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Abstract

Significance: Current techniques for data analysis in functional near-infrared spectroscopy
(fNIRS), such as artifact correction, do not allow to integrate the information originating from
both wavelengths, considering only temporal and spatial dimensions of the signal’s structure.
Parallel factor analysis (PARAFAC) has previously been validated as a multidimensional decom-
position technique in other neuroimaging fields.

Aim: We aimed to introduce and validate the use of PARAFAC for the analysis of fNIRS data,
which is inherently multidimensional (time, space, and wavelength).

Approach: We used data acquired in 17 healthy adults during a verbal fluency task to compare
the efficacy of PARAFAC for motion artifact correction to traditional two-dimensional decom-
position techniques, i.e., target principal (tPCA) and independent component analysis (ICA).
Correction performance was further evaluated under controlled conditions with simulated arti-
facts and hemodynamic response functions.

Results: PARAFAC achieved significantly higher improvement in data quality as compared to
tPCA and ICA. Correction in several simulated signals further validated its use and promoted it
as a robust method independent of the artifact’s characteristics.

Conclusions: This study describes the first implementation of PARAFAC in fNIRS and provides
validation for its use to correct artifacts. PARAFAC is a promising data-driven alternative
for multidimensional data analyses in fNIRS and this study paves the way for further
applications.
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1 Introduction

Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that
uses light of at least two different wavelengths in the near-infrared spectrum in order to assess
brain activity based on neurovascular coupling. The specific absorption properties of oxygenated

*Address all correspondence to Anne Gallagher, anne.gallagher@umontreal.ca
†These authors contributed equally to this study.
‡Equal contribution as co-senior authors.

Neurophotonics 045004-1 Oct–Dec 2022 • Vol. 9(4)

https://orcid.org/0000-0003-4608-8514
https://orcid.org/0000-0003-0651-3096
https://orcid.org/0000-0002-9415-5569
https://orcid.org/0000-0002-5852-964X
https://doi.org/10.1117/1.NPh.9.4.045004
https://doi.org/10.1117/1.NPh.9.4.045004
https://doi.org/10.1117/1.NPh.9.4.045004
https://doi.org/10.1117/1.NPh.9.4.045004
https://doi.org/10.1117/1.NPh.9.4.045004
https://doi.org/10.1117/1.NPh.9.4.045004
mailto:anne.gallagher@umontreal.ca
mailto:anne.gallagher@umontreal.ca
mailto:anne.gallagher@umontreal.ca


(HbO) and deoxygenated (HbR) hemoglobin allow individual assessments of concentration
changes in both HbO and HbR separately.1 Although the fNIRS signal is considered to be rel-
atively tolerant to movement,2 quality of data may be reduced due to abrupt changes in the light
intensity caused by movement artifacts.3 It has been shown that the dynamics of both wave-
lengths provide important information for artifact detection and correction.4 However, current
techniques for movement artifact correction (e.g., wavelet filtering, decomposition, spline inter-
polation, and so on) typically assume that the behavior of both wavelengths is similar in time,
thus do not take advantage of the structured information offered by both wavelengths.5–7 Two-
dimensional (2D) analyses require that data with more dimensions, such as fNIRS data, undergo
superficial unfolding before processing, e.g., treating both wavelengths or HbO and HbR inde-
pendently. Hence, some of these 2D analysis tools are forced to impose other nonphysiological
constraints, such as orthogonality in the case of principal component analysis (PCA) or statistical
independence for independent component analysis (ICA).

Although there are several ways to approach PCA, e.g., dimensionality reduction,8 clas-
sification,9 from the signal decomposition point of view, PCA aims at extracting the so-called
principal components, i.e., those components that explain the greatest amount of variance of
the signal10 activities in fNIRS.6,7,10,11 In temporal PCA, the data is decomposed into a sum of
components, each one formed by the product of two vectors: one representing the temporal
principal component and the other, the corresponding topography (scores for each channel).
A basic problem with PCA is that the components defined by only two signatures (time and
space) are not uniquely determined. Therefore, orthogonality is imposed between the corre-
sponding temporal signatures of the different components.7,12,13 Orthogonality among brain
signals is, however, a rather nonphysiological constraint. Even with this restriction, the
extracted principal components are not completely unique, given that the arbitrary rotation
of axes does not change the explained variance of the data. This has led researchers to use
different mathematical criteria as the basis for choosing specific rotations (e.g., Varimax,
Quartimax, and Promax). In fNIRS, PCA has also been applied to target time intervals
(tPCA), that is only during periods where artifacts related to articulation or other head move-
ments occurred, instead of during the entire unsegmented signal.3,14 This type of targeted
correction resulted in better signal quality, as compared to wavelet-based filtering and spline
interpolation, while also reducing the risk of altering the signal’s global integrity.3 Although
PCA is very common and easy to use, some authors have already discussed its pitfalls and
caveats as a method for artifact correction.5,15

More recently, ICA has become another popular tool for data decomposition in fNIRS.16–18

It has the benefit of preventing rotational freedom.19 However, uniqueness is achieved at the cost
of imposing a constraint even stronger than orthogonality, namely, statistical independence of
the temporal signatures.20,21 Statistical independence is appropriate for identifying artifacts with
spatio-temporal signatures that are very different from those of neural activity (e.g., ocular move-
ments), but is less appropriate for artifacts that share spatio-temporal characteristics with neural
signals. What is more, ICA is commonly applied to the entire signal in contrast to a target decom-
position as introduced previously for tPCA.18 It may thus be more challenging to achieve a sat-
isfying correction of irregular movement artifacts. In ICA, the maximal number of components
(hypothesized sources) equals the number of observations, which in neuroimaging is often rather
high. It could therefore become difficult to identify the artifact’s signature, which could be split
into several components.

To overcome these limitations, a multidimensional (≥3D) approach called parallel factor
analysis (PARAFAC),22,23 or less frequently referred to as canonical decomposition,24 could be
considered as an alternative for the analysis of fNIRS data. PARAFAC is a decomposition
technique applicable to any dataset that can be described in more than two dimensions
(e.g., time, space, frequency, participants, conditions, and signal characteristics) and allows
for the extraction of different signatures present in the data. It assumes multilinear relations
between the different dimensions and usually does not need any other mathematical constraints
to find a unique decomposition of the data. It may therefore be used in the data preprocessing
steps to isolate artifacts, as well as in the actual data analyses to extract a predominant brain
activation or other relevant characteristics of the signal. Such multidimensional decomposition
was initially introduced in the field of psychometrics and linguistics as a tool for multifactorial
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analysis.23–25 Over time, its use was extended to neuroimaging signals, such as the analysis of
event-related potentials (ERPs) assessed by electroencephalography (EEG), in which time,
space, and participants were considered for the signal decomposition.26,27 Multidimensional
decomposition with PARAFAC is not limited to 3D and could potentially be applied to data
with more dimensions. In the context of ERP data, PARAFAC as a five-way analysis has suc-
cessfully been used to identify differences and common characteristics of intertrial phase
coherence across conditions and subjects, including the dimensions of time, channels, fre-
quency, subjects, and conditions.27 PARAFAC was also applied for data analysis in continuous
EEG recordings, taking into account the temporal, spatial, and frequency representation of the
EEG signal.13,28 Indeed, using a time-frequency wavelet transformation for each channel in
EEG data, Miwakeichi and colleagues13 revealed PARAFAC as an appropriate tool for both
the detection of ocular movement artifacts and the identification of dominant brain activation
patterns. In their study, some of the artifact components identified using PARAFAC were
highly similar to those extracted with PCA, a well-established approach for 2D decomposition.
Specifically, significant overlap was shown for eigenvalues and peaks of time/frequency com-
ponents, as well as their topographical representations found with PCA and PARAFAC for
activities that effectively fulfill the orthogonality requirement. PARAFAC, using the dimen-
sions of time, space, and frequency, has also been applied successfully to the EEG data of
individuals with epilepsy, for the purposes of artifact detection and the identification of aber-
rant cerebral activation.29 The growing popularity of PARAFAC in neuroimaging stems from
the intrinsic advantage of multidimensional decomposition, as it reflects the nature of most
data gathered in neuroscience. Compared to 2D methods, the application of PARAFAC does
not need to impose nonphysiological constraints.28 What is more, since decomposition tech-
niques represent data-driven approaches, PARAFAC could also contribute to enlightening new
aspects of neuroimaging data compared to model-based techniques.30 Although PARAFAC
has been applied for data analysis on NIRS data in the food industry,22 it has not yet been
used in fNIRS in the field of neuroscience.

