous Gauss function to approach the l0 norm, is proposed in Ref. 19. It has a fast
reconstruction speed and high-reconstruction accuracy. Therefore, the SL0 algorithm is adopted
to solve the above optimization problem. In the case of a noisy observation, Eq. (11) can be
rewritten as

min kΘk0 subject to u ¼ ΦΨΘþ n; (12)

where n is the noise term. Θ can be obtained by

Θ̂ ¼ arg min kΘk0 subject to ku −ΦΨΘk2 < ε; (13)

where ε ¼ knk2 is at the noise level. A good performance for the reconstruction of Θ is ensured
when the signal-to-noise ratio (SNR) is relatively high. Setting a different parameter of ε, we can
extract different amounts ofΘ. However, if ε is large, the small value ofΘmay be treated as noise
and rejected, and if ε is small, the noise elements may distort Θ. Thus, the estimation of noise ε is
essential. The Gaussian noise usually distributes evenly, and there are many range cells contain-
ing only noise. Given enough noise samples by those pure-noise cells, we can estimate ε with
high accuracy.

Clearly, three elements are specified in CS theory: (1) a basis to support sparse representation
of the signal; (2) a measurement operator to make the matrix ΦΨ have RIP; and (3) a
reconstruction algorithm to solve the optimization problem.

3.2 Range Compression Method

Assume that the transmitted signal is full-band SFW snðtÞ. The echo signal of snðtÞ is processed
by Eqs. (6) and (8) in the aforementioned analysis, and scnðtqÞ can be obtained and expressed as

scnðtqÞ ¼
XI

i¼1

σi expð−j4πðf0 þ nΔfÞRiðtqÞ∕cÞ: (14)

We can perform IDFT for scnðtqÞ with respect to n, and the range profiles of the observed
scene can be obtained as

ScðtqÞ ¼ IDFT
n

½scnðtqÞ� ¼
XI

i¼1

δ

�
n −

2 NΔfRiðtqÞ
c

�
· exp

�
−
j4πf0RiðtqÞ

c

�
; (15)

where IDFTð·Þ denotes the IDFT function, and δð·Þ is the impulse function in the discrete time
domain. Let x ¼ fsc1ðtqÞ; sc2ðtqÞ; : : : ; scNðtqÞg and Θ ¼ ScðtqÞ. The above IDFT processing
can be rewritten as a matrix equation,

Θ ¼ D−1
N · xH; (16)

where DN is a discrete Fourier transform (DFT) matrix, which can be expressed as
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DN ¼ 1

N

2
666664

1 1 1 · · · 1

1 W1
N W2

N · · · WðN−1Þ
N

1 W2
N W4

N · · · W2ðN−1Þ
N

..

. ..
. ..

. ..
. ..

.

1 WðN−1Þ
N W2ðN−1Þ

N · · · WðN−1Þ2
N

3
777775
; (17)

where WN ¼ expð−j2π∕NÞ. As to the echo signals of the sparse SFWs, let
y ¼ fsc1ðtqÞ; sc2ðtqÞ; : : : ; scMðtqÞg. From a CS theory point of view, the set y can be viewed
as a low-dimensional measurement of set y, i.e.,

yH ¼ Φ · xH; (18)

where ð·ÞH denotes the conjugate transposition, and Φ ¼ fϕm;vg is an M-by-N random partial
unit matrix. Also,

ϕm;v ¼
�
1; m ¼ 1; : : : ;M; v ¼ nm
0; others

: (19)

That is, the elements in each row vector of Φ are 0, and the nm’th element is 1. The physical
meaning of Φ is the extraction of the data from the full data. Also, the positions of “1” are
according to the positions of the residual frequency points. As discussed in Ref. 20, the randomly
selected partial Fourier matrix satisfies RIP. In this paper, the measurement matrix Φ we
designed is a random partial unit matrix and the basis matrix Ψ is a DFT matrix. Thus,
their multiplication ΦΨ is equal to the randomly selected partial DFT matrix, which satisfies
RIP. Then we can obtain Θ by solving the following expression:

min kΘk0 s:t:yH ¼ Φ · Ψ · Θ: (20)

