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Abstract. Improving the coupling efficiency of tapered metallic gaps using spatial amplitude modulation is theo-
retically investigated. The influences of the critical parameters on the coupling efficiency, such as incident beam
width, incident wavelength, and numerical aperture of coupling lens, are analyzed, respectively, and a coupling
efficiency increase of about 16.43-fold is obtained by optimizing these parameters. The physical mechanism of
the coupling efficiency improvement is further discussed. The substantial improvement of the coupling efficiency
via spatial amplitude modulation shows the potential in designing tapered metal-insulator-metal waveguides for
field enhancement and nanofocusing. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
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1 Introduction

Effectively obtaining a small-size transmission light field
of high-power density is a crux of nanophotonics. Related
technologies have been widely applied in super-resolution
optical imaging,! optical sensing,” optical trapping and
manipulation of particles,’ optical interconnection, high-
density optical storage,’ nanolithography,® solar energy uti-
lization,’ local nonlinearity,8 and so on. An evanescent decay
method based on a tapered metallic waveguide is most com-
monly adopted for this end.! Compared with other methods,
a small-size transmission light field obtained by this means
exhibits the advantages of low background noise, immunity
to external disturbance, and controllable size due to the
shielding effect of the metal coating. But the transmission
field at the aperture is derived from the evanescent radiation
of light which is originated from the cutoff of the lowest
propagating mode HE;;, and the light field intensity at
the aperture will decrease sharply with the reduction of the
aperture, so we can only obtain a subwavelength transmis-
sion field with a relatively low power.!

Recently, particular attention was given to tapered metal-
insulator-metal (MIM) plasmonic waveguides such as tapered
transmission lines,” tapered gaps,' tapered V-grooves,'' and
nanocampanile (or three-dimensional linear taper),'*'? since
they allow optical mode volumes to be confined to deep sub-
wavelength dimensions via exciting and compressing gap
surface plasmons (GSPs). However, GSPs in tapered MIM
plasmonic waveguides are generally excited by the lowest
propagating (TM,) mode using the fire-end coupling method
through bulk light or guided modes coupling.'*!> To reduce
the reflection and scattering losses and to transfer most of
incident optical energy to the TM,, mode, the taper angles
and the input entrance sizes of tapered MIM structures are
generally smaller than the critical taper angle (usually less
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than 10 deg to meet the adiabatic conditions) and the wave-
length of the input beam, respectively.'*! This increases the
difficulty of preparation of the MIM structure waveguide. But
the input light field is not easy to be accurately projected into
the input entrance of such MIM structure under a tightly
focused condition. Therefore, the premise conditions of
small taper angle and small-scale input entrance become
an obstacle for the design and application of tapered plas-
monic waveguides for field enhancement (FE) and nanofo-
cusing. Butt-coupling from TM dielectric waveguides to
MIM plasmonic waveguides is widely developed to improve
the coupling efficiencies and a coupling efficiency as high as
70% was obtained.'®'° On the other hand, spatial light modu-
lation has been widely used in optical research such as optical
tweezers,”’ mode analysis,?' ultrafast pulse shaping,”” active
control of plasmonic field,? perfect focusing of disorder scat-
tering,24 optical vortex,” nonlinear beam Combing,26 and so
on. Its ability to dynamically modulate the phase, amplitude,
and polarization of an incident optical field shows the poten-
tial for controlling the optical field propagation inside tapered
MIM plasmonic waveguides.

In this paper, we propose a spatial amplitude modulation
method to improve the light field coupling efficiency of a
tapered metallic gap (TMG) with a large taper angle and
large-scale input entrance. The influences of critical param-
eters, such as incident beam width (BW), incident wave-
length, numerical aperture (NA) of the coupling lens, and the
physical mechanism, are discussed, respectively. The optical
FE of the TMG is improved greatly and an FE of about 3318
can be obtained through optimizing the relevant parameters
(compared with the situation without amplitude modulation,
the light coupling efficiency is increased by 16.43-fold).