The current study aimed to introduce and validate PARAFAC as a multidimensional decom-
position technique to extract and correct artifacts in fNIRS data. To account for the natural com-
plexity and variability regarding motion artifacts, we first applied the PARAFAC technique in
real cognitive fNIRS data. More specifically, data were acquired from participants that per-
formed aloud a verbal fluency task, in which the main motion artifacts are known to be
task-dependent and have characteristics that might confound the estimation of the hemodynamic
response function (HRF).5 PARAFAC’s performance to correct motion artifacts was compared
to two traditional bidimensional decomposition techniques: tPCA and ICA. In doing so, we
investigated differences in artifact correction efficacy related to the number of dimensions used
in the decomposition techniques (i.e., treating both wavelengths as independent or as a dimen-
sion). As the true HRF was unknown and therefore did not allow us to directly compare the
recovered task activation to a ground truth, we used statistical analysis of correction performance
based on various quality measures of the three different corrected signals.

Second, we investigated how artifact correction with PARAFAC performed in various con-
trolled scenarios to disentangle in which cases a multidimensional decomposition approach that
does not impose orthogonality constraints could become advantageous. For that purpose, a real
artifact was extracted from a data set of the task condition and added to a clean resting-state
signal. Different artifact parameters (e.g., amplitude, the onset of overlapping artifacts) were
controlled to produce various scenarios, including variation in the level of orthogonality among
the signals combined in the simulated data. Further, the use of the resting-state signal allowed us
to evaluate how artifact correction would affect the reconstruction of a synthesized HRF
(HRFsim), which has actually been named as one of the most suitable methods to validate artifact
correction.6 Artifact correction in these scenarios was performed with PARAFAC and tPCA
only, both applied specifically during the artifacted interval (i.e., target decomposition), com-
pared with ICA that is typically applied to the entire signal, and thus being more comparable
methods. Indices for the similarity between the clean signal before adding artifacts and the signal
after artifact correction, the signal’s quality as well as the recovery of theHRFsim after correction,
were used to compare the performance of both correction approaches.
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2 Methods

2.1 Sample and Data Acquisition

Eighteen healthy native French-speaking adults participated in this study. One participant was
excluded from the analyses, as it showed continuous noise precluding the identification of indi-
vidual artifacts. The final sample for the validation of using PARAFAC for artifact correction
thus included 17 participants (mean age ± standard deviation = 22.8 ± 2.0 years; nine females
and eight males). All were right-handed and presented no neurological or psychiatric disorders.
Experimental procedures were approved by the local ethics committee.

fNIRS data were acquired with a multichannel Imagent Tissue Oxymeter (ISS Inc.,
Champaign, Illinois) frequency-domain fNIRS device using 14 light detectors and 60 laser light
emitters, each regrouping two light sources of different wavelengths (λ1j2 ¼ 690j830 nm) with
an average power of 10 mW. Emitters and detectors coupled at a distance of 3 to 4.5 cm allowed
for the recording of 104 channels for each wavelength. Optodes were held in place perpendicu-
larly, using a cap that was fitted on the head of participants in accordance with the 10 to 20
system.31 Optical intensity, including information regarding the average light intensity (DC),
amplitude modulation (AC) and phase shift (ϕ), was measured with a sampling rate of
19.53 Hz (Boxy, ISS Inc., Champaign, Illinois). The channel setup covered both hemispheres
equally and included the regions of interest for the investigation of language functions, i.e.,
frontal, temporal, and parietal lobes [Fig. 1(a)].

Participants sat comfortably in a soundproof room. They were instructed to relax, to avoid
any intentional movements or muscular tension, and to fix their gaze on the center of a screen
placed at a distance of 114 cm. Participants underwent fNIRS recording during two conditions
[Fig. 1(b)]: (1) a 12-min resting state with eyes open and (2) a verbal fluency task previously
validated for expressive language-related activation.32–34 The task consisted of 11 different famil-
iar semantic categories (e.g., animals, colors, fruits, and so on) that appeared one at a time on the
screen. Participants were instructed to name as many words as possible belonging to the speci-
fied category and to continue as long as the category name appeared on the screen. We used a
block design paradigm in which periods of rest (fixation cross presented on the screen) and task
(semantic category) alternated (Presentations®, Neurobehavioral Systems, 2018). The intersti-
mulus interval varied randomly between 25 and 29 s, while stimuli (one of the semantic cat-
egories) were always presented for 30 s. An audiovisual recording of the fNIRS session enabled
visual support during offline preprocessing for the identification of movements and the timing of
word articulation. Participants completed on average 10.4� 0.9 blocks of the verbal fluency task
and named an average of 14� 2.2 words during each 30-s block. Data analysis was conducted
with the use of a homemade toolbox (LIONirs)35 adapted in SPM12 (Statistical Parametric
Mapping)36 in MATLAB® (The MathWorks, Inc., Massachusetts).

(b)

(a)

Fig. 1 fNIRS setup: (a) Probe placement (sources in small light gray dots, detectors in dark gray
dots) as shown on an adult’s head model. (b) Experimental design including a 12-min resting-state
followed by an expressive verbal fluency task that included 11 trials. Trials lasted 30 s and inter-
stimulus intervals varied pseudo-randomly between 25 and 29 s.

Hüsser et al.: Parallel factor analysis for multidimensional decomposition of functional near-infrared. . .

Neurophotonics 045004-4 Oct–Dec 2022 • Vol. 9(4)



2.2 Validation Process

Validation of PARAFAC for artifact correction was done in two realistic applications as illus-
trated in Fig. 2. First, artifact correction with PARAFAC was tested on the real task-based signal
of the whole sample, and its performance was compared with tPCA and ICA. Indices for the
signal’s quality were used to compare the three techniques (Sec. 2.6). Second, a simulation
analysis was conducted to investigate the efficacy of PARAFAC to correct artifacts with con-
trolled parameters. Similarity metrics, quality measures and reconstruction of the HRFsim were
used to evaluate artifact correction with PARAFAC and tPCA both applied in a target manner
(Secs. 2.6, 2.3, and 2.8).

2.3 Nonsimulated Task-Related Motion Artifacts

Preprocessing of the task-condition data first included the automatic exclusion of channels with
insufficient light intensity amplitude (average raw DC intensity across time <100). The signal
was afterward segmented into blocks of 50 s (5 s resting-state baseline, 30 s task, and 15 s
resting-state), and light intensity was converted to changes in optical density (normalization

(a)

(b)

Fig. 2 Processing streams to validate PARAFAC as a multidimensional artifact correction tech-
nique for fNIRS data. (a) The processing of the real task data derived from 17 subjects and (b) of
the simulated data based on a single-subject, respectively. The metric(s) used to evaluate cor-
rection performance of each stream are presented on the right side. NIRSini = initial signal used for
comparison (with artifacts for the real task data; before artifact simulation for the resting-state
data). PRD, Percent root difference; RMSE, root mean square error; R, Pearson product-moment
correlation coefficient; SNR, signal-to-noise ratio; Rλ, Pearson’s correlation between wavN
elengths; GLM, general linear model; HRFsim, simulated hemodynamic response function.
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of each block). We then performed a semi-automatic artifact detection using a moving-window
algorithm to automatically mark segments where an abrupt change of the signal’s variance
exceeded three times the average variance of the previous interval37 with a window duration
of 0.8 s. Events that were 2 s or less apart were considered as one and channels that were strongly
correlated with a noisy channel (Pearson correlation of ≥0.8) within the aberrant segment were
also marked as artifacted. The automatic detection step was reviewed afterward and adjusted
based on an inter-rater visual inspection of the signal’s characteristics and the video recordings.
Because the task required participants to name words aloud, artifacts in the current language
paradigm were mostly due to facial movements related to the muscular contraction of
articulation.

2.4 Simulated Motion Artifacts

A real resting-state dataset from one of the participants in which we could identify a 180-s
segment without any motion artifact was employed for the simulated artifact experiment. As
for the task-based data, channels with insufficient raw light intensity amplitude were first
excluded based on the previously mentioned criteria, yielding a total of 82 channels. The data
were then converted to changes in optical density (normalization based on the whole 180-s
segment). It served as the initial signal baseline (NIRSini) for similarity and quality signal
assessments.