The above optimization problem is solved by the SL0 algorithm, and the range profiles of the
observed scene can be obtained, which are expressed as

scðl; tqÞ ¼
XI

i¼1

σiδðl − 2 NΔfRiðtqÞ∕cÞ exp½−j4πf0RiðtqÞ∕c�: (21)

4 Azimuth Imaging with Sparse Data in the Space Domain

4.1 Azimuth Imaging with Full Data

In order to facilitate the subsequent analysis, this section discusses the azimuth imaging with the
full data of signal scðl; tqÞ in the space domain. First, to obtain the frequency domain data, the
DFT processing is performed in the range direction. The frequency domain data are

scðn; tqÞ ¼ DFTl½scðl; tqÞ� ¼
XN−1

n¼0

XI

i¼1

σi exp

�
−j4πðf0 þ nΔfÞRiðtqÞ

c

�
; (22)

where DFT½·� is the DFT function. In order to obtain the 2-D frequency domain data, the DFT
processing should also be performed in the azimuth direction. It yields
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Scðn; faÞ ¼
Z
Ti

scðn; tqÞe−j2πfatqdtq ¼
Z
Ti

XN−1

n¼0

XI

i¼1

σi

× exp

�
−j4πðf0 þ nΔfÞRiðtqÞ

c

�
e−j2πfatqdtq

¼
XN−1

n¼0

XI

i¼1

Z
Ti

σi exp

�
−j4πðf0 þ nΔfÞRiðtqÞ

c

�
e−j2πfatqdtq; (23)

where Ti denotes the duration time to illuminate σi. In order to solve Eq. (23), the principle of
stationary phase is introduced. We can obtain

d
dtq

�
−4πðf0 þ nΔfÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvtq − xiÞ2 þ R2

i

q
c

− 2πfatq

�
jtq¼t�q ¼ 0: (24)

And thus

4πðf0 þ nΔfÞ 2ðvt�q − xiÞv
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvt�q − xiÞ2 þ R2

i

q þ 2πfa ¼ 0: (25)

Submitting t�q of Eq. (25) into Eq. (23), we can obtain

Scðn; faÞ ¼
XN−1

n¼0

XI

i¼1

σi · exp

�
−j

2π

v
Ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2aM − f2a

q �
· exp

�
−j2πfa

xi
v

�

· exp

�
−j4πnΔfRif1þ ½f2a∕ð2f2aM − f2aÞ�g

c

�
; (26)

where faM ¼ 2v∕λ. In order to achieve an imaging process in the azimuth direction, the 2-D
signals need to be separated, i.e., the 2-D decoupling method should be utilized. For simplicity,
the relative range cell migration error is not considered. Thus, in the third phase term of Eq. (26),
Ri is replaced by R0. Equation (26) can be rewritten as

Scðn; faÞ ≈
XN−1

n¼0

XI

i¼1

σi · exp

�
−j

2π

v
Ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2aM − f2a

q �
· exp

�
−j2πfa

xi
v

�

· exp

�
−j4πnΔffRi þ R0½f2a∕ð2f2aM − f2aÞ�g

c

�
: (27)

Multiplying Eq. (27) by expfj4πnΔfR0½f2a∕ð2f2aM − f2aÞ�∕cg to compensate the range cell
migration error, the 2-D decoupling frequency function can be expressed as

H21ðfr; fa; R0Þ ¼ exp

�
j4πnΔfR0ðf2a∕ð2f2aM − f2aÞÞ

c

�
: (28)

After compensating the range cell migration error, Eq. (27) can be rewritten as the following
equation:

