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Abstract. We proposed a novel scanning method for
low-dose computed tomography (CT) that uses an oscillating
multi-slit collimator between the x-ray source and the patient.
It can be thought as a realization of sparse data sampling that
does not require a fast x-ray power switching. A simulation
study was performed based on experimentally acquired
microCT data of a mouse to demonstrate the feasibility of
the proposed method. A numerical collimation was designed
to leave only one-fourth of each projection data for use in
image reconstruction. A total-variation minimization algorithm
was implemented for image reconstruction from the sparely
sampled data. We have successfully shown that the proposed
method provides a viable option to low-dose CT. © 2012 Society
of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.OE.51.8
.080501]
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1 Introduction
X-ray computed tomography (CT) has been widely used for
various clinical applications. With its increased use in clinics,
dose reduction is the most important feature people seek in
new CT techniques or equipments. The most intuitive and
straightforward method of reducing radiation dose is either
decreasing the tube current during a scan or taking less
projections, or both. A host of algorithms have been
developed to improve the quality of images reconstructed
from the data acquired at low tube current.1,2 Algorithms
inspired by the compressive sensing theory have also been
developed to reconstruct images from sparse-view projec-
tions.3–5 Successful performance of such algorithms has
been reported with varying degrees of dose reduction. In
spite of potential usefulness of the sparse-view technique,
however, its implementation in clinical CT systems is hardly
found yet. It is partly due to the fact that a fast tube power
switching is challenging, if not impossible, particularly for
the systems that operate with a very fast gantry rotation.

In this work, we propose a novel method of sparse
data-sampling that uses an oscillating multi-slit collimator
instead of fast tube power switching as shown in Fig. 1.
A multi-slit collimator can be made of radio-opaque material

to block the x-ray beam outside the slit openings. At a given
source position, projection data is therefore acquired only
through the slit-openings thereby reducing dose greatly.
To enhance data sampling uniformity, we propose to oscillate
the collimator during a scan. We name this type of scanning
method many-view under-sampling (MVUS) technique. We
demonstrate a feasibility of the MVUS using a simulation
study in this work. Projection data are acquired through
numerically collimating the full projection data according
to the proposed method, and a total-variation minimization
algorithm is used for image reconstruction from the
collimated data.4

2 Methods

2.1 Data Sampling Scheme

We used microCT projection data of a mouse acquired from
a circular cone-beam scan in a step-and-shoot mode, and
made an array for numerical collimation. Open and blocked
rectangular areas that have length dimension along the
rotation axis repeat periodically in the array across the
perpendicular direction to the rotation axis, and the array
elements of the open area are set to be one and those of
the blocked area to be zero. In this study, we prepared the
array to have one-fourth of the total area as open area in
the anticipation of dose reduction by a factor of four
compared to a conventional scan. For each projection, we
numerically collimated the data by multiplying the collimat-
ing array so that only one-fourth of the data remain to be used
for image reconstruction while the other portions being
negated.

We compared the images reconstructed from the statically
collimated data and from the collimated data by use of a
sinusoidal motion of the collimator in this work. In the
sinusoidal motion case, the amplitude of the motion was
determined so that the sampling occurs relatively uniformly
over the detector bins in the sinogram domain. In other
words, the slit openings complete a round-trip of each
partition at each cycle. The frequency of the motion was
set to be 20 trips per scanner rotation. In addition, we

Fig. 1 Schematic of the proposed scanning configuration is
illustrated. The arrow indicates a reciprocating motion of the
collimator.0091-3286/2012/$25.00 © 2012 SPIE
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also reconstructed the images from conventional sparse-view
data in which every fourth projections is used. Figure 2
shows the sinograms that correspond to 2(a) a full data
sampling case, 2(b) an existing sparse-view case, 2(c) a sta-
tically collimated case, and 2(d) a sinusoidally colli-
mated case.

2.2 Total-Variation Minimization Algorithm

We used a total-variation minimization algorithm for image
reconstruction. Total-variation minimization algorithm was
inspired by the compressive sensing theory, and has
shown its excellent performance in sparse-view CT applica-
tions.4 The total-variation minimization algorithm exploits
sparsity of the magnitude of image derivative, thereby
reducing the number of unknowns for a given system of
equations or measurements. We adopted the adaptive-
steepest-descent projection-onto-convex-sets (ASD POCS)
approach developed by Sidky et al.,4 and modified the
POCS step so that only the measured data through the
collimator slits are to be used in the computation.

