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ABSTRACT. Early studies of laser beam propagating in turbulence indicated that the log-ampli-
tude variance of the received intensity would grow without bound as the refractive
index structure parameter and range increase. This was an ominous observation.
It suggests that the laser communications and remote sensing systems would not be
useful during the hot daytime conditions. Fortunately, it does not increase without
limit. We describe the various scintillation indices that predict this type of perfor-
mance. Specifically, we will develop the scintillation indices for satellite communi-
cations (SATCOM) downlink, SATCOM uplink, and atmospheric slant path and
horizontal communications link geometries, which also include tracking, untracked,
and aperture averaging receiver effects. The focusing and saturation regimes in the
turbulent channel will be defined. An example analysis will be provided using this
information. The importance of log-amplitude variance is that the scintillation indices
will have peak values for some refractive index structure parameters and range
values.
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1 Introduction
Free-space optical communication (FSOC) networks operating through, and within, the
atmosphere require optical links to close under strong intensity fluctuations conditions in
the turbulent channel to be useful.1–8 These conditions usually occur during daytime oper-
ations. Early atmospheric communications link analyses only addressed signal degradation
mitigation believing that one just needed more optical power to communicate at range. That
is true, but that is not the total story. What was missing is that the turbulent-intensity noise
variance really is the factor that affects communications performance, not just the turbulent
Strehl ratios. Specifically, it helps define the received power via the turbulence-based power
penalty9 as well as quantifying the turbulent channel’s intensity probability density functions
(PDFs)10–12 and the signal-to-noise ratio (SNR).10–12 (Andrews and Phillips10 recognized that
the turbulent-based intensity variance adds to the system noise variance of the SNR) These
entities are all key factors in calculating the system’s bit error rate (BER) and probability
of fading, major system performance parameters.10–12 In short, it is the limiting factor on
whether the system meets specifications or not.
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Scintillation refers to the temporal or spatial intensity fluctuations of an optical wave caused
by small random refractive-index fluctuations. The parameter associated with these intensity
fluctuations is the “scintillation index,” which is defined as

EQ-TARGET;temp:intralink-;e001;114;700σ2I ðr; LÞ ¼
hI2ðr; LÞi − hIðr; LÞi2

hIðr; LÞi2 ¼ hI2ðr; LÞi
hIðr; LÞi2 − 1; (1)

where r ¼ ðx; yÞ is the transverse distance at the link range L, Iðr; LÞ is received intensity at
range, and the brackets h · · · i denote an ensemble average. Using weak intensity fluctuation
theory, many early investigations into the scintillation characteristics of an optical wave were
concerned with the log-amplitude variance, which is written as

EQ-TARGET;temp:intralink-;e002;114;615σ2χ ¼ 0.307C2
nðh0Þk7∕6L11∕6; (2)

where C2
nðh0Þ is the “refractive index structure parameter,” h0 is the link altitude above ground

level, k ¼ 2π∕λ is the optical wave number, and λ is the wavelength. Alternatively, some studies
focused on the “log-intensity variance,” σ2ln I ¼ 4σ2χ . The relationships between the scintillation
index and these other parameters are

EQ-TARGET;temp:intralink-;e003;114;539σ2I ¼ expð4σ2χÞ − 1 ¼ expðσ2ln IÞ − 1: (3)

Under weak intensity fluctuations, we have the related expression

EQ-TARGET;temp:intralink-;e004;114;502σ2I ≈ σ2ln I: (4)

Focusing on the log-amplitude variance, Eq. (2) appears to grow without bound as C2
nðh0Þ

and L increase. This was an ominous observation. It suggested that the FSOC system would not
be useful during the hot daytime conditions. Fortunately, σ2χ does not increase without limit. With
increasing C2

nðh0Þ and L, σχ (observed) reaches its peak value when σχ (Rytov theory) is roughly
σχ ≈ 0.3, and then decreases slightly for increasing σχ .

6–20 This effect is illustrated in Fig. 1,
derived from a reported set of horizontal link measurements by Gracheva.14 Near the Earth’s
surface, the horizontal path saturation of σ2χ for visible light occurs within a few hundred meters
of the transmitter, as shown in Fig. 1. This asymptotic falloff regime for large values of σχ is
called the saturation regime. Unfortunately, it took over 20 years to develop theories that cover all
the reported experimental results.

Many of the early theoretical treatments of scintillation concentrated on simple field models
such as an unbounded plane wave and spherical wave, or “point source.” However, in many
applications, the plane wave and spherical wave approximations are not sufficient to characterize
the scintillation properties of the wave, particularly when focusing and finite beam characteristics
are important. In such cases, the lowest-order Gaussian-beam wave model is more characteristic
of a laser beam, limiting forms that lead to the plane wave and spherical wave models.

Fig. 1 Observed log-amplitude variance versus predicted log-amplitude variance.
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The governing integrals for the Gaussian-beam wave scintillation index under weak inten-
sity fluctuations were developed in the mid-1960s and some analytical solutions were published
based on the Kolmogorov spectrum.15–17 However, tractable analytical formulations for the
scintillation index of a Gaussian-beam wave in the receiver (Rx) pupil plane under general
atmospheric conditions, including inner and outer scale effects, were not developed until much
later.18,19 The decrease in scintillation associated with increasing telescope aperture size had been
recognized in early astronomical measurements made in the 1950s,20 although analytic expres-
sions for the aperture-averaged scintillation index with inner and outer scale in the detector plane
of an Rx with aperture diameter DRx were not developed until more recently.21

This paper is a tutorial describing the various scintillation index theories that predict the type
of performance depicted in Fig. 1. Specifically, this paper will develop the scintillation indices for
satellite communications (SATCOM) downlink, SATCOM uplink, and atmospheric slant path
and horizontal communications link geometries, which also include tracking, untracked, and
aperture averaging receiver effects. The focusing and saturation regimes in the turbulent channel
will be defined. An example analysis will be provided using this information. The key aspect of
this tutorial is that no matter whether the detection system is incoherent or coherent and/or which
signaling format is used, the scintillation indices will have peak values for some particular
C2
nðh0Þ and range values. If the system specifications are not met, this analysis will show an

example of other turbulence mitigation techniques that can be employed to get the desired system
performance.

2 Kolmogorov Theory of Turbulence
Classical turbulence deals with the random velocity fluctuations of viscous fluid such as the
atmosphere. Although the atmosphere has two distinct states of motion, laminar and turbulent
flow, the latter is where dynamic mixing occurs, resulting in random sub-flows called turbulent
eddies. The transition to this mixing state from laminar flow depends on the critical Reynolds
number of the fluid derived from the flow characteristics. This parameter is non-dimensional and
is denoted by Re ¼ Vl∕v, where V in meters per second (m/s) and l in meters (m) are the velocity
(speed) and “dimension” of the flow, respectively, and v in meter-squared per second ðm2∕sÞ is
the kinematic viscosity. Near the ground, the critical Reynolds number is around 105, which
indicates that the motion is highly turbulent. This is a state that degrades optical laser beam
propagation. The mathematical characterization of this state is derived from the non-linear
Navier–Stokes equations. Because of the difficulty in solving these equations, Kolmogorov
developed a statistical theory of turbulence that is based on one-dimensional analyses employing
insightful simplifications and approximations. In short, the Kolmogorov turbulence theory is
a set of hypotheses based heavily on physical insights, not solutions derived from the first
principles.

His theory proposes that the small-scale structure of turbulence is statistically homogeneous,
isotropic, and independent of the large-scale structure. To understand his structure of atmospheric
turbulence, it is convenient to adopt a visualization tool named “the energy cascade theory” due
to Richardson.22 This tool is shown in Fig. 2. The source of energy at large scales is either wind
shear or convection. When the wind speed is sufficiently high that the critical Reynolds number is
exceeded, large unstable air masses (conceptualized as “eddies”) are created with characteristic
dimensions slightly smaller than, and independent of, the parent flow. Under the influence of
inertial forces, the larger eddies break up into smaller eddies to form a continuum of eddy size for
the transfer of energy from the macroscale L0 (called the outer scale of turbulence) to the micro-
scale l0 (called the inner scale of turbulence). The family of eddies bound above by the outer
scale L0 and below by the inner scale l0 forms the inertial subrange. Scale sizes smaller than the
inner scale l0 belong to the viscous dissipation range. In this last regime, the turbulent eddies
disappear, and the remaining energy in the fluid motion is dissipated as heat.