S 0
cðn; faÞ ¼

XN−1

n¼0

XI

i¼1

σi · exp

�
−j

2π

v
Ri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2aM − f2a

q �
· exp

�
−j2πfa

xi
v

�
· exp

�
−j4πnΔfRi

c

�
:

(29)

According to Eq. (29), it is not hard to find that the data in the range and azimuth directions
have been decoupled, and thus the signal S 0

cðn; faÞ can be processed in each direction. In the
azimuth direction, the compression function can be expressed as
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H22ðfr; fa; RiÞ ¼ exp

�
j2πRi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2aM − f2a

p
v

�
: (30)

Therefore, multiplying Eq. (29) by H22ðfr; fa; RiÞ and performing IDFTwith respect to fa,
it yields

scðn; tqÞ ¼
XI

i¼1

σi sin c

�
Δfa

�
tq −

xi
v

��
exp

�
−j4πnΔfRi

c

�
: (31)

Thus, performing IDFT to signal scðn; tqÞ with respect to n, it yields

scðl; tqÞ ¼
XI

i¼1

σiδðl − 2 NΔfRi∕cÞ sin c
�
Δfa

�
tq −

xi
v

��
: (32)

This is the 2-D image of the observed scene by using the full data in the space domain with
sparse SFWs.

4.2 Azimuth Imaging with Sparse Data

As mentioned above, it frequently occurs that some of SAR echo data are contaminated or lost in
the coherent integration time. Thus, the contaminated data must be abandoned, and the echo data
in the space domain are sparse. With these sparse data, the azimuth imaging method presented in
Sec. 4.1 cannot be applied. A novel imaging method in this section is proposed by constructing
the imaging operator based on the 2-D decoupling frequency function and azimuth compression
function.

In the actual digital signal processing, the set E ¼ fscðn; t1ÞH; : : : ; scðn; tQÞHg can be viewed
as an N-by-Q matrix, where Q is the sampled number in the azimuth direction. As to the sparse
echo data, the set Ē ¼ ½s̃cðn; t̃1ÞH; : : : ; s̃cðn; t̃Q̄ÞH� can be viewed as an N-by-Q̄ matrix, where Q̄
is the number of the sparse data in the azimuth direction. The sparsity level of the echo data in the
space domain is defined as η ¼ ðQ − Q̄Þ∕Q. Let En and Ēn denote the n’th row of the matrix E
and Ē, respectively, thus we can obtain

ĒH
n ¼ Φ̄ · EH

n ; (33)

where Φ̄ ¼ fϕu;vg is also a Q̄-by-Q random partial unit matrix. Its expression is as shown in
Eq. (19), where the position of “1” is determined by the position of the residual azimuth data.
For clarity, we draw Fig. 2 to show the measurement process.

1 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

Sparse data in the space domain

range

Measurement matrix

nE

nE
azimuth nE

Fig. 2 Chart of measurement process with sparse data in the space domain. The solid spots are
the residual sampling points, whereas the blank spots are the missing points.
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The processing of Eqs. (23)–(31) can be rewritten as the following expression:

ΞH
n ¼ ω4 · ω3n · ω2n · ω1 · EH

n ; (34)

where ω1 denotes the performing DFTwith respect to En, which is the DFT matrix; ω2n denotes
the performing 2-D decoupling to En, which is the diagonal matrix form of n’th row of the 2-D
decoupling frequency function H21ðfr; fa; R0Þ; ω3n denotes performing azimuth compression
to En, which is the diagonal matrix form of n’th row of the azimuth compression factor
H22ðfr; fa; RiÞ; and ω4 denotes performing IDFT to En, which is the IDFT matrix. Ξn denotes
the n’th row of signal scðn; tqÞ in Eq. (31). For convenience, let us rewrite Eq. (34) in a matrix
form:

EH
n ¼ A−1

n · ΞH
n ; (35)

where the imaging operator An ¼ ω4 · ω3n · ω2n · ω1. Combined with Eq. (33), it can be
obtained that