To add a motion artifact with controlled parameters, we first used PCA to decompose all
channels of a task-based fNIRS signal during a typical motion artifact (A) with a duration
of 7 s. The obtained temporal signature of the first component was then added to the
NIRSini. The spatial distribution of A, i.e., the weight of each channel was randomized, but the
same distribution was added to both wavelengths with only a different overall scale. Figure 3
provides an overview of the set of simulations and their parameters, while more details are pro-
vided in Fig. S1 in the Supplemental Material. For the first simulation, the amplitude of the
original artifact was modulated and scaled to five different amplitudes in order to produce

0.5

0

–0.5

0.5

0

0.5

0.5

0

0.5

0 20 40 60 80

(a) (b)

Fig. 3 Simulated fNIRS signals: (a) One example of the simulated fNIRS signal for each simu-
lation condition one to three. (b) The details of the varying parameters of all simulations. Five
scaling factors (0.4, 0.8, 1.0, 1.5, 3.0) were used to create simulated artifacts with different ampli-
tudes. λ1j2 ¼ 690j830 nm; A, artifact; HRFsim = simulated hemodynamic response function.
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artifacts with various signal-to-noise ratio (SNR) (simulations 1a to 1e). For the second simu-
lation, we aimed to produce artifacts with more complex signatures (simulations 2a to 2f). The
idea emerged from observations of artifact correction in the task-related signal and also aimed at
exploring the decomposition when different artifacts are not completely orthogonal in the data.
To do so, two individual artifacts (A1, A2) with varying time intervals between the onset of A1

and A2 led to different temporal orthogonality (r) which was evaluated for each simulation. The
levels of orthogonality between the time courses of the raw signal and the first artifact ra
(Raw × A1) and between the time courses of the artifacted signal and the second artifact rb
(ðRawþ A1Þ × A2), were derived from the angle between both signals (i.e., taking the time
course of each signal as a vector of time points and computing the angle between both vectors).
A normalized measure of the orthogonality level is then computed such that when the angle
between the signals is 90 deg, the measure is maximum and equal to 1, while when the angle
departs from 90 deg (both higher or lower) the measure linearly decreases to 0. Then, r values of
1 indicate perfect orthogonality between the two time courses, while r values lower than 1,
specifically those closer to 0 indicate that the two time courses are not orthogonal to each other.
Additionally, an HRF was synthesized (HRFsim) in SPM by the linear combination of two
gamma functions as proposed in the literature.38 That is, gamma functions 1 and 2 had a
time-to-peak of 5.4 and 10.8 s, respectively, a full-width-at-half maximum of 5.2 and 7.36 s
respectively, and a scaling coefficient for the second gamma function of 0.35. The amplitude
of the HRFsim was scaled by 14% for the 830 nm signal and 0.6% for the 690 nm signal, which
approximately produces an HRF with an 15 μM increase in HbO concentration and a 5 μM
decrease in HbR concentration.6,38–40 The response was simulated as a convolution of the
HRF with a stimulus duration of 30 s resulting in a simulated physiological signal (HRFsim)
of ∼40 s. The HRFsim was then added to the signal along with an artifact (A), so as to produce
different overlaps between both time courses (simulations 3a to 3d).

2.5 Artifact Correction

In the task-based data set, artifact correction with PARAFAC and tPCA was applied in a
target manner, i.e., to the segments identified during artifact detection as described in
Sec. 2.3; while, with ICA the analysis was applied to the entire continuous signal. In the simu-
lated signals, target correction was applied to a time interval of �2 s around the simulated arti-
facts. More details on each decomposition technique will be presented in the following sections
(Secs. 2.5.1 and 2.5.2).

2.5.1 Two-dimensional signal decomposition for artifact correction

For both ICA and tPCA, the decomposition of the 2D data matrix X (whose elements xij are
indexed by channel i and time points j), leads to Nf components as defined in Eq. (1) and
illustrated in Fig. 4(a)

EQ-TARGET;temp:intralink-;e001;116;253xij ¼
XNf

f¼1

aifbjf þ Eij: (1)

The matrix concatenates two separate data matrices (X1; X2) corresponding to the 2D
structure for both wavelengths. The maximum number of components Nf could be equal to
or less than the smaller dimension of the X matrix dimension, i.e., twice the number of channels
or number of time points. Each component is modeled as the product of two factors/vectors
which represent signatures of the space (af) and time (bf) dimensions. The temporal signatures
are constrained to be orthogonal among components, and rotated in order to obtain those
signatures that offer the highest variance explanation (varimax) from all the infinite solutions
of the decomposition. The unexplained part of the data is considered irrelevant activity or
noise (E).

Artifact correction with tPCA was performed on each time interval containing artifacts as
specified by the time interval of the simulated artifacts or the identified artifact detection of the
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task-based data set. From the obtained components we subtracted the first, which explains most
of the variance based on the assumption that the highest variance in the data for each segment is
assumed to be caused by the artifact.

Artifact correction with ICA, was done using BrainVision Analyzer (Brain Products GmbH,
Gilching, Germany), and followed the steps proposed by Plank.41 First, optical density fNIRS
data were exported and ICA was applied on the entire unsegmented signal, as for the method
commonly reported in the literature.18 Noisy intervals reflecting artifacts were identified by
semiautomatic inter-rater artifact detection (Sec. 2.3). We visually selected the ICA components
reflecting the artifact, based first on their time course, i.e., high variation of light intensity similar
to the artifact signature. Second, we rejected those whose subtraction would induce artificial
artifacts elsewhere. Data were subsequently imported back into the LIONirs toolbox35 in order
to apply segmentation (Sec. 2.3).

2.5.2 Multidimensional signal decomposition

The fNIRS data naturally offers the time courses of all channels for two wavelengths, i.e.
two separate data matrices. This data can be arranged in a tridimensional array, as illustrated
in Fig. 4(b). The dimensions of this 3D array are time (indexed by the time points in the analyzed
segment), space (indexed by channels) and wavelength (indexed by the two wavelengths).
As explained above, PARAFAC establishes a trilinear decomposition of each element
of the fNIRS data array (Xtsw) in Nf components, each being the product of three factors22

as defined in Eq. (2):

(b)

(a)

Fig. 4 Schematic representation of the decomposition models applied to fNIRS data (A). The data
X is arranged as a 2D data array by vertically concatenating the 2D matrices with dimensions
being space (s) and time (t ) for each wavelength (w ). tPCA/ICA decomposes the array into com-
ponents, each being a bilinear product of the loading vectors representing temporal (atf) and spa-
tial signatures (bswf). The latter is formed by the spatial signatures for the different wavelengths,
which are represented in components without taking into account their spatial dependence, i.e., for
the same temporal signature of each component, there will be two topographies corresponding to
the two wavelengths. Matrices A ¼ faf g and B ¼ fbf g, contain as columns the temporal and spa-
tial signatures for all components, respectively. (B) The data X is arranged as a 3D data array with
dimensions being time (t ), space (s), and wavelengths (w ). PARAFAC decomposes this array into
the sum of components, each being a trilinear product of loading vectors representing temporal
(atf), spatial (channel, bsf), and spectral (wavelength, cwf) signatures. In practice, the decompo-
sition consists of finding the matrices A ¼ faf g, B ¼ fbf g, and C ¼ fcf g that explain X with min-
imal residual error.
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EQ-TARGET;temp:intralink-;e002;116;735Xtsw ¼
XNf
f¼1

atfbsfcwf þ Etsw: (2)

The estimated factors, atf , bsf , and cwf are the elements of the so-called loading matrices A, B,
and C, whose column vectors af ¼ atf , bf ¼ bsf , and cf ¼ cwf, represent the temporal, spatial,
and wavelength signatures of each component. The main advantage of this method is that it
provides a unique decomposition of the fNIRS data into components reflecting different activ-
ities that do not need to be orthogonal or statistically independent in any of the dimensions. As
long as an activation shows a different behavior in one of the dimensions, it can be extracted as a
separate component. In this application, the spatial dependency between wavelengths is there-
fore exploited in order to perform the decomposition. The uniqueness of the solution is guar-
anteed when the number of components (Nf) is smaller than the sum of the ranks of the three
loading matrices. In the case of noisy data, it is very likely that the loading matrices are always
full rank. Uniqueness is thus guaranteed as long as the number of components (Nf) is smaller
than half the sum of the number of time points (Nt), number of channels (Nc), and number of

wavelengths (Nw): Nf ≤
ðNtþNCþNwÞ

2−1 . For instance, even in a small array of 20 time points and
eight channels at two different wavelengths, a unique decomposition could be achieved, using up

to 14 components (20ðtÞþ8ðsÞþ2ðwÞ
2

− 1 ¼ 14ðNfÞ). Computationally, the decomposition is
achieved by the alternating least squares algorithm, as it has been used in previous studies
on neuroscience data.13,28,29,42 The only indeterminacies in the least-squares solution are trivial
and easy to handle: the order of the additive components and the relative scaling of the
signatures.22