The outer scale L0 denotes the scale size below which turbule properties are independent of
the parent flow. In the surface layer up to ∼100 m, the outer scale L0 is usually assumed to grow
linearly with the order of the height of the above ground of the observation point (Ref. 10, p. 60).
Eddies of scale size smaller than L0 are assumed statistically homogeneous and isotropic,
whereas those equal to or greater than L0 are generally non-isotropic, and their structure is not
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well defined. Above 100 m, the horizontal dimension of L0 is generally much greater than its
vertical dimension because of stratification. As the turbulent eddies become smaller and smaller,
the relative amount of energy dissipated by viscous forces increases until the energy dissipated
matches that supplied by the kinetic energy of the parent flow. When this happens, the Reynolds
number is reduced to the order of unity, and the associated eddy size then defines the inner scale
of turbulence l0. The inner scale is typically on the order of 1 to 10 mm near the ground but is on
the order of centimeters or more in the troposphere and stratosphere. On the other hand, for
beams propagating near the ground, the outer scale L0 is approximately half of the transmitter
height above the ground. The outer scale can be tens of meters in the upper atmosphere.

3 Power Spectrum Models
To calculate the scintillation index, the three-dimensional spatial power spectrum of the atmos-
pheric refractive index ΦnðκÞ needs to be known.10 The power spectrum is the Fourier transform
of the refractive index covariance function.10 For completeness, the chronological list of power
spectrum models used in the scintillation index and other turbulent parameter investigations will
be presented in this section.

3.1 Kolmogorov Spectrum
To model atmospheric turbulence, we use power spectrum models of the refractive index. The
most used model for optical/infrared wave propagation is the three-dimensional “Kolmogorov
power-law spectrum”

EQ-TARGET;temp:intralink-;e005;114;285ΦnðκÞ ¼ 0.033C2
nκ

−11∕3; 1∕L0 ≪ κ ≪ 1∕l0; (5)

where κ ¼ jκj is the atmospheric wave number or spatial frequency. Although this
spectrum model is theoretically valid only over the spatial wavenumber inertial range
1∕L0 ≪ κ ≪ 1∕l0, it is often extended over all wave numbers by assuming that the inner scale
l0 is negligibly small and the outer scale L0 is infinite. However, this can often lead to integrals
that do not converge, so caution is called for in extending this wavenumber domain.

Although many researchers rely on the Kolmogorov spectrum, which ignores inner and
outer scale effects, we find that inner and outer scales can both play an important role in the
analysis of the scintillation index.

3.2 Modified von Kármán Spectrum
The “modified von Kármán spectrum” is defined by

EQ-TARGET;temp:intralink-;e006;114;128ΦnðκÞ ¼ 0.033C2
n
expð−κ2∕κ2mÞ
ðκ2 þ κ20Þ11∕6

; 0 ≤ κ < ∞ (6)

where κm ¼ 5.92∕l0 and κ0 ¼ 2π∕L0. However, it is widely known that the outer scale has no
effect on scintillation in the weak intensity fluctuation regime. It does begin to play a prominent

Fig. 2 Kolmogorov cascade theory of turbulence, where L0 denotes the outer scale of turbulence
and l0 denotes the inner scale of turbulence.
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role in moderate-to-strong turbulence. This spectrum model with κ0 ¼ 0 leads to the “Tatarskii
spectrum”

EQ-TARGET;temp:intralink-;e007;117;712ΦnðκÞ ¼ 0.033C2
nκ

−11∕3 exp

�
−
κ2

κ2m

�
; κ ≫ 1∕L0 (7)

where κm ¼ 5.92∕l0.

3.3 Modified Atmospheric Spectrum
Another spectrum model that includes both inner and outer scale parameters but also exhibits
a high wave number rise (or “bump”) just prior to the dissipation range is also used in some
analyses. Such a model should be used when greater accuracy is needed for comparing theory
with actual outdoor experimental data involving small-scale effects such as scintillation. The
“modified atmospheric spectrum” is described by

EQ-TARGET;temp:intralink-;e008;117;579ΦnðκÞ ¼ 0.033C2
n

�
1þ 1.802

�
κ

κl

�
− 0.254

�
κ

κl

�
7∕6

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Bump term

expð−κ2∕κ2l Þ
ðκ2 þ κ20Þ11∕6

; 0 ≤ κ < ∞ (8)

where κl ¼ 3.3∕l0 and κ0 ¼ 2π∕L0.
23 The bump in the spectrum was originally discovered in the

temperature spectrum data of Champagne et al.24 and in that of Williams and Paulson.25 From
these data, Hill later performed a hydrodynamic analysis and developed a numerical version of
the bump spectrum for both temperature and refractive index.26 Hill’s numerical spectrum,
however, did not include an outer scale parameter. This numerical spectrum model eventually
led to the development of several analytical models.23,27,28

Another form of the modified atmospheric spectrum is sometimes used, which introduces
the outer scale in an exponential function. This alternate form, which is used in the extended
Rytov theory under moderate-to-strong turbulence conditions, is given by

EQ-TARGET;temp:intralink-;e009;117;418ΦnðκÞ ¼ 0.033C2
nκ

−11∕3
�
1þ 1.802

�
κ

κl

�
− 0.254

�
κ

κl

�
7∕6

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Bump term

exp

�
−
κ2

κ2l

��
1 − exp

�
−
κ2

κ20

��
; (9)

where 0 ≤ κ < ∞, κl ¼ 3.3∕l0 and κ0 ¼ 8π∕L0.
In Fig. 3, we plot scaled versions of the Kolmogorov, Tatarskii, and modified atmospheric

spectrum models to illustrate their difference at high wave numbers. Scaling this way leads to a
horizontal line for the Kolmogorov spectrum, whereas the inner scale behavior of the Tatarskii
spectrum is shown by the dashed curve. For the modified atmospheric spectrum, the outer scale
was chosen as infinite.

Fig. 3 Spectrum models with L0 ¼ ∞, scaled by the Kolmogorov spectrum.10
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In Secs. 5–7, we will separately discuss the models for scintillation index associated with
plane waves, spherical waves and Gaussian-beam waves, respectively, after defining weak-to-
strong intensity fluctuations in Sec. 4.

4 Weak-to-Strong Intensity Fluctuations
Although early research involved the log-amplitude parameter, the intensity was the parameter of
interest as the research efforts turned toward applications. Thus, instead of relying on the log-
amplitude parameter, the intensity parameter of interest became the “Rytov variance” σ2R. The
parameter σ2R is directly related to the log-amplitude variance by the expression σ2R ¼ 4σ2χ .

Weak intensity fluctuations are characterized by requiring σ2R < 1. Under this restriction, the
“Rytov approximation” has been the most fruitful method of analysis, although the method of
geometrical optics and the Born approximation were introduced first without much success.

When the Rytov variance satisfies σ2R > 1, the intensity fluctuations are considered moderate
to strong. In this case, we can perform the analysis with the “extended Rytov theory.”28,29 This
theory is based on the following observations:

• The scintillation index increases with increasing values of the Rytov variance σ2R until it
reaches a maximum value greater than unity called the “focusing regime.”

• With increasing values of σ2R, the focusing regime is weakened by multiple scattering and
loss of spatial coherence, and then, the scintillation index begins to decrease, saturating at
a level approaching unity from above. This is the “saturation regime.”

This behavior of the scintillation index as described above is illustrated in Fig. 4 for the
general case of a collimated beam wave. Similar behavior is also associated with plane and
spherical waves.

So, the bottom line is as follows: The scintillation and power scintillation index equations in
the Secs. 5–7 were developed using the extended Rytov theory and are valid for turbulence con-
ditions covering weak to strong intensity fluctuations. Mathematically, the focusing and satu-
ration effects are created by the inner and outer scales parts of the equations tempering the
rising Rytov variance (which comes from increasing C2

n, range or both) in the scintillation indi-
ces. The inner scale l0 dominates the creation of the focusing regime, with a negligible contri-
bution by the outer scale L0. Effectively, L0 ¼ ∞ in these equations. However, as the Rytov
variances move into the strong intensity fluctuation regime, the outer scale L0 takes on the role
of the dominant parameter. Specifically, the outer scale L0 parts of the equation lower the inner
scale l0 contributions, resulting in lower saturation regime profiles. The above will be evident in
the figures to come.