ĒH
n ¼ Φ̄ · A−1

n · ΞH
n : (36)

When Φ̄ · A−1
n obeys the RIP, we can obtain Ξn by solving the following equation:

min kΞnk0 s:t:ĒH
n ¼ Φ̄ · A−1

n · ΞH
n : (37)

As discussed in Ref. 20, the randomly selected partial orthogonal matrix satisfies RIP. In this
paper, the measurement matrix Φ̄ is a random partial unit matrix. So, if the imaging operator An

is an orthogonal matrix, Φ̄ · A−1
n obeys the RIP.

The imaging operator An is an orthogonal matrix. ω1 and ω4 are the DFT matrix and IDFT
matrix, respectively, which are orthogonal matrices. Thus, we have

ω1 · ðω1ÞH ¼ I;ω4 · ðω4ÞH ¼ I: (38)

ω2n and ω3n are the diagonal plural matrices, and we can obtain

ω2n · ðω2nÞH ¼

2
6664
σ1n 0 · · · 0

0 σ2n · · · 0

..

. ..
. . .

. ..
.

0 0 · · · σNn

3
7775;ω3n · ðω3nÞH ¼

2
6664
ε1n 0 · · · 0

0 ε2n · · · 0

..

. ..
. . .

. ..
.

0 0 · · · εNn

3
7775: (39)

And further,

An · ðAnÞH ¼ ω4 · ω3n · ω2n · ω1 · ðω4 · ω3n · ω2n · ω1ÞH
¼ ω4 · ω3n · ω2n · ðω1 · ωH

1 Þ · ωH
2n · ωH

3n · ωH
4

¼

2
666664

σ1n · ε1n 0 · · · 0

0 σ2n · ε2n · · · 0

..

. ..
. . .

. ..
.

0 0 · · · σNn · εNn

3
777775
: (40)

So the imaging operator An is an orthogonal matrix. Furthermore, Φ̄ · A−1
n obeys the RIP.

Solving Eq. (37) with n ¼ 1;2; : : : ; N, we can obtain the azimuth compression results of sparse
echo signals. Then, the imaging result of the observed scene can be achieved after the IDFT
process in the range direction. Figure 3 shows a clear flowchart of SAR imaging with 2-D spar-
sity in the space and frequency domains using SFWs.
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5 Experimental Analysis with Simulated and Measured Data

5.1 Performance Analysis with Simulated Data

In this section, some simulations are conducted to demonstrate the effectiveness and the fea-
sibility of the proposed method. The geometric relationship between the observed scene and
the radar system is the same as that shown in Fig. 1. The observed scene consists of 285
point scatterers and is shown in Fig. 4(a). The distance between the target and the radar is
5 km. The carrier frequency f0 of the radar system is 10 GHz, and the radar wavelength λ
is 0.03 m. The frequency step Δf is 1.5 MHz, and the stepped number is 600. So the total
bandwidth of signal B is 900 MHz, and the range resolution ΔR is about 0.17 m. The velocity

Fig. 3 Flowchart of SAR imaging with two-dimensional (2-D) sparsity in the space and frequency
domains using SFWs.
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Fig. 4 Imaging result with full-band SFWs: (a) the observed scene; (b) the range profiles of the
observed scene; (c) the range profile of the 165th pulse; and (d) 2-D imaging result.
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of the radar plane is about 100 m∕s, and the imaging time is 1.5 s. The aperture of radar is 1 m, so
the azimuth resolution ΔC is about 0.5 m, which is higher than the range resolution. Figure 4
shows the range profiles and SAR imaging results of the observed scene with full-band SFWs.