In this work, we used the PARAFAC implementation from the N-way Toolbox,43 which was
included into the LIONirs toolbox35 so as to visualize and apply the decomposition exclusively
during selected time intervals and channels. Calculation with PARAFAC can be obtained in <1 s

for a dataset size of ∼50 channels × 100 time points × two wavelengths (typical dataset size in
our experiments), which is as fast as comparable techniques such as tPCA. Components were
ordered according to their importance in explaining the data’s variance (similar to tPCA). The
scale of the data was kept in the temporal signatures, while the other dimensions were normal-
ized so as to have Frobenius norms equal to one. Since measures from both wavelengths are
sampled simultaneously at each specific position on the scalp, movement artifacts affect their
amplitudes similarly. During time intervals containing artifacts, the time courses of the signal
from the two wavelengths commonly show a drastic and correlated increase as compared to the
task-related or baseline signal.4 By using multidimensional PARAFAC decomposition, we can
take advantage of this information for the adequate selection of components of the artifact’s
signature. PARAFAC decomposition was specified to extract between two to four components,
allowing a clear separation of the artifact signatures representing the artifacts characteristics from
the rest of the signal. This was associated with a core consistency diagnostic (Corcondia) of
>90%, indicating that the model accurately described the data.44 The appropriate components
were selected based on (1) a visual inspection of their temporal overlap with the artifact, (2) the
smallest number of possible components that would sufficiently correct the artifact, and (3) com-
ponents showing similar weights for both wavelengths. In simulations, a standardized
PARAFAC decomposition with three components was applied. Two components that clearly
showed evidence of an amplitude change typically related to a movement artifact, i.e., short
impulses, were discarded as reflecting the artifact in the original signal.

2.6 Signal Quality

The signal’s overall quality was estimated by two quality measures:4,6,45

1. Signal-to-noise-ratio: For each data segment with an artifact we estimated the SNR, as
defined by Sweeney and colleagues:45

EQ-TARGET;temp:intralink-;e003;116;97SNR ¼ 10 log10
σ2x
σe2

; (3)
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where σx2 represented the signal’s variance computed in segments of data without an arti-
fact. In case of the real task-based data set, σx2 was computed in a 5-s interval during the
baseline of the task condition. For the simulations, σx2 was computed in a 5-s interval at
the beginning of the resting-state signal. σe2 represented the variance of a segment where
an artifact was identified or simulated. Therefore, our SNR works more like a constrast
metric indicating how much the signal’s variance of a noisy segment differs from the
signal’s variance of a clean segment. Whenever an artifact contaminated the signal,
σe2 would usually be higher than σe2 because it comprised both the variance of the physio-
logical signal and the variance of the artifact. It was therefore expected that the SNR of the
signal before artifact correction would be negative. After artifact correction, a negative
SNR (σx < σe) would indicate that the artifact had not been entirely removed, a positive
SNR (σx > σe) would imply overcorrection meaning that artifact correction removed the
artifact as well as parts of the relevant physiological activity, and an SNR of about 0
(σx ¼ σe) would suggest that the artifact had been eliminated to the extent that the variance
of the corrected signal would not differ from the baseline segment without an artifact. In
case of the task-based data set, the SNR of the uncorrected signal served as a baseline, thus
the more the SNR of the corrected signal differed from the baseline value and approached
0, the better the artifact had been corrected. Since the ground truth of the signal’s variance
was unknown and besides the artifact also the hemodynamic response may contribute to
the signal’s variance, no further interpretation of a negative or positive SNR would have
been appropriate. For the simulations, the SNR of the initial signal before artifact sim-
ulation (NIRSini and NIRSini þ HRFsim) served as a reference and the more the SNR
of the corrected signal would approach this value, the better the performance of artifact
correction was assumed to be.

2. Pearson’s correlation coefficient (Rλ) between the time courses of both wavelengths from
the same site were used as a subsequent quality measure to evaluate artifact correction
performance.4 This was based on the assumption that a high correlation coefficient indi-
cates the presence of artifactual signals measure simultaneously by both wavelengths,
since in a clean signal these temporal courses appear much less correlated. Similar to how
it was previously done for the SNR, we computed Rλ for all segments with identified or
simulated artifacts before (i.e., uncorrected artifact reference) and after artifact correction
(i.e., corrected signal). For the task-based data, Rλ was additionally calculated for artifact-
free baseline intervals (i.e., artifact-free reference) and in case of the simulations for the
intervals of the initial signal (NIRSini and NIRSini þ HRFsim) before artifact simulation
(i.e., artifact-free reference).

2.7 Similarity Indices

For the analysis of simulated data, three additional metrics were used to evaluate performance of
artifact correction: (1) the percent root difference (PRD), (2) the root mean square error (RMSE),
and (3) the Pearson product-moment correlation (R). These allowed us to estimate the degree
of correspondence between the initial signal without simulated artifacts (NIRSini and
NIRSini þ HRFsim) and the signal after correction of the simulated artifacts.40,46,47 PRD,
RMSE, and R were defined as follows:

EQ-TARGET;temp:intralink-;e004;116;215PRD ¼ 100%

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðxðtiÞ − yðtiÞÞ2
�XN

i¼1

x2ðtiÞ
�−1

vuut ; (4)

EQ-TARGET;temp:intralink-;e005;116;150RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðxðtiÞ − yðtiÞÞ2
vuut ; and (5)
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EQ-TARGET;temp:intralink-;e006;116;735R ¼ 1

N − 1

XN
i¼1

�
xðtiÞ − x̄

sx

��
yðtiÞ − ȳ

sy

�
; where sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðxðtiÞ − xÞ2
vuut ;

sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðyðtiÞ − yÞ2
vuut :

(6)

For all three indices, xðtiÞ and yðtiÞ represented the i’th point of the time courses of the
corrected signal and of the initial artifact-free signal (NIRSini and NIRSini þ HRFsim), respec-
tively. N corresponded to the duration of the time courses and x and y to their respective mean
values along time. An ideal artifact correction would have been achieved when the artifact was
completely removed, and the corrected signal maximally resembled the initial signal. As PDR
and RMSE inform on the difference of the two signals, the smaller they were, the more accurate
the performance of artifact correction was. On the contrary, the R index represents the similarity
of both signals, hence a higher value suggested better artifact correction.

2.8 HRF Recovery

To investigate how artifact correction would affect the interpretation of the hemodynamic
response, in the last simulations (3a to 3d) we aimed to recover a previously synthesized
HRF. Therefore, a Butterworth low-pass filter (filter order = 4, cut-off frequency = 0.2 Hz) was
applied to the signal to remove oscillations caused by heartbeat and respiration. The optical
intensity changes of the two wavelengths were then transformed into relative concentration
changes of HbO and HbR, done so by using an age-adapted differential pathlength factor
(DPF) and the modified Beer–Lambert Law.48,49 A general linear model (GLM) with the
HRFsim as a predictor was then applied. The GLM assumes that a linear relation exists between
different inputs,50 and has already been applied in several fNIRS studies to specify the HRF.7,51,52

The cerebral activation of the signal (y) is defined as

EQ-TARGET;temp:intralink-;e007;116;392y ¼ β0 þ βHbO∕HbRxþ E; (7)

where y referred to the analyzed signal, β0 was a constant, βHbO∕HbR represented the predictive
value of the simulated hemodynamic response represented by x (HRFsim) for both concentration
changes of HbO and HbR, respectively, and E represented the error or the unexplained part of the
signal. GLM was applied to a 60-s interval that was set to 15 s before and 45 s after the onset of
the HRFsim. The GLM allowed us to estimate how much of the signal’s variance (R2) could be
predicted by the HRFsim. This estimation was conducted for the initial signal without artifacts
(NIRSini þ HRFsim), the uncorrected signal with a simulated artifact, and for the corrected signal.