Fig. 4 Typical behavior of scintillation as a function of the square root of the Rytov variance.
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5 SATCOM Downlink (Plane Wave) Link Geometries
Many of the early laser propagation in turbulence studies were performed by Russian researchers
using infinite plane wave models. As it turns out, the SATCOM downlink essentially created
plane wave illumination at the ground station terminal.10–12 Plane wave propagation in turbulence
is the subject of this section.

5.1 Plane Wave: Weak Intensity Fluctuations
Based on the Rytov approximation,10,11 the scintillation index for an infinite plane wave under
weak intensity fluctuations can be written as

EQ-TARGET;temp:intralink-;e010;117;623σ2I;plðLÞ ¼ 8π2k2L
Z

1

0

Z
∞

0

κΦnðκÞ
�
1 − cos

�
Lκ2ξ
k

��
dκ dξ (10)

where ξ ¼ 1 − z∕L is a normalized distance variable. It is assumed that the optical wave
propagates on a slant path along the positive z-axis over the interval 0 ¼< z ≤ L. As noted
in a previous section, the solution of this expression will depend on the power spectrum of
index-of-refractive fluctuations.

Under the Kolmogorov spectrum, for example, the plane wave scintillation index becomes

EQ-TARGET;temp:intralink-;e011;117;526σ2I;plðLÞ ¼ σ2R ¼
�
1.23C2

nk7∕6L11∕6; ðhorizontal pathÞ
2.25k7∕6

R
L
z0
C2
nðzÞðz − z0Þ5∕6dz; ðdownlink pathÞ ; (11)

where both expressions represent the Rytov variance. If h denotes altitude and H is the satellite
altitude, then it follows that z ¼ h∕ cos ζ and L ¼ H∕ cos ζ, where ζ is the zenith angle.

Although many researchers rely on the Kolmogorov spectrum, which ignores inner and
outer scale effects, we find that the inner scale plays an important role in the analysis of the
scintillation index. Therefore, using the Tatarskii spectrum, the scintillation index of a plane wave
takes the form

EQ-TARGET;temp:intralink-;e012;117;416σ2I;plðLÞ ¼ 3.86σ2R

��
1þ 1

Q2
m

�
11∕12

sin

�
11

6
tan−1 Qm

�
−
11

6
Q−5∕6

m

�
; (12)

where Qm ¼ Lκ2m∕k.18 Because the Rytov variance requires the restriction σ2R < 1 under weak
intensity fluctuations, this restriction often limits the path length to a few hundred meters along
a horizontal path, depending on C2

n and wavelength.
Based on the modified atmospheric spectrum model with κ0 ¼ 0, the scintillation index

assumes the form18

EQ-TARGET;temp:intralink-;e013;117;317

σ2PLðLÞ ¼ 3.86σ2R

��
1þ 1

Q2
l

�
11∕12

�
sin

�
11

6
tan−1 Ql

�

þ 1.507

ð1þQ2
l Þ1∕4

sin

�
4

3
tan−1 Ql

�
−

0.273

ð1þQ2
l Þ7∕24

sin

�
5

4
tan−1Ql

��
−
3.50

Q5∕6
l

�
: (13)

Here, we define Ql ¼ Lκ2l ∕k.

5.2 Plane Wave: Moderate-to-Strong Intensity Fluctuations
The atmosphere contains random inhomogeneities (turbulent “eddies”) of many different scale
sizes, ranging from exceptionally large scales such as the outer scale to small scales such as the
inner scale. An optical wave propagating through such a medium will experience the effects of
these random inhomogeneities in different ways, depending on the scale size. For example, large
scales cause refractive effects that mostly distort the wavefront of the propagating wave. This
effect can often be described by the method of geometrical optics. Small scales are mostly
diffractive in nature and therefore distort the amplitude of the wave through beam spreading
and intensity fluctuations. This behavior is now widely known as the “two-scale behavior”
of the optical wave in turbulence.

Under weak intensity fluctuations, the Fresnel zone size
ffiffiffiffiffiffiffiffi
L∕k

p
forms the division between

large scales and small scales. After a wave propagates a sufficient distance L into moderate-to-
strong intensity fluctuations, only those turbulent eddies on the order of the transverse spatial
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coherence radius ρ0 or less are effective in producing further spreading and intensity fluctuations
on the wave. Under strong intensity fluctuations, the spatial coherence radius also identifies a
related large-scale eddy size near the transmitter (Tx) called the “scattering disk,” L∕kρ0. Here,
ρ0 is the spatial coherence radius of the optical wave. Basically, the scattering disk is defined by
the refractive cell size at which the focusing angle is equal to the average scattering angle. Only
eddy sizes equal to or larger than the scattering disk near the Tx can contribute to the field within
the coherence area near the receiver (Rx). Thus, fewer and fewer scale sizes between the coher-
ence radius and scattering disk contribute to the scintillation index. Also, the outer scale L0 forms
an upper bound on the largest eddy size forming a scattering disk and therefore becomes an
important parameter in the moderate-to-strong fluctuation regime.

The theory developed here for moderate-to-strong intensity fluctuations is based on famili-
arity with the standard Rytov theory for weak fluctuations and with the deep turbulence theory
for the saturation regime, so both can be used to help identify the transition scale sizes. Because
the theory builds mostly off the standard Rytov theory, we call it the “extended Rytov
theory.”10,29,30 In the absence of both inner and outer scale effects, the intensity is mainly affected
by three cell sizes (eddies) described by
EQ-TARGET;temp:intralink-;e014;114;544

l1 ∼ ρ0 ðspatial coherence radiusÞ
l2 ∼

ffiffiffiffiffiffiffiffi
L∕k

p
ðFresnel zone sizeÞ

l3 ∼ L∕kρ0 ðscattering diskÞ (14)

As the optical wave propagates, there is a gradual transition from the Fresnel scale as the
most critical cell size for scintillation to the spatial coherence radius and the scattering disk. That
is, as the Fresnel zone scale approaches the size of the coherence radius at the onset of strong
fluctuations (“focusing regime”), all three cell sizes are roughly equal ðl1 ∼ l2 ∼ l3Þ. In approach-
ing the focusing regime, the loss of spatial coherence affects eddies that are still strong enough to
focus the beam. That is, large eddies near the Tx have the greatest focusing effect on the small
eddies near the Rx. However, as the mid-size eddies become ineffective due to the loss of spatial
coherence, the focusing effect is weakened, and the spatial coherence radius is smaller than the
Fresnel zone, whereas the scattering disk is larger. We illustrate the relative cell size in Fig. 5 for
a propagating plane wave.

The extended Rytov theory for the scintillation index makes use of known behavior in the
weak intensity fluctuation regime and that in the far saturation regime. The saturation effect of
scintillation under strong intensity fluctuations was first observed experimentally in 1965 by

Fig. 5 Relative turbulent scale sizes versus propagation distance for an infinite plane wave. The
shaded area denotes unrealizable scale sizes under strong fluctuations.
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Gracheva and Gurvich.31 This work attracted much attention and stimulated several theoretical
and experimental studies devoted to scintillation under strong intensity fluctuations.

Analytical models developed for the saturation regime are based on the “asymptotic theory”
first introduced by Gochelashvili and Shishov32 in 1974, followed by Fante33 and Frehlich.34

Although it was first believed that the asymptotic theory would adequately predict the scin-
tillation index throughout the moderate-to-strong fluctuation regime, this turned out to not be
true. Including the inner scale in the models33,34 did not help much. A failure of the asymptotic
theory was eventually pointed out most clearly by Flatté and Gerber35 who compared the asymp-
totic theory with simulation results for a spherical wave and found a poor match except far out in
the saturation regime.