As to the SFW, the conventional range compression method is based on Fourier transform
(FT). However, if we directly apply FT to sparse SFWs processing, then the high side-lobes
would be generated, just as shown in Figs. 5(a) and 5(b). The proposed range compression
method is based on CS theory, which uses the optimizing method instead of FT to complete
range compression. Thus, the high side-lobes can be suppressed, just as shown in
Figs. 5(c)–5(e). Comparing Fig. 5(d) with Fig. 5(b), we can find that the high-resolution profile
is obtained by the proposed method with sparse SFWs. From Fig. 5(e), it can be noted that the
imaging result via using the proposed method is clear and close to that with full data, i.e.,
Fig. 4(d).

(a) (b)

(c) (d)

(e) (f)

Azimuth cells

R
an

ge
 c

el
ls

100 200 300 400 500 600

100

200

300

400

500

600
0 100 200 300 400 500 600

0

0.2

0.4

0.6

0.8

1

Range cells

N
or

m
al

iz
ed

 a
m

pl
itu

de

Azimuth cells

R
an

ge
 c

el
ls

100 200 300 400 500 600

100

200

300

400

500

600
0 100 200 300 400 500 600

0

0.2

0.4

0.6

0.8

1

Range cells

N
or

m
al

iz
ed

 a
m

pl
itu

de

Azimuth (m)

R
an

ge
 (

m
)

-40 -20 0 20 40
4970

4980

4990

5000

5010

5020

5030

0 100 200 300 400 500 600
28

29

30

31

32

33

34

the number of ehco signal

P
S

N
R

 (
dB

)

sparsity level is 0.25

sparsity level is 0.5

sparsity level is 0.75

Fig. 5 Imaging results of 2-D sparse data: (a) the range profiles by the conventional method;
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The Monte Carlo method is introduced here to further examine the imaging performance of
proposed method with different sparsity levels of transmitted signal and different numbers of
echo signals. In the paper, the peak signal-to-noise ratio (PSNR) is utilized to evaluate the quality
of the reconstructed images.21 The value of PSNR of three different sparsity levels in the fre-
quency domain versus the number of echo signals is shown in Fig. 5(f), where the x-axis denotes
the number of echo signals.

From Fig. 5(f), we can find that when the number of echo signals is smaller than 300, the
constraint condition cannot be satisfied {the constraint condition is that the dimension of low
measurement M1 satisfies M1 ≥ OðK logðN1ÞÞ7}. Therefore, the quality of the reconstructed
image would be relatively poor and could no longer be accepted. When the number of echo
signals is larger than 300, the imaging quality becomes better as the number increases.
When the number increases to 450, the PSNR curves saturate, which means that the quality
of the imaging result is steady. With a small number of echo signals, the imaging results either
of sparsity level 0.25 or of 0.75 are both relatively poor. Thus, the PSNRs are similar. But at a
high number, the imaging quality of sparsity level 0.25 is as good as that of sparsity level 0.5;
thus the PSNR curves of sparsity level 0.25 and 0.5 are close to each other.

In order to further validate our method, the simulated scene data are utilized in the paper. The
imaging parameters are set the same as that of the above simulation. The observed scene is
shown as Fig. 6. Figure 7(a) shows the imaging result by using the conventional method
with full data. Let the 2-D sparisity levels ðγ; ηÞ of the echo data be (0.5, 0.25), (0.5, 0.5),
and (0.75, 0.5), respectively. The respective imaging results are shown in Figs. 7(b)–7(d).
Visual inspection of these results reveals that the quality of the image is degraded along
with the increasing sparsity in accordance with the CS reconstructed theory. However, when
the sparisity levels are (0.5, 0.25), the high-quality imaging result is obtained, just as Fig. 8(b).
Therefore, the proposed method is valid and feasible.

5.2 Performance Analysis with Measured Data

The real data are currently unavailable, so we have to use the experimental data to validate the
proposed method. Hence, an experimental platform is set up as shown in Fig. 8(a). The vector
network analyzer (VNA) is mounted on a rail to transmit and receive the SFWs. The horn
antenna works at a Ka-band. The imaging scene consists of five metal balls, which are
shown in Fig. 8(b). During the experiment, the VNA moves on the rail with preset velocity,
while the metal balls are fixed. The length of the rail is 1.89 m. The other experimental param-
eters are shown in Table 1.