2.9 Statistical Analysis

Quality and similarity measures were computed for each channel separately and then averaged
across channels for statistical analysis. Prior to statistical analysis, correlation coefficients (R and
Rλ) were standardized using Fisher’s transformation to obtain values following a normal dis-
tribution. For the real task-based data, we conducted statistical analysis to compare the signal
quality metrics among the motion artifact correction techniques. A repeated measures ANOVA
including PARAFAC, tPCA, ICA, and the uncorrected reference signal as the within factor, was
performed independently for the mean of each metric across all channels (i.e., SNR and Rλ). In
case of the Rλ, the reference of the baseline (nonartifacted signal) was included as another con-
dition. Follow-up paired contrasts were conducted with a critical alpha of 0.05. For the simu-
lations, we applied a repeated measures ANOVAs to compare the mean outcome of the quality
and similarity metrics between the different simulations, i.e., 1a to 1e for the amplitude scaling,
2a to 2f for the complex artifacts and 3a to 3d for the HRFsim, and within correction condition,
i.e., PARAFAC, tPCA, and the uncorrected signal. Tukey correction for multiple comparisons
was applied for posthoc analysis.
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3 Results

3.1 Correction of Nonsimulated Task-related Motion Artifacts

First, decomposition with PARAFAC was applied for the correction of real task-based motion
artifacts. The signal’s quality (SNR, Rλ) after correction with PARAFAC was evaluated and
compared to the signal before correction (uncorrected), the signal after correction with two
2D decomposition techniques (i.e., tPCA and ICA), and a reference signal of a segment without
artifacts (Rλ). Figure 5 provides an example of target artifact correction with PARAFAC illus-
trating the 3D decomposition for a motion artifact detected in the real task-based signal. The time
course of the three components obtained with PARAFAC allowed to differentiate between the
two components with distinct artifact signatures, and the one component representing the clean
signal. Spatial distribution of each component is shown as a loading matrix and helps to identify
in which channels (localization) the artifact’s signatures were most important. The two compo-
nents that appear to represent the artifact showed similar scores for both wavelengths, as rep-
resented in the wavelength signatures. Subsequently, removal of PARAFAC first and second
components resulted in a less noisy time interval and satisfyingly corrected signal.

Automatic and manual artifact detection agreed on a majority of the signal with an average
concordance of 92.8%, so only minor manual adjustments had been applied. A total of 585
different artifactual events, on average 66 events per subject with a mean, minimal and maximal
duration of 5, 0.7 and 21.2 s, respectively, were considered for correction. Comparison of the
SNR included measures of every channel of both wavelengths. Repeated-measures ANOVAwith
Greenhouse–Geisser correction for the SNR of all conditions (uncorrected, PARAFAC, tPCA,
and ICA) revealed a significant main effect, Fð2.3;44966.3Þ ¼ 7550.7, p < 0.001, η ¼ 0.28.
The uncorrected signal had the largest ratio of noise (−0.69), followed by the signal after
ICA correction (−0.50), tPCA correction (−0.33), and PARAFAC correction (−0.31)
(Table 1). Pairwise contrasts (Cohen, 1988) revealed that PARAFAC correction resulted in a
significantly higher SNR compared with the uncorrected signal (η ¼ 0.45), and the signal after
correction with ICA (η ¼ 0.13), both having a large effect size. Comparison of PARAFAC and
tPCA, though statistically significant, revealed only a small effect size (η ¼ 0.002). Repeated-
measures ANOVAwith Greenhouse–Geisser correction for the Rλ revealed a significant differ-
ence between the five conditions: Fð3.2;30999.0Þ ¼ 2686.46, p < 0.01, η ¼ 0.22. Mean Rλ
coefficients showed the highest association between wavelengths for the uncorrected signal
(0.74), followed by the signal after ICA correction (0.67), tPCA correction (0.53),
PARAFAC correction (0.51), and the artifact-free reference signal (0.47) (Table 1). Contrasts
of Rλ coefficients between PARAFAC and ICA (η ¼ 0.14, large effect) as well as the uncor-
rected signal (η ¼ 0.35, large effect) suggested that wavelengths were greatly less correlated
after PARAFAC correction. Correction with PARAFAC resulted in slightly higher Rλ coeffi-
cients compared to segments without artifacts (artifact-free reference, η ¼ 0.01, small effect),
and slightly lower Rλ coefficients compared to correction with tPCA (η ¼ 0.01, small effect).

Initial uncorrected signal

(a) (b) (c)
Parafac decomposition with three components Corrected signal

Fig. 5 Example of target 3D PARAFAC decomposition to correct motion artifacts in a task-based
fNIRS data set. (a) The initial uncorrected data segment. (c) The temporal, spatial (channel), and
wavelength (λ1j2 ¼ 690j830 nm) signatures of the components identified with PARAFAC decom-
position are presented, respectively. (c) The corrected signal, illustrating the efficacy of movement
artifact correction with PARAFAC after subtraction of two components (1 and 2). Y -axis is pre-
sented in arbitrary units.
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3.2 Correction of Simulated Motion Artifacts

As a second step, we evaluated the performance of PARAFAC to correct simulated artifacts with
varying parameters, see Fig. 3 for the composition of the different scenarios. Three similarity
indices (PRD, RMSE, and R) for the agreement of the initial (NIRSini) and the corrected signal
(NIRSPARAFAC∕tPCA), two quality measures (SNR, Rλ) and the reconstruction of the synthesized
HRF were used to quantitatively compare performance of PARAFAC to tPCA. The sample for
each index (PRD, RMSE, R, SNR) consisted of 164 measures, corresponding to channels of both
wavelengths. Since Rλ is a correlation coefficient between both wavelengths, the sample con-
sisted of 82 values. For each simulation condition (1a to 1e, 2a to 2f, and 3a to 3d), indices were
computed for three correction conditions (=within-subject factor), i.e., the signal corrected with
PARAFAC or tPCA and the uncorrected signal. Table 2 shows the results of the interaction
effects between simulations and corrections as revealed by the repeated measures ANOVA.
Results of post-hoc comparisons with Tukey correction are illustrated in Fig. 6 using the example
of PRD. The results of the other indices are mostly in line with those. Detailed results for the
RMSE, R, SNR, and Rλ can be found in Figs. S2–S5 in the Supplemental Material, respectively.

Simulations 1a to 1e included artifacts with extra small, small, medium, large, and extra-large
amplitudes. Similarity indices (PRD, RMSE, and R) revealed that both PARAFAC and tPCA
resulted in a significant higher resemblance of the corrected signal and the initial signal com-
pared to the uncorrected condition for all amplitude sizes except for the artifact with an extra
small amplitude, where tPCA did not lead to a significant improvement compared with the
uncorrected signal. Similarly, both correction methods led to a significantly higher signal quality,
i.e., lower SNR and Rλ, compared with the uncorrected signal with the same exception for tPCA
in the extra small amplitude, where no difference was observed as compared to the uncorrected
signal. When artifacts had a small, medium or extra-large amplitude, correction methods
obtained comparable results over all indices and did not statistically differ. The most consistent

Table 1 Mean quality metrics for evaluation of artifact correction in the task-based data set.

Mean ± SD
Artifact-free
reference PARAFAC tPCA ICA

Uncorrected
artifact reference

SNR (dB) N/A −0.31� 0.58 −0.33� 0.57 −0.50� 0.64 −0.69� 0.65

Pearson’s correlation
between wavelengths (Rλ)

0.47� 0.33 0.51� 0.38 0.53� 0.38 0.67� 0.38 0.74� 0.29

Results are displayed for the three decomposition techniques, parallel factor analysis (PARAFAC), target prin-
cipal component analysis (tPCA) and independent component analysis (ICA), as well as for two reference
signals, an artifact-free segment retrieved from the baseline before task onset, and the uncorrected signal
consisting of all artifact segments before correction was applied.

Table 2 Interaction effects of the statistical comparisons between simulations and within correc-
tion methods.

[F (df ), η2partial]
Amplitude size

(1a–1e)
Onset delay of second

artifact (2a–2f)
Onset of the artifact relative

to the HRFsim (3a–3d)

PRD 67.14 (8, 1630)**, 0.248 4.98 (10, 1956)**, 0.025 26.67 (6, 1304)**, 0.109

RMSE 132.35 (8, 1630)**, 0.394 8.93 (10, 1956)**, 0.044 52.74 (6, 1304)**, 0.195

R 94.01 (8, 1630)**, 0.316 7.82 (10, 1956)**, 0.038 63.23 (6, 1304)**, 0.225

SNR 214.90 (8, 1630)**, 0.513 7.18(10, 1956)**, 0.035 61.31 (6, 1304)**, 0.220

Rλ 115.96(8, 810)*, 0.534 2.36(10, 972)*, 0.024 22.06(6, 648)*, 0.170

The table shows the results for the five metrics, i.e., PRD, RMSE, product-moment correlation (R), the SNR
and the Pearson’s correlation coefficient (Rλ), that were used to compare artifact correction with PARAFAC
and targeted PCA among the different simulated noise scenarios. See Sec. 2.4 and Fig. S1 in the
Supplemental Material for details regarding the simulations’ parameters. *p < 0.01, **p < 0.001.
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differences between correction methods can be observed for the artifact with extra small and
large amplitudes. While similarity metrics and quality measures revealed that PARAFAC
achieved significantly better results than tPCA for the correction of artifacts with an extra small
amplitude, for artifacts with a large amplitude tPCA seemed to have a slight but statistically
significant advantage as compared with PARAFAC.