2 Model and Method

The schematic diagram of a TMG is illustrated in Fig. 1. The
structure of the TMG is assumed to be uniform and infinite in
the y direction. Aluminum, which has a smaller skin depth
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Fig. 1 The schematic diagram of the amplitude modulation method.

than noble metals, is chosen as the metallic material for pre-
venting optical leakage. The metal thickness d, entrance
width D;, aperture width D, and taper angle 0 of the TMG
are 100 nm, 3 um, 5 nm, and 60 deg, respectively. The inci-
dent light is a linear TM-polarized Gaussian beam at a wave-
length of A = 500 nm with a BW of 9 mm, which propagates
through an amplitude-only spatial light modulator (SLM) of
a 9-mm aperture diaphragm (AD) before coupling into the
TMG by a focusing lens (FL). The NA of the FL is 0.75
and the focal spot is assumed to be exactly located at the
input entrance of the TMG. The amplitude modulation is car-
ried out via controlling the central euphotic zone size of the
SLM (as shown in Fig. 1).

The optical evolution in the TMG is simulated with our
self-developed finite-difference time-domain (FDTD)
numerical model based on MATLAB language.'” In the
FDTD calculations, the grid cell is Ax = Az = 1 nm and an
anisotropic perfectly matched layer absorbing boundary con-
dition is adopted for the truncation of FDTD lattices. The
dielectric constant of aluminum is set as ¢, = —34.2+
9.0i at A=500 nm according to the Lorentz—Drude
model presented by Rakic et al.>” Unless otherwise specified,
the following calculations are based on the above parameter
values.

3 Results and Discussion

To obtain insight into the physical nature of the improvement
of the coupling efficiency, the distributions of the electric
fields in the TMG with and without amplitude modulation
are shown in Fig. 2. The euphotic zone size is Wgy =
1.8 mm after optimization calculation, and the other relevant
parameters are chosen the same as those stated in Fig. 1
(NA =0.75, =500 nm, BW = 9.0 mm). The focusing
field at the input entrance of the TMG is basically the dif-
fraction light field of the SLM. Without amplitude modula-
tion, the electric field components Ex in the TMG are shown
in Fig. 2(a). The results demonstrate that the tightly focused
optical field is strongly dispersed in free space, so higher
order propagating modes are mainly excited in the TMG
and most optical energy is reflected back or absorbed by
the metallic walls. As a result, only a small amount of energy
is transferred to the TM, mode and an FE of only about 202
is obtained. The results indicate that the surface plasmons
cannot be efficiently excited by the TM,, coupling without
amplitude modulation. With amplitude modulation, the sit-
uation is completely different. In this case, the focusing field
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Fig. 2 Distributions of the electric field component Ex in the TMG
(NA =0.75, 2 =500 nm, BW = 9.0 mm): (a) without and (b) with
the amplitude modulation.

is evolved into a submicrometer collimated beam in free
space, so the light energy reflected and absorbed by the
metallic walls is small and most of the light energy in
TMG is transferred to the TM,, mode [as shown in Fig. 2(b)].
Consequently, the coupling efficiency is improved by 4.53-
fold and a high FE of about 916 is obtained.

Figure 3 shows the FE as a function of the euphotic zone
size Wgy for various BWs. On one hand, by varying the
euphotic zone size from 0.2 to 9.0 mm, the distribution and
transmission characteristics of the diffraction light field are
changed regularly. The FE regularly fluctuates accordingly
and the maximum FE is obtained when the euphotic zone
size is about 1.8 mm. The results also indicate that the
euphotic zone sizes at peak FEs are independent of the BW,
because the coherence and destructive positions of the dif-
fraction light field of the SLM are mainly determined by
the euphotic zone size. On the other hand, with the increase
of the light BW, the peak values of the FE curve increase
accordingly. When the light BW increases to 13.0 mm,
the improvement of the FE tends to be saturated. A maxi-
mum FE of about 973 can be obtained as the light BW
increases to 13.0 mm. This demonstrates that when the inci-
dent BW approaches or even exceeds the AD size (9 mm),
the incident beam is approximately equivalent to a parallel
beam for the AD and a parallel beam is most beneficial
to be collimated into a submicrometer beam with amplitude
modulation.