Fig. 6 Observed scene.
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Figures 9(a) and 9(b) show the imaging results obtained by using the conventional method
with full data. Figure 9(a) is the range profiles, and Fig. 9(b) is the 2-D imaging result.
Figures 9(c) and 9(d) show the imaging results obtained by using the proposed method with
the 2-D sparse data, the sparsity level of which is (0.5, 0.25). It can be seen that the proposed
CS-based imaging method is effective to get a clear SAR image with the reduced measured data.

We use the CPU time of recovery as the performance benchmark to evaluate the computa-
tional complexity of the proposed and conventional methods. The experiment is run in
MATLAB 2007b on a computer with an Intel Pentium 3.1 GHz dual-core processor and
3-GB memory. Regarding the reconstruction time, it requires about 5.2 s to obtain the imaging
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Fig. 7 Image results of area targets with SFW: (a) imaging result with full data; (b) imaging result
with sparsity levels (0.5, 0.25); (c) imaging result with sparsity levels (0.5, 0.5); and (d) imaging
result with sparsity levels (0.75, 0.5).
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Fig. 8 Experiment: (a) experimental scene; and (b) five metal balls in the scene.
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result by using the proposed method with the sparsity level of (0.5, 0.25), while it requires just
about 0.38 s to obtain the conventional imaging result with full data. Although the proposed
method needs much more time than the conventional method, the predominance of our method
is that a smaller number of frequencies and smaller amount of imaging data are needed for SAR
imaging.

In the following, we assume that the received signals are corrupted by uncorrelated additive
white Gaussian noise. Let SNR be varied from −20 to 30 dB and the 2-D sparsity levels ðγ; ηÞ be
(0.25, 0.25) and (0.5, 0.25). We show the value of PSNR versus the SNR in Fig. 10. It can be
found that the value of PSNR increases with increasing SNR. However, when the SNR is higher
than 10 dB, the value of the PSNR varies very slowly. That is, the quality of the reconstructed
image roughly remains steady in this SNR value range.

Range (m)

0.8 1 1.2 1.4

-0.5

0

0.5

Range (m)

Range (m) Range (m)

0.8 0.9 1 1.1 1.2 1.3 1.4
-0.5

0

0.5

A
zi

m
ut

h 
(m

)
A

zi
m

ut
h 

(m
)

A
zi

m
ut

h 
(m

)
A

zi
m

ut
h 

(m
)

0.8 1 1.2 1.4

-0.5

0

0.5

0.8 0.9 1 1.1 1.2 1.3 1.4
-0.5

0

0.5

(a)

(c) (d)

(b)

Fig. 9 Imaging results of experimental data: (a) range profiles of full data; (b) imaging result of full
data; (c) range profiles of 2-D sparse data; and (d) imaging result of 2-D sparse data.

Table 1 Synthetic aperture radar (SAR) parameters.

Experimental parameters Values

Carrier frequency 30 GHz

Frequency-stepped size 3.75 MHz

Number of steps 1600

Bandwidth 6 GHz

Azimuth interval 0.01 m

Number of azimuth cells 189
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6 Conclusion

Conventional SFWs have the disadvantages of poor antijamming capability and requiring a long
time period of transmission. Thus, the sparse SFWs are formed, which can improve the anti-
jamming capability and shorten the time period. In the SAR integration time, it frequently occurs
that some of the echo data are lost. Thus, a 2-D sparse SAR imaging method is put forward. By
using the proposed method, SAR imaging result can be obtained with 2-D sparse data both in the
frequency and space domains. In this paper, the proposed method takes advantage of the fact that
most natural and manmade signals are compressible. Our future work will include using the
uncompressible signals to test the algorithm.
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