Simulations 2a to 2f led to signals with different onset delays (1–5 s and 10 s) between two
superimposed artifacts, which allowed to create different complex artifacts. Over all conditions,
notwithstanding their onset delay, similarity indices indicated a significantly higher overlap with
the initial signal for the signal corrected with PARAFAC as compared with the one corrected
with tPCA and the uncorrected signal. Similarly, quality metrics revealed a significantly higher
signal quality after correction with PARAFAC compared to the correction with tPCA and the
uncorrected signal. Nevertheless, tPCA also resulted in statistically significant better results as
compared to the uncorrected signal in all conditions both with regard to the similarity metrics and
the quality measures.

In simulations 3a to 3d the onset of an artifact varied relative to the beginning of a simulated
HRFsim: þ0, þ5, þ15, and þ30 s. Independent of the onset of the artifact, correction with
PARAFAC resulted in a signal that showed a significantly higher overlap with the initial signal
compared with the uncorrected condition. Similarly, quality measures showed a significant
improvement of the signal’s quality after correction with PARAFAC compared with the uncor-
rected signal. tPCA achieved almost identical results as PARAFAC in comparison to the uncor-
rected signal, except when the artifact was placed shortly after the beginning of the HRFsim
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Fig. 6 Evaluation of correction in simulated motion artifacts based on signal similarity. Simulations
are identified on the x -axis. [(a) 1a–1e] artifacts with different amplitude sizes; [(b) 2a–2f] complex
artifacts with two superimposed artifacts and an onset delay between the first (A1) and second
artifact (A2); [(c) 3a–3d] the onset of the artifact relative to the beginning of a simulated HRF.
Performance of artifact correction is illustrated by the use of the similarity index percent root differ-
ence (PRD), where a lower value represents higher resemblance between the corrected and the
initial clean fNIRS signal, hence a better correction of the artifact. Results are displayed separately
for the correction with PARAFAC (light gray bars) and tPCA (gray bars). The PRD of the uncorrected
signal is not displayed in this figure but differed significantly from both correction techniques in
all conditions, except where specified (n.s.) otherwise inside the bar. Significance level are based
on post-hoc tests with Tukey correction. ***p ≤ 0.001, n.s. p > 0.05. Uncorrected ¼ NIRSini + arti-
fact (A1) without correction, PARAFAC ¼ NIRSini + artifact (A1∕A2) after artifact correction with
PARAFAC, tPCA ¼ NIRSini + artifact (A1∕A2) after artifact correction with tPCA.
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(þ5 s) for which PRD and RMSE did not show a significant difference between the uncorrected
signal and the one corrected with tPCA. Further, for artifacts at the very beginning (+0 s), shortly
after (þ5 s) or at the very end (þ30 s) of the HRFsim (at the same time than the low-frequency
increase or decrease that is intrinsic to theHRFsim), similarity indices revealed a significant better
overlap of the corrected signal with the initial signal after correction with PARAFAC as opposed
to tPCA. In contrast, tPCA compared to PARAFAC seemed to have a significant advantage for
the correction of artifacts during the plateau of the HRFsim (þ15 s), which might be explained by
a higher orthogonality between the artifact and the signal at this onset. Quality measures however
only partially support these findings, namely in favor of correction with tPCA for the artifact at
the beginning (þ0 s) and in favor of PARAFAC for the artifact shortly after (þ5 s) the beginning
of the HRFsim. When the artifact is at the very beginning of the HRFsim (þ0 s), signal quality is
however significantly higher after correction with tPCA as compared with PARAFAC. There is
no statistically significant difference between signal quality for any of the correction methods
when the artifact is placed at the very end of the HRFsim (þ30 s). Further, results of the GLM
revealed that in none of the conditions the simulated artifact led to an important reduction of the
variance explained by the HRFsim as compared to the initial signal (Table 3). In line with the
results of the similarity metrics, reconstruction of the HRF after correction with PARAFAC was
qualitatively better as compared with tPCA when the artifact occurred at the beginning (þ0 s),
shortly after (þ5 s) and at the end (þ30 s) of the HRF. In particular, for the artifact 5 s after the
onset of the HRF, reconstruction after correction with tPCA seemed disturbed. There was no
important difference between correction methods for the reconstruction of the HRF when the
artifact was during the plateau of the HRF (þ15 s).

Orthogonality measure for the relation of the time courses of the raw signal and the artifact
signal (Raw × A1: ra) were calculated for all simulations, orthogonality for the time courses of
the raw signal with the first artifact and the second artifact (RawA1 × A2: rb) was only computed
for simulations of complex artifacts (2a to 2f). A value of 1, represented maximum orthogonality
between both signals meaning they are in a 90 deg angle to each other. Any value smaller than 1
or even 0 indicated nonorthogonality meaning that they are in any other angle than 90 deg,
maximally 0 deg or 180 deg to each other. Results of ra revealed consistently high orthogonality
for all simulations with varying amplitudes (Min ¼ Max ¼ 0.97) and with complex artifacts
(Min ¼ 0.97, Max ¼ 0.98). Orthogonality for the simulations with the HRF revealed more var-
iations (Min ¼ 0.88, Max ¼ 0.97) where the artifact 30 s after the HRFsim created the least
orthogonal condition (Median ± standard error: 0.88� 0.03), followed by the simulation with
the artifact at 0 s (Median ± standard error: 0.93� 0.05), 5 s (Median ± standard error:
0.96� 0.01) and 15 s (Median ± standard error: 0.97� 0.01) of the HRFsim. Results of the
second orthogonality measure rb indicated that the onset delay of 2 s led to the least orthogonal
condition (median ± standard error: 0.75� 0.07), followed by the delay of 3 s (median ±
standard error: 0.93� 0.02) and 5 s (median ± standard error: 0.98� 0.02). When the second
artifact had a delay of 1, 4, or 10 s, there was equally high orthogonality for all three conditions
(Median ± standard error: 0.99� 0.02).

Table 3 Percentage of explained variance by the HRFsim based on the R2 of the GLM.

Mean ± SD Initial Uncorrected PARAFAC tPCA

3a: HRF + 0 s 95.16� 16.24 94.88� 16.49 95.18� 15.68 94.23� 18.33

3b: HRF + 5 s 95.16� 16.24 94.43� 7.84 94.54� 7.78 86.96� 12.81

3c: HRF + 15 s 95.16� 16.24 95.00� 16.16 95.10� 16.27 95.18� 16.20

3d: HRF + 30 s 95.16� 16.24 95.14� 16.25 94.92� 16.26 91.83� 15.89

Results are displayed for the three decomposition techniques, parallel factor analysis (PARAFAC), target prin-
cipal component analysis (tPCA) and ICA, as well as for two reference signals, an artifact-free segment
retrieved from the baseline before task onset, and the uncorrected signal consisting of all artifact segments
before correction was applied.
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4 Discussion

Promising results have been reported by using parallel factor analysis (PARAFAC) for multi-
dimensional (n ≤ 3) data analysis in EEG data.13,28,42 Since the fNIRS signal has inherently three
dimensions, time × space × wavelength, we aimed to extend the application of PARAFAC to
fNIRS and validate its use for artifact correction. First, we explored the usefulness of PARAFAC
to correct movement artifacts in a data set of task-related fNIRS signals acquired during an
expressive language paradigm. Performance of artifact correction was evaluated by the use
of two signal quality metrics (1) the SNR considering the signal’s variance during the simulated
intervals after correction; and (2) the temporal similarity between both wavelengths during the
simulated intervals after correction (Pearson’s correlation Rλ). Quality measures after correction
with PARAFAC were compared to those obtained after the use of two commonly used decom-
position methods in fNIRS (i.e., tPCA and ICA). Second, several scenarios with simulated arti-
facts in a clean resting-state signal were computed to assess the performance of artifact
correction with PARAFAC and its homologue 2D target decomposition technique (tPCA) in
a controlled setting. Simulated artifacts had five amplitude sizes, six levels of temporal overlap
with a second artifact to create complex artifactual events and were added at four different time
points of a simulated HRF. We compared the performance of both correction methods using
(1) similarity indices describing the degree of correspondence between the corrected signal after
removal of simulated artifacts and the artifact-free signal before simulation (RMSE, PRD, and
R); and (2) the two quality measures, SNR and Rλ, already used for the task-related signal.