Figure 4 shows the FE as a function of the euphotic zone
size Wygy for various NAs. By increasing the NA of the FL
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Fig. 3 FE as a function of the euphotic zone size W for various
BWs (the other parameters are the same as those stated in Fig. 1).
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Fig. 4 FE as a function of the euphotic zone size W, for various NAs
(the other parameters are the same as those stated in Fig. 1).

from 0.55 to 0.95 (we choose the NA values which can be
realized at the general conditions with optical lens system),
the whole FE curve moves up and a larger NA has a greater
constructive impact on the improvement of the FE. As a
result, a maximum FE of about 3318 is obtained as the
NA of the FL increases to 0.95 (compared with the situation
without amplitude modulation, the light coupling efficiency
is increased by 16.43-fold). The results indicate that an NA
value >0.95 could yield an even higher FE. At the same
time, with the increase of the NA from 0.55 to 0.95, the
euphotic zone sizes corresponding to each peak FEs of
the FE curve reduce accordingly. So for a larger NA, the
maximum FE corresponds to a smaller euphotic zone size.
It is clear that a larger NA is constructive for obtaining a
smaller diffraction light field of higher intensity, and on
the other side, it is well known that a narrower slit results
in a wider diffraction field. The left shift of the corresponding
peaks with the increase of the NA is the result of the balance
of these two effects.

Figure 5 shows the FE as a function of the euphotic zone
size Wgy for various incident wavelengths. By varying the
incident wavelength A from 400 to 600 nm, the FE as a func-
tion of the euphotic zone size decreases and a shorter wave-
length is conducive to obtaining a larger FE. Obviously, short
wavelength light field excitation results in a larger GSP
propagation constant, which is advantageous for the com-
pression and localization of the GSPs, so the FE curve
drops accordingly with the increase of the incident wave-
length. On the other side, the change of the FE curve
becomes inconsiderable and the influence of incident wave-
length tends to be saturated when the wavelength increases to
600 nm. We think that this phenomenon should be closely
associated with the relationship between the focusing spot
size and the incident wavelength. It is clear that the focusing
spot size is in proportion to the incident wavelength and a
short wavelength is more conducive for focusing via cou-
pling lens. With the increase of the incident wavelength,
the focusing spot size can be bigger than the input entrance
of the TMG and under the circumstances the input entrance
is equivalent to being uniformly illuminated by a parallel
light, so the influence of the incident wavelength tends to
be saturated.

Finally, it must be pointed out that finding an optimal
scheme of spatial amplitude modulations to improve the
light field coupling efficiency of the TMG should be virtually
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Fig. 5 FE as a function of the euphotic zone size for various incident
wavelengths (the other parameters are the same as those stated in
Fig. 1).

difficult, since there are complicated inherent relationships
between the euphotic zone size, the incident BW, the NA
of the FL, and the incident wavelength. Our scheme is rel-
atively simple and easy to operate.

4 Conclusions

In summary, we demonstrate that the light field coupling effi-
ciency of a TMG with a large taper angle and input entrance
size can be markedly improved via spatial amplitude modu-
lation of the incident beam. The improvement of the light
field coupling efficiency is deeply influenced by the incident
BW, the NA, of the FL and the incident wavelength. The
physical mechanism of the coupling efficiency improvement
is that with spatial amplitude modulation, the focusing field
of the FL is evolved into a submicrometer collimated beam in
free space, so most of the light energy transferring to the
TM, mode results in higher surface plasmon excitation effi-
ciency. The substantial improvement of the light field cou-
pling efficiency of TMGs with a large taper angle and
entrance port size shows the potential in designing tapered
MIM waveguides for FE and nanofocusing.
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