Based on the asymptotic theory, the scintillation index in the saturation regime for an infinite
plane wave and Kolmogorov spectrum can be expressed as
EQ-TARGET;temp:intralink-;e015;117;592

σ2I;plðLÞ ¼ 3.86σ2R

��
1þ 1

Q2
m

�
11∕12

sin

�
11

6
tan−1 Qm

�
−
11

6
Q−5∕6

m

�
;

× exp

�
−
Z

1

0

DS

�
Lκ
k
wðτ; ξÞ

�
dτ

�
dκ dξ; σ2R ≫ 1 (15)

where DSðρÞ is the phase structure function and

EQ-TARGET;temp:intralink-;e016;117;514wðτ; ξÞ ¼
�
τ; τ < ξ
ξ; τ > ξ

: (16)

Upon evaluation of the integrals in Eq. (15), this leads to

EQ-TARGET;temp:intralink-;e017;117;464σ2I;plðLÞ ≈ 1þ 0.86

σ4∕5R

; σ2R ≫ 1: (17)

When the inner scale is included, the asymptotic theory for a plane wave based on the modi-
fied atmospheric spectrum takes the form15

EQ-TARGET;temp:intralink-;e018;117;401σ2I;plðLÞ ≈ 1þ 2.39

ðσ2RQ7∕6
l Þ1∕6

; σ2RQ
7∕6
l ≫ 100; (18)

where Ql ¼ 10.89L∕kl20. Similar expressions for the saturation regime have been reported for
the spherical wave and Gaussian-beam wave.

To construct an atmospheric spectrum model for scintillation that characterizes the above
behavior of the various cell sizes, a technique like that used in adaptive optics methods is intro-
duced whereby the conventional Kolmogorov power-law spectrum is modified with a spatial
filter. By also including the effects from inner scale and outer scale, this leads to the so-called
“effective atmospheric spectrum,”

EQ-TARGET;temp:intralink-;e019;117;277Φn;eðκÞ ¼ ΦnðκÞGðκ; l0; L0; zÞ; (19)

whereΦnðκÞ is the conventional Kolmogorov spectrum andGðκ; l0; L0; zÞ is an amplitude spatial
filter. For horizontal paths in the positive z-direction for which turbulence parameters are essen-
tially constant, such a spatial filter is represented by the sum of two filter functions, viz.,
EQ-TARGET;temp:intralink-;e020;117;218

Gðκ; l0; L0; zÞ ¼ GXðκ; l0; L0ÞþGYðκ; l0; zÞ

¼ fðκl0ÞgðκL0Þ exp
�
−
κ2

κ2X

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

GXðκ;l0;L0Þ

þ κ11∕3

ðκ2 þ κ2YÞ11∕6
exp

�
ΛLκ2ð1 − z∕LÞ2

k

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

GY ðκ;l0;zÞ

; (20)

where fðκl0Þ describes inner scale modifications and gðκL0Þ describes outer scale effects. Here,
κX is a large-scale spatial frequency cutoff, and κY is a small-scale spatial frequency cutoff. Thus,
the filter function Gðκ; l0; L0; zÞ only permits low-pass spatial frequencies κ < κX and high-pass
spatial frequencies κ > κY at a given propagation distance z.

The inner scale filter function modification is defined by fðκl0Þ ¼ expð−κ2∕κ2l Þ, and the
outer scale modification is defined by gðκL0Þ ¼ 1 − expð−κ2∕κ20Þ, where κ0 ¼ 8π∕L0. The
resulting scintillation index based on the modified atmospheric spectrum takes the form
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EQ-TARGET;temp:intralink-;e021;114;736σ2I;pl ¼ exp

�
σ2ln Xðl0Þ − σ2ln Xðl0; L0Þþ

0.51σ2PL
ð1þ 0.69σ12∕5PL Þ5∕6

�
− 1; (21)

where
EQ-TARGET;temp:intralink-;e022;114;690

σ2ln Xðl0Þ ¼ 0.16σ2R

�
2.61Ql

2.61þQl þ 0.45σ2RQ
7∕6
l

�
7∕6

�
1þ 1.75

�
2.61

2.61þQl þ 0.45σ2RQ
7∕6
l

�
1∕2

− 0.25

�
2.61

2.61þQl þ 0.45σ2RQ
7∕6
l

�
7∕12

�
; (22)

EQ-TARGET;temp:intralink-;e023;114;608

σ2ln Xðl0; L0Þ ¼ 0.16σ2R

�
2.61Q̂0Ql

2.61ðQ̂0 þQlÞþ Q̂0Qlð1þ 0.45σ2RQ
1∕6
l Þ

�7∕6

×
�
1þ 1.75

�
2.61Q̂0

2.61ðQ̂0 þQlÞþ Q̂0Qlð1þ 0.45σ2RQ
1∕6
l Þ

�1∕2

−0.25
�

2.61Q̂0

2.61ðQ̂0 þQlÞþ Q̂0Qlð1þ 0.45σ2RQ
1∕6
l Þ

�7∕12�
; (23)

and σ2PL is given in Eq. (13). In these equations, we have Q̂0 ¼ 64π2L∕kL2
0. We have used the

notation Q̂0 to avoid confusion with the outer scale parameter Q0 defined in other publications.
Figure 6 illustrates the scintillation index of an infinite plane wave for a horizontal path as a

function of the square root of the Rytov variance for several values of inner scale with infinite
outer scale. This plot shows the importance of the inner scale along a horizontal path. The larger
the inner scale, the lower the scintillation index for σr > 1.

If we ignore the inner and outer scale effects, we find that the moderate-to-strong scintilla-
tion index for a plane wave reduces to

EQ-TARGET;temp:intralink-;e024;114;417σ2I;pl ¼ exp

�
0.49σ2R

ð1þ 1.11σ12∕5R Þ7∕6
þ 0.51σ2R

ð1þ 0.69σ12∕5R Þ5∕6
�
− 1; 0 < σ2R < ∞: (24)

Because inner and outer scale models as a function of altitude are virtually nonexistent, this
last expression is commonly used in downlink optical paths from a satellite or star. It is not very
accurate for horizontal path propagation because the inner and outer scales play such dominant
roles near the ground.

Fig. 6 Plane wave scintillation index as a function of the square root of the Rytov variance for
selected inner scale values between 0 and 8 mm, and λ ¼ 1063 nm, C2

n ¼ 2 × 10−13 m−2∕3, and
L0 ¼ ∞, assuming a horizontal path.
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5.3 Plane Wave: Aperture Averaging Effects
Early studies of aperture averaging concentrated on a ratio of scintillation values called the aper-
ture-averaging factor. The aperture-averaging factor A is defined by the normalized variance of
power fluctuations of the incident optical field on a collecting lens. It is also defined by the ratio
of the power scintillation index obtained by a finite-size collecting lens to the scintillation index
obtained by a point aperture. For a circular aperture of diameter DRx, this latter ratio, known as
the aperture averaging factor, can be expressed by the integral

EQ-TARGET;temp:intralink-;e025;117;652A ¼ σ2I;plðDRxÞ
σ2I;plð0Þ

¼ 16

π

Z
1

0

bIðxDRxÞ
�
cos−1 x − x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p �
xdx; (25)

where bIðxDRxÞ is the normalized spatial covariance of the intensity fluctuations.36 However,
exact analytical solutions of Eq. (25) have not been found, so the first researchers always resorted
to numerical evaluations or some approximations.21,37 It was later shown that an alternate form
for σ2I;plðDRxÞ could be developed through the use of the “ABCD” ray matrix approach and the
extended Rytov theory.21

FSOC systems that use a large collecting lens to focus the light onto a photo-detector do so
in part to reduce the effects of scintillation. However, if the Rx aperture diameter DRx is smaller
than the correlation width of the intensity fluctuations, then the Rx aperture behaves essentially
like a point aperture. The correlation width under weak intensity fluctuations is on the order of
the first Fresnel zone,

ffiffiffiffiffiffiffiffi
L∕k

p
, defined by the first zero value of the intensity covariance function.