With regard to motion artifact correction in the task-based data set, the signal after artifact
correction with PARAFAC had the smallest SNR among the three methods (PARAFAC, tPCA,
and ICA), suggesting that more of the variance related to the artifact had been removed and a
better signal quality was achieved. Similarly, correction with PARAFAC led to the lowest cor-
relation between HbO and HbR indices, as well as the correlation index that most resembled the
nonartifactual resting-state baseline reference. Though the resting-state signal has been reported
to show slightly different hemodynamic changes as compared to a stimuli-induced cerebral
activity,18,53 we consider it a suitable reference for a time interval without artifacts, because
it was not affected by articulation. In line with previous findings, our analyses also revealed
a robust advantage in applying target corrections (tPCA and PARAFAC) instead of whole-block
(ICA) correction, resulting in a better signal quality.14,16 ICA was indeed applied to the entire
signal as reported in the literature,18 while tPCA and PARAFAC were used in a target manner,
i.e., only decomposing the signal during specific intervals where artifacts had been detected. As
proposed by Yücel and colleagues,3 target artifact correction prevents large changes in the over-
all composition of the signal, and exclusively corrects the noisy time interval of the artifact. It
allows the decomposition to clearly sort a component representing the artifact signature, without
considering the characteristics of these channels during the intervals without artifacts. Target
decomposition is thus beneficial for a precise identification of the artifact’s signatures and
PARAFAC for artifact correction in fNIRS should also be applied in a target manner.

Results of the conducted simulations with controlled parameters suggest that artifact correc-
tion with PARAFAC led to a signal that corresponded more closely to the initial signal, as com-
pared to the uncorrected signal. Similarly, PARAFAC yielded a significant better signal quality
as compared to the uncorrected signal. This result is a preliminary validation of the use of
PARAFAC for artifact correction in fNIRS signals and similarity measures show that the signal
comes close to the original signal, thus it does not remove large parts of the physiological or
relevant activity. While correction with tPCA in most cases also led to better results compared to
the uncorrected signal, it has to be mentioned that its performance was less consistent over con-
ditions. tPCA correction of an artifact with an extra-small amplitude for instance did not lead to a
significant improvement compared to the uncorrected signal. This is probably due to the ability
of the numerical engine to extract a component that explains a small portion of the data variance
and list such a component among the first one or two components, which is related to the SNR of
the signals. In a real data set, such a small artifact might however not have been detected and it
might not even have disturbed the interpretation of the hemodynamic signal. This result’s sig-
nificance is thus limited. Further, in almost all scenarios correction with PARAFAC compared to
tPCA led to either better or comparable results. Especially, when the artifact was simulated along
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with a simulated HRF, PARAFAC showed superior and more robust results compared to tPCA.
According to the applied orthogonality measure, those conditions where tPCA showed a poor
performance were exactly those where the artifact and the simulated HRF were less orthogonal.
This is in line with the assumption that decomposition with PARAFAC is not affected by non-
orthogonality given there is enough information in the wavelength dimension to differentiate
nonorthogonal artifacts due to their different profile in both wavelengths. Only in two simula-
tions, namely when the artifact had a large amplitude or was during the plateau of the simulated
HRF (where the orthogonality between the HRFsim and the artifact was the highest), correction
with tPCA outperformed PARAFAC. It does not come as a surprise that tPCA outperforms
PARAFAC when a perfectly orthogonal artifact is added to the physiological signal, as this
is exactly its main assumption, which is not for PARAFAC. Finally, results of the GLM indicate
that artifact correction with PARAFAC did not negatively affect the recovery of the simulated
HRF, which suggests that it successfully targeted the artifact signature and did not induce
changes of the signal that would alter interpretation of the underlying hemodynamic response.
Though this is an encouraging result, it has to be mentioned that similar results were achieved for
the HRFsim of the uncorrected signal, suggesting that the simulated artifact did not have a very
strong impact on the signal and the interpretation of the HRFsim. This could be different for more
complex artifacts where correction may not sufficiently work or more likely, when not using the
same linear model to simulate and subsequently recover the HRF. In most cases correction with
tPCA allowed a similarly good recovery of the simulated HRF, but was strongly affected when
an artifact was placed shortly after the beginning of the HRFsim, i.e., when the assumption of
orthogonal artifact is not perfectly met. This is in line with the findings for the similarity and
quality metrics for this scenario.

Regarding the comparison of targeted decomposition techniques, the small effect size of the
difference between tPCA and PARAFAC in the task-based data set suggests that both target
correction techniques led to a similar reduction of the variance induced by motion artifacts and
to an equal reduction of correlation between both wavelengths. Even though correction of simu-
lated artifacts outlined certain advantages of PARAFAC compared with tPCA in some condi-
tions, there was no consistent difference between both methods when applied to large data sets of
real movement artifacts in a verbal fluency task. Since it was previously emphasized that per-
forming accurate simulations of real motion artifacts is challenging, validation of an artifact
correction technique in real data is a crucial step.5 We can conclude that its performance both
in real and simulated data was generally equally good as tPCA and slightly better under certain
conditions, suggesting the validation of PARAFAC as a new tool for artifact correction in
fNIRS data.

What is more, PARAFAC’s core strength compared to tPCA is mainly related to its concep-
tualization. The use of a decomposition approach considering the multidimensional structure of
the fNIRS signal where a unique decomposition is achieved with few constraints, i.e. without
imposing orthogonality nor independence, is appropriate and seems advantageous compared to
tPCA as well as ICA.42,54 Even though the results of the simulations provide some support
that artifact correction with PARAFAC was not affected by nonorthogonality, orthogonality did
not sufficiently vary among simulations and mostly reached a high orthogonality as we used
resting state as background data. Nevertheless, given that in real data, the ground truth about
the signal’s composition of noise is unknown and orthogonality cannot be verified, it is safe to
say that PARAFAC represents a robust approach for artifact correction in fNIRS. 2D decom-
position, such as ICA and tPCA, analyzes both wavelengths as independent measures of the
fNIRS signal, even though they are in fact highly related, since they are acquired at the same
location.4 Since the estimation of the hemodynamic signal is based on the signal of both wave-
lengths,48 reliable conclusions require the signal to be clean in both of them. It is also worth to
notice that for artifact correction, we have followed in all our simulations the assumption that
both wavelengths are affected by artifacts equally across channels (just with a different general
scale). This is in fact the worst case for PARAFAC, as it will give better results if there are larger
differences in all dimensions of the data. Therefore, we could expect an improved performance
when artifacts have even small differences between the spatial distributions for the two
wavelengths.
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Decomposition with PARAFAC offers a rather easy way to make a selection of relevant
components that differentiate between signatures related to artifacts or other relevant character-
istics of the signal. Even if fNIRS is considered to be less sensitive to movements -as compared
to other neuroimaging techniques such as fMRI and signal quality should be controlled during
data acquisition as much as possible, appropriate tools for artifact correction are an essential part
of preprocessing in fNIRS, particularly for data acquired in populations where cooperation is
limited, such as children and clinical populations.5,55,56 PARAFAC thus appears to be a suitable
and robust alternative to the currently used approaches and will be a valuable add-on for fNIRS
studies and clinical examinations by minimizing the amount of nonusable data and improving
data quality. That being said, the researcher always has to weigh the means of applying artifact
correction and should not do so without visual inspection of the decomposition signature. It is the
overall quality of a data set, i.e., the amount of clean signal, and the duration, extent, and moment
of the artifact that ought to influence the researcher’s choice to reject data sets, to apply artifact
correction, and to proceed with analysis.

4.1 Usefulness and Limitations of PARAFAC

PARAFAC is a data-driven approach based on the linear relations of the three dimensions of the
fNIRS signal.22,27,28 PARAFAC has the advantage of allowing for the three-way arrays of data to
be uniquely decomposed into a sum of components, each of which is a trilinear combination of
factors or signatures. The only statistical requirements of PARAFAC is that of a moderate linear
independence across components, i.e. their time course, topography and wavelength character-
istics. This is a less stringent requirement than previous models that underlie space/time decom-
positions (PCA or ICA). Each component provides characteristics of a particular pattern
identified within the mixed measured fNIRS signal. When there are empirical or theoretical
reasons to expect more than one relevant component (e.g., resting state functional connectivity
analysis, epileptic activity, physiological aspects, and so on), PARAFAC would also allow dis-
entangling several components. Moreover, when there are reasons to include other constraints
such as orthogonality, non-negativity, smoothness and sparseness of the signatures, it has been
shown that PARAFAC can also include them in the decomposition procedure.22,57,58