The algorithm seeks a solution to the following
optimization problem:

f0 ¼ argminkfkTV such thatkAf − gk < ε; (1)

where f represents an image under iteration, f0 the minimum
image total-variation solution, A the system matrix, and g the
measured data. kkTV represents the total-variation of an
image function. The system matrix was constructed based
on a ray-driven model of line integrals, and εwas empirically
set by watching the image root-square-error as a function
of ε.

3 Results
Figure 3 shows the reconstructed images of a transverse slice
of a mouse head. Image reconstructed by the Feldkamp-
Davis-Kress (FDK) algorithm from the uncollimated 360
projections is shown in Fig. 3(a) as a reference image.
Image reconstructed by the total-variation minimization
algorithm from the uncollimated 90 projections that are
equally separated from each other in view angles is
shown in Fig. 3(b). Figure 3(c) and 3(d) shows the recon-
structed images by use of the total-variation minimization
algorithm from the statically collimated 360 projections
and from the dynamically collimated 360 projections,
respectively. A visual comparison of the reconstructed
images confirms that the proposed method can provide
quality images that are comparable to the images obtained
by the existing sparse-view technique. In contrast, a static
collimation with multi-slits turns out to be undesirable in
terms of reconstructed image quality. For further compari-
son, we show in Fig. 4 the difference in images between
Fig. 3(b) and 3(d) in a narrow display window, and also
show the line profiles across the lines shown in the images.

Fig. 2 The sinograms corresponding to (a) a full data sampling case,
(b) an existing sparse-view case, (c) a statically collimated case, and
(d) a sinusoidally collimated case.

Fig. 3 The reconstructed images corresponding to (a) a full data sam-
pling case, (b) an existing sparse-view case, (c) a statically collimated
case, and (d) a sinusoidally collimated case.
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Fig. 4 (a) Difference image between Fig. 3(b) and 3(d) in the display window of ½−0.02.0.1�mm−1. (b) Profiles across the lines shown in the images
of Fig. 3(b) and 3(d). The solid line represents the profile of Fig. 3(b) and the dotted line that of Fig. 3(d).
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Additionally, we calculated an image similarity index called
universal quality index (UQI) to quantitatively assess the
image quality.6 UQI measures the pixel-to-pixel similarity
between the two images under consideration, and its value
ranges from 0 to 1. The closer to 1, the more similar the
two images are. With respect to Fig. 3(a), the UQI of
Fig. 3(b) was 0.998 and that of Fig. 3(d) was 0.997.

4 Discussion and Conclusions
X-ray scatter due to the patient body is one of the dominant
physical factors that affect the image quality in CT, particu-
larly in cone-beam CT.7 In the MVUS approach, scatter
reduction occurs naturally due to the presence of a
multi-slit collimator between the source and the patient.
Moreover, one can estimate the scatter fluence easily from
the shadow of blocked regions by the collimator in the
projection data. In this regard, the MVUS approach has a
potential to produce high quality images very efficiently
via removing the scatter effects in the system matrix.

The collimated projection data may have lag effects due to
the motion of a collimator during data acquisition for each
frame in reality. The lag effects refer to the unwanted
attenuation of the intruded collimator into the images
through slit-openings. If the lag effects dominate, the
projection data will be accordingly contaminated and may
not provide useful data for image reconstruction. However,
one can verify that the motion contamination can be
suppressed below an acceptable level. For example, let us
consider a CT scanner with its data frame rate of
5000 fps8 and 2 rps of the gantry. The scanner actually
spends less than 0.2 msec for the data acquisition of a single
frame in this case. If the frequency of sinusoidal motion of a
collimator is 40 Hz or 20 trips per rotation, then the slit-edge
completes a one-way trip within 12.5 msec. Therefore,

approximately less than 6.4% (¼ 4 × 0.2∕12.5) of the
collimated data will suffer from the motion contamination,
where a factor of 4 represents the ratio of the slit repetition
interval to its opening size. One may simply discard the
contaminated portion of the data or can correct for the
contaminated portion by multiplying appropriate compensa-
tion factors if needed. In conclusion, we proposed a novel
scanning method for low-dose CT, and performed a simula-
tion study to demonstrate its feasibility.
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