Our approach here will follow that in Section 4.2 where the extended Rytov theory was
introduced for the scintillation index. Consequently, the reduced scintillation index (“power
scintillation index or flux variance”) takes the form

EQ-TARGET;temp:intralink-;e026;117;451σ2I;plðDRxÞ ¼ exp½σ2ln XðDRx; l0Þ − σ2ln XðDRx; l0; L0Þþ σ2ln YðDRxÞ� − 1; (26)

where

EQ-TARGET;temp:intralink-;e027;117;416σ2ln XðDRx; l0Þ ¼ 0.16σ2R

�
ηXdQl

ηXd þQl

�
7∕6

�
1þ 1.75

�
ηXdQl

ηXd þQl

�
1∕2

− 0.25

�
ηXdQl

ηXd þQl

�
7∕12

�
;

(27)

EQ-TARGET;temp:intralink-;e028;117;354σ2ln XðDRx; l0; L0Þ ¼ 0.16σ2R

�
ηXd0Ql

ηXd0 þQl

�
7∕6

�
1þ 1.75

�
ηXd0Ql

ηXd0 þQl

�
1∕2

− 0.25

�
ηXd0Ql

ηXd0 þQl

�
7∕12

�
; (28)

EQ-TARGET;temp:intralink-;e029;117;292σ2ln YðDRxÞ ¼
0.51σ2PLð1þ 0.69σ12∕5PL Þ−5∕6

1þ 0.90d2ðσ2R∕σ2PLÞ6∕5 þ 0.62d2σ12∕5R

: (29)

In the above equations, we have introduced the following parameters
EQ-TARGET;temp:intralink-;e030;117;255

ηX ¼ 2.61

1þ 0.45σ2RQ
1∕6
l

; ηXd ¼
ηX

1þ d2ηX∕4
; ηXd0 ¼

ηXdQ̂0

ηXd þ Q̂0

;

d ¼
ffiffiffiffiffiffiffiffiffiffiffi
kD2

Rx

4L

r
; Ql ¼

10.89L
kl20

; Q̂0 ¼
64π2L
kL2

0

: (30)

If we ignore the inner and outer scale effects, the power scintillation index flux based on the
Kolmogorov spectrum reduces to

EQ-TARGET;temp:intralink-;e031;117;159σ2I;plðDRxÞ ¼ exp

"
0.49σ2R

ð1þ 0.65d2 þ 1.11σ12∕5R Þ7∕6
þ 0.51σ2Rð1þ 0.69σ12∕5R Þ−5∕6

1þ 0.90d2 þ 0.62d2σ12∕5R

#
− 1: (31)

Figure 7 exhibits the plane wave aperture-averaging factor A as a function of the circular
aperture radius DRX∕2 scaled by the Fresnel zone size

ffiffiffiffiffiffiffiffi
L∕k

p
under various values of the Rytov

variance. Weak fluctuation theory corresponds to σ2R < 1 in which the factor A can be accurately
approximated by
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EQ-TARGET;temp:intralink-;e032;114;460A ¼
�
1þ 1.062

�
kD2

Rx

4L

��−7∕6
: (32)

In weak conditions, the correlation scale of the irradiance fluctuations is defined by the size

of the Fresnel zone; thus, significant aperture averaging takes place only when DRX > 2
ffiffiffiffiffiffiffiffi
L∕k

p
.

The case σ2R ¼ 4 leads to a scintillation index of σ2I ¼ 1.17, which corresponds to a moderate
fluctuation level approaching the focusing regime. In this regime, the spatial coherence radius is
less than or equal to the Fresnel zone size. The last case σ2R ¼ 50 corresponds to the saturation
regime in which the scintillation index is once again σ2I ¼ 1.17. The two-scale behavior in the
aperture-averaging factor in the saturation regime was previously pointed out by Churnside.38

That is, the first averaging is determined by the spatial coherence scale ρPW , after which there is a
leveling effect followed by a secondary roll-off related to the scattering disc L∕kρpl that predicts
less aperture averaging than that under weaker fluctuation conditions.

6 SATCOM Uplink (Spherical Wave) Link Geometries
The next stage in laser propagation in turbulence studies used spherical wave models. These
studies pertained to SATCOM uplink illumination of the satellite terminal and certain FSOC
cases involving horizontal links.10–12

6.1 Spherical Wave: Weak Intensity Fluctuations
If we can model the optical wave as a point source or spherical wave, the resulting scintillation
index will closely follow that associated with the plane wave case. Making use of the Rytov
theory, we define the scintillation index of a spherical wave by

EQ-TARGET;temp:intralink-;e033;114;173σ2I;sphðLÞ ¼ 8π2k2L
Z

1

0

Z
∞

0

κΦnðκÞ
�
1 − cos

�
Lκ2ξð1 − ξÞ

k

��
dκ dξ: (33)

Based on the Rytov approximation and a Kolmogorov spectrum, the solution of Eq. (33)
leads to

Fig. 7 Aperture-averaging factor versus aperture radius scaled by the Fresnel zone size,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDRx∕4L

p
, associated with an unbounded plane wave under various fluctuation conditions.
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EQ-TARGET;temp:intralink-;e034;117;736σ2I;sphðLÞ ¼ β20 ¼
�
0.5C2

nk7∕6L11∕6; ðhorizontal pathÞ
2.25k7∕6

R
L
z0
C2
nðzÞðz − z0Þ5∕6½1 − ðz − z0Þ∕L�5∕6dz; ðuplink pathÞ :

(34)

In this last result, we have introduced the spherical wave Rytov variance
β20 ¼ 0.5C2

nk7∕6L11∕6.
If we now evaluate Eq. (34) using the modified atmospheric spectrum, we get

EQ-TARGET;temp:intralink-;e035;117;652

σ2SPH ¼ 9.65β20

(
0.40

�
1þ 9

Q2
l

�
11∕12

�
sin

�
11

6
tan−1

Ql

3

�
þ 2.610

ð9þQ2
l Þ1∕4

sin

�
4

3
tan−1

Ql

3

�

−
0.518

ð9þQ2
l Þ7∕24

sin

�
5

4
tan−1

Ql

3

��
−
3.50

Q5∕6
l

)
: (35)

The effect of the inner scale on the scintillation index under weak intensity fluctuations is
clearly illustrated in Fig. 8 for a spherical wave.28 Several values of inner scale are featured here
and compared with the scintillation index when l0 ¼ 0. As with plane waves, the outer scale is
not a factor for the scintillation index of spherical waves under weak intensity fluctuations.

6.2 Spherical Wave: Moderate-to-Strong Intensity Fluctuations
Following a similar analysis to the above for plane waves, the resulting scintillation index based
on the modified atmospheric spectrum takes the form

EQ-TARGET;temp:intralink-;e036;117;477σ2I;sph ¼ exp

�
σ2ln Xðl0Þ − σ2ln Xðl0; L0Þþ

0.51σ2SPH
ð1þ 0.69σ12∕5SPH Þ5∕6

�
− 1; (36)

where σ2SPH is given in Eq. (35). The first two terms in this last expression are

EQ-TARGET;temp:intralink-;e037;117;425

σ2ln Xðl0Þ ¼ 0.04β20

�
8.56Ql

8.56þQl þ 0.20β20Q
7∕6
l

�
7∕6

×
�
1þ 1.75

�
8.56

8.56þQl þ 0.20β20Q
7∕6
l

�
1∕2

− 0.25

�
8.56

8.56þQl þ 0.20β20Q
7∕6
l

�
7∕12

�
; (37)

Fig. 8 Scintillation index of a spherical wave based on the modified atmospheric spectrum as a
function of the square root of the spherical wave Rytov variance and several values of inner scale.
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EQ-TARGET;temp:intralink-;e038;114;736

σ2ln Xðl0; L0Þ ¼ 0.04β20

�
8.56Q̂0Ql

8.56ðQ̂0 þQlÞþ Q̂0Qlð1þ 0.20β20Q
1∕6
l Þ

�7∕6

×
�
1þ 1.75

�
8.56Q̂0

8.56ðQ̂0 þQlÞþ Q̂0Qlð1þ 0.20β20Q
1∕6
l Þ

�1∕2

−0.25
�

8.56Q̂0

8.56ðQ̂0 þQlÞþ Q̂0Qlð1þ 0.20β20Q
1∕6
l Þ

�7∕12�
: (38)

Figure 9 illustrates the spherical wave scintillation index as a function of the spherical Rytov
variance for L0 ¼ ∞ and several inner scale values. Compared with Fig. 6, the scintillation index
falls off faster for spherical waves than for plane waves for all inner scale values but flattens out
sooner for large inner scale values.