Different from ICA, PARAFAC components can be ordered according to their importance in
explaining the data’s variance.59 This is why many studies using ICA apply data reduction or
clustering techniques such as PCA prior to the execution of ICA.18,60 Moreover, when using
PARAFAC, the description of the data is based on more dimensions, and with less theoretical
constraints (orthogonality and independence), which lead to the identification of fewer relevant
components.13,28,61,62 Compared with ICA, the selection of the relevant components is thus sim-
plified. Importantly, when using PARAFAC, it is not recommended to ask for more than five
components, as this increases the risk of overfitting the data with the decomposition model.
Though the issue of selecting the optimal number of components should be better explored and
standardized in future studies, based on our experience and previous studies, usually, three to five
components sufficiently describe the signal’s relevant characteristics.13,22,23,28,29 The Corcondia
index provides further information regarding a good fit of the PARAFACmodel and the analyzed
data. Precisely, a satisfying decomposition should have a core consistency of 85% or higher and
usually drops below 80% if an extra component is extracted, suggesting overfitting.44 Similar to
PCA, a typical choice made when using PARAFAC analysis, is that of ordering the extracted
components according to their contribution to explaining the variance of the data. In this sense, it
can be expected that the first PARAFAC component will always represent the highest activity,
which, in the case of target artifact correction, will correspond to the artifact activity. This makes
PARAFAC also a promising choice to explore the development of simple automatic method-
ologies for the detection and correction of such artifacts. Relevant components for artifact cor-
rection could for instance be selected based on the amplitude size or the differences between
scores for the two wavelengths. Despite being a time efficient and promising approach, we
believe that at the current state visual verification cannot be ceased, because depending on the
paradigm, noise may have characteristics that render automatic processing inadequate. Future
studies should be devoted to this specific aim.
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Some challenges of PARAFAC have already been discussed in previous studies.13,28 One
limitation is related to PARAFAC’s assumption of linear relations of the temporal characteristics
between different channels [which also applies to (t)PCA and ICA]. Despite being one of the
most common and simple models, imposing linearity may not entirely reflect complex cerebral
processes.63 Some attempts have been made to introduce approaches that tolerate nonlinear
relations.64,65 However, to date, linear models remain the most popular and adequate approach
for analysis of macroscopic data in neuroscience. Thus, it represents a general limit of the
domain, rather than one specific to PARAFAC. Another potential limitation of our implemen-
tation of PARAFAC might arise from the specific use of the simple alternating least-squares
algorithm to perform the decomposition. Other methods have been proposed for estimating
PARAFAC models, but some studies have shown that, given the uniqueness of the solution,
they do not usually outperform the simple least-squares technique.66

The need for careful preprocessing of data before characterizing brain activity constitutes
another limitation. When PARAFAC was introduced for the analysis of EEG data, the authors
emphasized the importance of searching for constant factors, outliers, and degeneracy.13,26

Detailed information on how to deal with these aspects can be found in previous literature.13

In the current study, the implementation of PARAFAC into the LIONirs toolbox,35 gave us a
certain flexibility regarding the channels and time segments to be included. Thus, we were able
to exclude deviant channels prior to use PARAFAC.

Finally, among the applications of PARAFAC not yet tested in fNIRS, is its use to identify
patterns of brain activity in the hemodynamic response as it has been applied in EEG data
analysis.13,29,42 Compared with other techniques such as GLM or global averaging who treat
each channel independently and provide a narrower spatial representation of the dominant acti-
vation, PARAFAC analysis could reveal a wider distributed activation pattern. This would
strongly correspond to the current understanding of cerebral processing, whereby mostly
large-scale networks, and not isolated regions, are considered to be involved in various cognitive
processes.55,67,68 PARAFAC could thus appear to be suitable for reflecting cerebral processes
occurring in distributed networks, rather than for the identification of a specific core region.
This is obviously given a sufficient fNIRS covering. Moreover, the topographic signature would
correspond to a whole time course of the extracted activations and can easily be subjected to
diffusion optical tomography in order to locate the HbO and HbR concentration changes in the
brain cortex.69 Another potential application is using PARAFAC as a screening tool. For in-
stance, Miwakeichi and colleagues13 applied PARAFAC to an EEG dataset in order to extract
one component related to ocular movement artifacts, and subsequently used the PARAFAC
analysis fixing spatial and spectral signatures of that component to screen a second dataset
in order to identify and correct similar artifacts. This application can also support the develop-
ment of a detection method as has already been done in other fields such as detection of epileptic
seizures29,70 and for brain–computer interfacing.71–74 Although this can be useful for correcting
artifacts that have consistent topographical and wavelength profiles, movement artifacts were
mostly related to articulation in our study, often showing quite different signatures. A different
paradigm may enable the testing of this application of PARAFAC in fNIRS.

Our findings also encourage the general application of PARAFAC for multidimensional
decomposition in neuroimaging, where data can often be described in more than two dimen-
sions. PARAFAC could for instance be of interest for fNIRS data acquired with a multiwave-
length (>2 wavelengths) system.75,76 Beyond the obvious dimensions of a technique such as that
of time × space × wavelength (fNIRS) or frequency (EEG), characteristics of the task paradigm
or group variables could also be considered in the decomposition model.42 For instance, if a
“group” dimension was to be included, groups could be compared regarding their relative weight
over the main cerebral activation component that would have been outlined from the
PARAFAC model.

4.2 Limits of the Current Study

The use of a language paradigm allowed for the induction of artifacts that were mainly related to
articulation and often overlapped with the stimulus onset. This makes identification and correc-
tion of artifacts particularly challenging and may limit the generalization of our results. From
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video recordings, however, we were able to acknowledge that swallowing, jaw or tongue move-
ments, eye blinks, and frowning also induced artifacts in our data set. Our results particularly
contribute to an improved artifact correction in a paradigm where artifacts can pose a significant
problem for interpretation. The validation of PARAFAC in a realistic scenario represents an
important advantage because simulated artifacts either completely artificial or by instruction
of participants to make certain movements, rarely live up to the complexity and variability
of real spontaneous artifacts.5 Though the simulated artifacts were also based on one identified
during the task-condition, parameters were modified and allowed to create noise with different
characteristics. Further fNIRS studies using PARAFAC, and including different task paradigms,
resting-state, and recording in naturalistic environments when participants are moving or are
instructed to perform specific movements, could show its utility for a wider range of artifacts
(e.g., baseline shifts or physiology).

The validation of PARAFAC for artifact correction was conducted by comparing results with
two other decomposition techniques. This could be considered one limit of the present study,
because we did not consider other correction approaches for comparison. The objective of this
study was not to conduct exhaustive and systematic comparisons in order to identify the best
method for artifact correction, but rather to introduce PARAFAC as an alternative and adequate
method in fNIRS analysis. Future studies could therefore expand the validation of PARAFAC
and extend comparisons of its performance to other tools that do not necessarily use decom-
position, such as spline interpolation or wavelet filtering. With relation to that, even if there
were to be a slight advantage of PARAFAC over tPCA in artifact correction results, the small
difference might not have a concrete impact on the applicability of those two methods.
Qualitative differences between tPCA and PARAFAC regarding the type of artifacts and cor-
rected signal should be further assessed and described in subsequent studies to better understand
how their efficacy may vary according to the artifact’s characteristics.

Last but not least, PARAFAC’s components related to artifacts were selected during a visual
inspection based on their temporal overlap with the artifact, i.e., sudden change of amplitude,
and those showing similar weights for both wavelengths. The smallest number of possible com-
ponents that sufficiently corrected the artifact were selected. Even though our results show that
this procedure led to satisfying correction, it is not a fully standardized procedure, which may
hamper an easier, automatic correction that would reduce the need of the researcher’s expertise in
detecting and adequately applying correction. This issue could be addressed using the screening
procedure mentioned in the previous section or using other templates for the artifacts of interest
or by applying the usual automatic rules based on amplitude characteristics to the temporal sig-
natures obtained by PARAFAC instead of the original mixed data. The goal of the current study
was not to propose a method for artifact detection but to validate the relative efficacy of these
methods in artifact correction. It would be interesting for future studies to address the develop-
ment of a more automatic procedure based on PARAFAC analysis contributing to a faster and
standardized processing pipeline.

5 Conclusion

PARAFAC has the advantage to simultaneously treat both wavelengths or HbO and HbR during
fNIRS data analyses. Our findings from real task-related signals and controlled simulations val-
idate previous results in EEG data and promote multidimensional decomposition with PARAFAC
as a promising tool for the correction of movement artifacts in fNIRS. Precisely, PARAFAC
achieves comparable results as tPCAwhen the artifact’s signature is simple and clearly distinguish-
able from the signal. It outperforms tPCA mainly when artifacts have small amplitude, show a
complex temporal signature or when they co-occur during an HRF. These results can partially
be attributed to low orthogonality between signal and noise. The advantages of PARAFAC and
tPCA, as compared to ICA, are consistent and seem to be due to the target application. Further,
PARAFAC has a strong advantage compared to both 2D decomposition techniques because it
offers a unique decomposition without orthogonality or independence constraints, hence represents
a robust decomposition technique. The validation of its use paves the way for future use in fNIRS
research to extract relevant signatures represented in the fNIRS signal.
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