Figure 10 depicts the spherical wave scintillation index as a function of range up to 5 km
illustrating the effect of the outer scale. The inner scale was fixed at 5 mm, and the outer scale
was chosen as infinite and 1 m. In addition, the selected wavelength was 1063 nm and

C2
n ¼ 5 × 10−13 m−2∕3. This figure shows that the inner and outer scales cause the power

Fig. 9 Scintillation index of a spherical wave as a function of the square root of the spherical wave
Rytov variance and several values of inner scale, assuming λ ¼ 1063 nm, C2

n ¼ 2 × 10−13 m−2∕3,
and L0 ¼ ∞.

Fig. 10 Scintillation index of a spherical wave as a function of range. The inner scale is 5 mm in
both cases, and the outer scale is infinite (dashed line) or 1 m (solid line).
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scintillation index to decrease for increasing range rather than leveling off like was seen in Fig. 1.
Note that the outer scale effect does not show up prior to the focusing regime.

The effects of inner and outer scale on the scintillation index are further illustrated in Fig. 11
where the open circles correspond to measurements of a spherical wave made by Consortini
et al.39 over a horizontal path of 1200 m. A scintillometer was used to determine C2

n, which
ranged from 10−15 to 10−12 m−2∕3. The inner scale was measured with a separate instrument
over a 150 m path directly in front of the Rx. The measured inner scale values ranged from
2.5 mm to around 12 mm. The optical wave was an argon-ion laser operating at 488 nm and
the diverged beam was directed into the atmosphere at 1.2 m above ground. Stationary intervals
of data with inner scale values ranging from 5 to 6 mm are replotted in Fig. 9 along with theo-
retical curves corresponding to inner scale values of 4 and 7 mm. The outer scale was estimated at
0.6 m, half the height of the laser above ground.

Once again, if we ignore inner scale and outer scale effects, we find that the moderate-to-
strong scintillation index reduces to

EQ-TARGET;temp:intralink-;e039;117;567σ2I;sph ¼ exp

�
0.49β20

ð1þ 0.56β12∕50 Þ7∕6
þ 0.51β20

ð1þ 0.69β12∕50 Þ5∕6
�
− 1; 0 < β20 < ∞: (39)

The solid line in Fig. 12 shows the scintillation index as a function of range for l0 ¼ 0,
L0 ¼ ∞, λ ¼ 1.55 μm and C2

nðh0Þ ¼ 5 × 10−15 m−2∕3.

6.3 Spherical Wave: Aperture Averaging Effects
Based on the extended Rytov theory for a plane wave, we again find that the general form of
the power scintillation index for a spherical wave is defined by

EQ-TARGET;temp:intralink-;e040;117;453σ2I;sphðDRxÞ ¼ exp½σ2ln XðDRx; l0Þ − σ2ln XðDRx; l0; L0Þþ σ2ln YðDRxÞ� − 1; (40)

where the various terms are defined by

EQ-TARGET;temp:intralink-;e041;117;415σ2ln XðDRx; l0Þ ¼ 0.04β20

�
ηXdQl

ηXd þQl

�
7∕6

×
�
1þ 1.75

�
ηXdQl

ηXd þQl

�
1∕2

− 0.25

�
ηXdQl

ηXd þQl

�
7∕12

�
;

(41)

Fig. 11 Estimates of measured scintillation index of a spherical wave (open circles) at a fixed
propagation distance of 1200 m taken from32 and replotted for measured inner scale values
between 5 and 6 mm. The solid curves are theoretical estimates of the scintillation index corre-
sponding to inner scale values of 4 and 7 mm along with an outer scale of 0.6 m.16
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EQ-TARGET;temp:intralink-;e042;114;493

σ2ln XðDRx; l0; L0Þ ¼ 0.04β20

�
ηXd0Ql

ηXd0 þQl

�
7∕6

×
�
1þ 1.75

�
ηXd0Ql

ηXd0 þQl

�
1∕2

− 0.25

�
ηXd0Ql

ηXd0 þQl

�
7∕12

�
; (42)

EQ-TARGET;temp:intralink-;e043;114;421σ2ln YðDRxÞ ¼
0.51σ2SPHð1þ 0.69σ12∕5SPHÞ−5∕6

1þ 0.90d2ðβ20∕σ2SPHÞ6∕5 þ 0.62d2β12∕50

: (43)

In this case, the above parameters are defined by
EQ-TARGET;temp:intralink-;e044;114;384

ηX ¼ 8.5

1þ 0.20β20Q
1∕6
l

; ηXd ¼
ηX

1þ 0.02d2ηX
; ηXd0 ¼

ηXdQ̂0

ηXd þ Q̂0

;

d ¼
ffiffiffiffiffiffiffiffiffiffiffi
kD2

Rx

4L

r
; Ql ¼

10.89L
kl20

; Q̂0 ¼
64π2L
kL2

0

: (44)

Finally, if we allow the inner scale to vanish and the outer scale to become infinite, the
resulting power scintillation index of the spherical wave reduces to

EQ-TARGET;temp:intralink-;e045;114;285σ2I;sphðDRxÞ ¼ exp

�
0.49β20

ð1þ 0.18d2 þ 0.56β12∕50 Þ7∕6
þ 0.51β20ð1þ 0.69β12∕50 Þ−5∕6

1þ 0.90d2 þ 0.62d2β12∕50

�
− 1: (45)

The aperture-averaging factor for a spherical wave is defined by

EQ-TARGET;temp:intralink-;e046;114;230A ¼ σ2I;sphðDRxÞ
σ2I;sphð0Þ

: (46)

Figure 12 also compares the scintillation index (solid line) and power scintillation indices
(dashed line) as a function of the Rytov variance over horizontal link ranges from 1 to 10 km with
λ ¼ 1.55 μm, C2

nðh0Þ ¼ 5 × 10−15 m−2∕3, l0 ¼ 0, L0 ¼ ∞, and DRx ¼ 10 cm in the case of the
power scintillation index. This plot follows the asymptotic trend shown in Fig. 1 and illustrates
that aperture averaging can reduce the intensity-based intensity scintillation to a more desirable
level for large σ2R.

Figure 13 illustrates the spherical wave aperture-averaging factor as a function of the circular

aperture radius DRx∕2 scaled by the Fresnel zone size
ffiffiffiffiffiffiffiffi
L∕k

p
under various values of the spheri-

cal wave Rytov variance. The behavior shown in Fig. 13 is much the same as that in Fig. 7, except
that the curves in Fig. 13 lie slightly above those in Fig. 7.

Fig. 12 Scintillation index (solid line) and power scintillation indices (dashed line) as a function of
the range for λ ¼ 1.55 μm, C2

nðh0Þ ¼ 5 × 10−15 m−2∕3, l0 ¼ 0, L0 ¼ ∞ and Drx ¼ 10 cm.
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Figure 14 shows the power scintillation index as a function of range for DRx ¼ 0 cm and
DRx ¼ 10 cm, assuming l0 ¼ 5 mm and L0 ¼ 1 m. The wavelength and structure parameter are
the same as that in Fig. 9. Comparing this figure with Fig. 11, the inclusion of the inner and outer
scales causes the power scintillation index to decrease for increasing range (increasing σ2R) rather
than leveling off. All these figures show that the inner and outer scales have a dramatic effect on
the power scintillation index.

Figure 15 compares normalized power scintillation index theoretical estimates and computer

simulation data as a function of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDRx∕4L

p
for link ranges of 100 and 500 m. This figure shows

good agreement between theory and computer simulation.

7 Horizontal (Gaussian-Beam) Link Geometries
Unlike in the plane and spherical wave cases described above, the Gaussian-beam scintillation
index has two parts, not one part. One part is the radial component σ2I;rðr; LÞ, and the other is the
longitudinal component σ2I;lð0; LÞ. The linear combination is written as

Fig. 14 Power scintillation index in the pupil plane of an Rx (solid line) and that in the detector
plane after passing through a 10-cm aperture. The inner scale is 5 mm, and the outer scale is 1 m in
both curves.

Fig. 13 Aperture averaging factor versus aperture radius scaled by the Fresnel zone size,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDRx∕4L

p
, associated with a spherical wave under various fluctuation conditions.
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EQ-TARGET;temp:intralink-;e047;114;498σ2I ðr; LÞ ¼ σ2I;rðr; LÞþ σ2I;lð0; LÞ: (47)

Although the Gaussian Beam normally is associated with horizontal link geometries, it also
is applicable to slant range geometries, where the plane and spherical waves are opposite limiting

cases. Specifically, the Rayleigh range is given by associated with a spherical wave,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDRx∕4L

p
,

under various fluctuation conditions.
W0 is the e−2-intensity beam radius.10,11 When z ≪ zR, the propagating Gaussian beam is in

the near field and is plane wave-like. When z ≫ zR, the propagating Gaussian beam is in the far
field and is spherical wave-like. This section investigates the Gaussian beam scintillation indices.

7.1 Gaussian-Beam: Weak Intensity Fluctuations
Key to understanding Gaussian-beam propagation are two sets of nondimensional beam param-
eters—one set at the transmitter and a second set at the receiver at distance L. The beam radius is
W0, and the radius of curvature (focal length) is fFL. For the collimated transmitter, we have
fFL ¼ ∞, and the key parameter sets are given by

EQ-TARGET;temp:intralink-;e048;114;318zR ¼ πW2
0∕λ ¼ kW2

0∕2; (48)

EQ-TARGET;temp:intralink-;e049;114;282z ¼ 0∶ Θ0 ¼ 1 −
L
fFL

¼ 1; Λ0 ¼
2L
kW2

0

¼ 8λL
πD2

tx
; (49)

whereas at the receiver, the corresponding beam parameters are

EQ-TARGET;temp:intralink-;e050;114;251z ¼ L∶

8><
>:

Θ ¼ Θ0

Θ2
0
þΛ2

0

;

Θ ¼ 1 − Θ;
Λ ¼ Λ0

Θ2
0
þΛ2

0

:
(50)

In the above equations, Θ0 ¼ 1 − L∕fFL describes the amplitude change due to refraction of
focusing, Λ0 describes the amplitude change due to aperture diffraction and [Ref. 11, pp. 18–19]

EQ-TARGET;temp:intralink-;e051;114;168W ¼ W0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θ2

0 þΛ2
0

q
: (51)

Based on the modified atmospheric spectrum and weak intensity fluctuations, the longi-
tudinal component of the Gaussian-beam scintillation index is given by

Fig. 15 Comparison of the normalized power scintillation index theoretical estimates and com-
puter simulation data as a function of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kDRx∕4L

p
for link ranges of 100 and 500 m.
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EQ-TARGET;temp:intralink-;e052;117;736

σ2G ≡ σ2I;lð0; LÞ ≈ 3.86σ2R

�
0.40

½ð1þ 2ΘÞ2 þð2Λþ 3∕QlÞ2�11∕12
½ð1þ 2ΘÞ2 þ 4Λ2�1∕2

×
�
sin

�
11

6
φ2 þφ1

�
þ 2.610

½ð1þ 2ΘÞ2Q2
l þð3þ 2ΛQlÞ2�1∕4

sin

�
4

3
φ2 þφ1

�

−
0.518

½ð1þ 2ΘÞ2Q2
l þð3þ 2ΛQlÞ2�7∕24

sin

�
5

4
φ2 þφ1

��
−

13.401Λ
Q11∕6

l ½ð1þ 2ΘÞ2 þ 4Λ2�

−
11

6

��
1þ 0.31ΛQl

Ql

�
5∕6

þ 1.096ð1þ 0.27ΛQlÞ1∕3
Q5∕6

l

−
0.186ð1þ 0.24ΛQlÞ1∕4

Q5∕6
l

��
; (52)

for σ2R < 1 where

EQ-TARGET;temp:intralink-;e053;117;599φ1 ¼ tan−1
�

2Λ
ð1þ 2ΘÞ

�
; (53)

and

EQ-TARGET;temp:intralink-;e054;117;550φ2 ¼ tan−1
�ð1þ 2ΘÞQl

ð3þ 2ΛQlÞ
�
: (54)

For horizontal FSOC links, the spherical-wave Fried parameters equal

EQ-TARGET;temp:intralink-;e055;117;500r0Tx ¼ r0Rx ¼ ½0.16k2C2
nðhtxÞR�−3∕5: (55)

7.2 Gaussian-Beam: Moderate to Strong Intensity Fluctuations
Using the extended Rytov theory to include the saturation regime ð0 ¼< σ2R < ∞Þwith both inner
and outer scales, we find that components in Eq. (47) in this case are

EQ-TARGET;temp:intralink-;e056;117;426σ2I;rðr; LÞ ¼ 4.42σ2RΛ
5∕6
ST ½1 − 1.15ðLΛST∕kL2

0Þ1∕6�
r2

W2
ST

; (56)

and

EQ-TARGET;temp:intralink-;e057;117;376σ2I;lð0; LÞ ¼ exp

�
σ2ln Xðl0Þ − σ2ln Xðl0; L0Þþ

0.51σ2G
ð1þ 0.69σ12∕5G Þ5∕6

�
− 1; (57)

where

EQ-TARGET;temp:intralink-;e058;117;324ΛST ¼ wL∕kW2
ST; (58)

EQ-TARGET;temp:intralink-;e059;117;288WLT ¼ Wð1þ 1.33σ2RΛ5∕6Þ3∕5; (59)

EQ-TARGET;temp:intralink-;e060;117;269WST ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

LT − hr2ci
q

; (60)

and

EQ-TARGET;temp:intralink-;e061;117;243hr2ci ¼
7.25ðL − z0Þ2

W1∕3
0

Z
L

z0

C2
nðzÞ

�
1 −

z − z0
L − z0

�
2

dz: (61)

In Eq. (56), we have

EQ-TARGET;temp:intralink-;e062;117;190

σ2ln Xðl0Þ
0.49σ2R

¼
�
1

3
−
1

2
Θþ 1

5
Θ2

��
ηXQl

ηX þQl

�
7∕6

�
1þ 1.75

�
ηX

ηX þQl

�
1∕2

− 0.25

�
ηX

ηX þQl

�
7∕12

�
;

(62)
EQ-TARGET;temp:intralink-;e063;117;127

σ2ln Xðl0; L0Þ
0.49σ2R

¼
�
1

3
−
1

2
Θþ 1

5
Θ2

��
ηX0Ql

ηX0 þQl

�
7∕6

×
�
1þ 1.75

�
ηX0

ηX0 þQl

�
1∕2

− 0.25

�
ηX0

ηX0 þQl

�
7∕12

�
; (63)
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EQ-TARGET;temp:intralink-;e064;114;316ηX ¼
�
0.38∕ð1 − 3.21Θ̄þ 5.92Θ̄2Þþ 0.47σ2RQ

1∕6
l

��
1

3
−
1

2
Θ̄þ 1

5
Θ̄2

�
∕ð1þ 2.20Θ̄Þ

�
6∕7

�−1
;

(64)

and

EQ-TARGET;temp:intralink-;e065;114;259ηX0 ¼ ηXQ̂0∕ðηX þ Q̂0Þ: (65)

Figure 16 compares (a) on-axis and (b) off-axis Gaussian-beam wave scintillation indices as
a function of propagation distance and normalized lateral radius, respectively, with computer
simulation data. These figures show good agreement between theory and computer simulation.

Figure 17 illustrates the scintillation index as a function of the square root of the Rytov
variance for a couple of inner and outer scale values. This figure shows that a smaller outer
scale reduces the scintillation index. In addition, it shows that a smaller inner scale reduces the
scintillation index, but the two outer scale curves begin to converge as σR becomes large. NOTE:
Outer scale effects occur only after peak scintillation values. The inner scale alters the scintilla-
tion index for all Rytov values.

7.3 Gaussian-Beam: Beam Wander
Beam wander associated with a propagating finite beam in the atmosphere has consequences on
several characteristics of the beam irradiance in the plane of an Rx, including the short-term
and long-term spot size, and the scintillation index. The total beam-wander variance along a

Fig. 17 Graph of the scintillation index as a function of the square root of the Rytov variance for
a couple of inner and outer scale values.

Fig. 16 (a) On-axis and (b) off-axis Gaussian-beam wave scintillation indices as a function of
propagation distance and normalized lateral radius, respectively.10
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horizontal path is given by hr2ci ¼ 2.42C2
nL3W, which is related to centroid wander by

hβ2ci ¼ 0.56hr2ci. Beam wander occurs along horizontal paths or along uplink slant paths if the
beam is not tracked.

Perhaps the most important consequence connected to beam wander is the increase in the
scintillation index. It has been shown that beam-wander-induced scintillation can be modeled
by adding the term 4.42σ2RΛ

5∕6
ST σ2pe∕W2

ST to the scintillation index given by Eq. (47) using
Eq. (57), i.e.,

EQ-TARGET;temp:intralink-;e066;117;651σ2I;lð0; LÞ ¼ 4.42σ2RΛ
5∕6
ST

σ2pe
W2

ST

þ exp

�
σ2ln Xðl0Þ − σ2ln Xðl0; L0Þþ

0.51σ2G
ð1þ 0.69σ12∕5G Þ5∕6

�
− 1; (66)

where σ2pe acts as a type of pointing error described by

EQ-TARGET;temp:intralink-;e067;117;599σ2pe ¼ hr2ci
�
1 −

�
π2W2

0∕25r20
1þ π2W2

0∕25r20

�
1∕6�

: (67)

The parameters ΛST andWST are defined by Eqs. (58) and (60), respectively. For the remain-
der of this paper, we will assume that the FSOC terminal has tip/tilt tracking capabilities.

7.4 Gaussian-Beam: Aperture Averaging Effect
In the presence of the inner and outer scales, the tip/tilt-tracked scintillation index in the detector
plane equals

EQ-TARGET;temp:intralink-;e068;117;487σ2I;Tip-TiltðDRxÞ ¼ exp½σ2ln XðDRx; l0Þ − σ2ln XðDRx; l0; L0Þþ σ2ln YðDRxÞ� − 1: (68)

In Eq. (68), we have
EQ-TARGET;temp:intralink-;e069;117;449

σ2ln XðDRx; l0Þ
0.49σ2R

¼
�
ΩRx − Λ
ΩRx þΛ

�
2
�
1

3
−
1

2
Θþ 1

5
Θ2

��
ηXdQl

ηXd þQl

�
7∕6

×
�
1þ 1.75

�
ηXd

ηXd þQl

�
1∕2

− 0.25

�
ηXd

ηXd þQl

�
7∕12

�
; (69)

EQ-TARGET;temp:intralink-;e070;117;370

σ2ln XðDRx; l0; L0Þ
0.49σ2R

¼
�
ΩRx − Λ
ΩRx þΛ

�
2
�
1

3
−
1

2
Θþ 1

5
Θ2

��
ηXd0Ql

ηXd0 þQl

�
7∕6

×
�
1þ 1.75

�
ηXd0

ηXd0 þQl

�
1∕2

− 0.25

�
ηXd0

ηXd0 þQl

�
7∕12

�
; (70)

EQ-TARGET;temp:intralink-;e071;117;309σ2ln YðDRx; l0Þ ¼
1.27σ2Rη

−5∕6
Y

1þ 0.40ηY∕ðΩRx þΛ1Þ
; (71)

EQ-TARGET;temp:intralink-;e072;117;275ηX ¼
�
0.38∕ð1 − 3.21Θþ 5.92Θ2Þþ 0.47σ2RQ

1∕6
l

��
1

3
−
1

2
Θþ 1

5
Θ̄2

�
∕ð1þ 2.20ΘÞ

�
6∕7

�
−1
;

(72)

and

EQ-TARGET;temp:intralink-;e073;117;230ηY ¼ 3ðσR∕σGÞ12∕5ð1þ 0.69 σ12∕5G Þ (73)

where ηXd0 ¼ ηXdQ̂0∕ðηXd þ Q̂0Þ, ηXd ¼ ηX∕½1þ 0.40ηXð2 − Θ1Þ∕ðΩRx þΛ1Þ� and

EQ-TARGET;temp:intralink-;e074;117;190σ2pe ¼
2.42C2

nðhtxÞR3

W1∕3
0

�
1 −

�
π2W2

0∕25r20
1þ π2W2

0∕25r20

�
1∕6�

: (74)

The example in the Sec. 8 will utilize these equations.
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8 Bit Error Rate Analysis Example
The electrical SNR for a horizontal FSOC link in turbulence is written as

EQ-TARGET;temp:intralink-;e075;114;707SNReðI 0Þ ≈
P2
recðI 0Þ

ðNEPdetÞ2 þ σ2I ðDTxÞhIð0; RÞi2
¼ Q2

I ðI 0Þ2
ðNEPdetÞ2 þ σ2I ðDTxÞQ2

I hIð0; RÞi2
; (75)

EQ-TARGET;temp:intralink-;e076;114;657¼ SNR
sys
e ðI 0Þ2

1þ σ2I ðDTxÞSNRsys
e

: (76)

where

EQ-TARGET;temp:intralink-;e077;114;625QI ¼ γrxγfiberArxSRDP: (77)

and

EQ-TARGET;temp:intralink-;e078;114;594SNR
sys
e ≈

P2
avg

ðNEPsysÞ2
¼ ðγrxhIð0; RÞiArxSRDPÞ2

ðNEPsysÞ2
¼ Q2

I hIð0; RÞi2; (78)

as the signal and background shot noise typically are much less than system noise. The extra term
in the SNR denominator comes from the fact that the noise variance from the turbulence-
degraded intensity is written as

EQ-TARGET;temp:intralink-;e079;114;519σ2Noise-turb ¼ hI2turbð0; RÞi − hIð0; RÞi2 ¼ hIð0; RÞiσ2I ð0; RÞ ¼ hIð0; RÞiσ2I ðDtxÞ; (79)

where σ2I ð0; RÞ is the scintillation index. In these equations, we have replaced σ2I ð0; RÞ with
σ2I ðDrxÞ, the power scintillation index that accounts for aperture averaging. Let us now inves-
tigate its calculation.

The BER for a differential phase shift key (DPSK) communications system in the absence of
turbulence is given by

EQ-TARGET;temp:intralink-;e080;114;433BER ¼ 0.5 erfc

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SNRe∕2
p �

; (80)

where erfcðxÞ is the complementary error function.
Assuming tip/tilt correction, the unconditional BER in the presence of turbulence-induced

beam wander should be averaged with respect to the DPSK BER to yield the average BER.
It is written as

EQ-TARGET;temp:intralink-;e081;114;358BER ¼ 0.5

Z
∞

0

pln IðI 0Þerfc
�

1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SNR
sys
e ðI 0Þ2

1þ σ2I ðDTxÞSNRsys
e

s �
dI 0 (81)

where σ2I ðDtxÞ is the power scintillation index and pln IðI 0Þ is the log-normal (LN) PDF, which is
given as

EQ-TARGET;temp:intralink-;e082;114;289pln IðI 0Þ ¼
1

I 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2ln IðDrxÞ

p exp

�
−
½lnðI 0Þ þ 0.5σ2ln IðDrxÞ�2

2σ2ln IðDrxÞ
�

(82)

with σ2ln IðDRxÞ ¼ ln½1þ σ2I ðDRxÞ�, which is valid in the weak-to-moderate intensity fluctuations
regimes when the receiver aperture is large.40,41

Let us assume a horizontal 1.5 km, DPSK FSOC link where the transmitter and receiver
terminals are located at an elevated height above the ground. If the turbulence has a refractive
index structure parameter C2

nðh0Þ at the transmitter/receiver altitude h0 equals 10−14 m−2∕3 with
an 3 mm inner scale and an 5 m outer scale, the resulting average BER as a function of the
system-noise-limited SNR for uncoded and selected Reed-Solomon coded data streams42 is
shown in Fig. 18(a). Also exhibited in the figure is the required free-space electrical SNR of
16.94 dB for a required BER of 10−12. This figure clearly shows that the uncoded data stream
does not meet the required BER for all system-noise-limited SNRs. However, a Reed–Solomon
RS (255,247) code gives the required or better BER for SNRs > 15 dB.

If C2
nðh0Þ ¼ 5 × 10−14 m−2∕3, the resulting BER plot is depicted in Fig. 18(b). This figure

clearly shows that the uncoded data stream again does not meet the required BER for all system-
noise-limited SNRs and a Reed–Solomon RS (255,231) code gives the required or better BER for
SNRs greater than 15 dB.
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If C2
nðh0Þ ¼ 1 × 10−13 m−2∕3, one has a refractive index structure parameter level commen-

surate with 5xHufnagel-Valley turbulence (85% CDF level), and the resulting BER plot is
depicted in Fig. 18(c). This figure clearly shows that its power scintillation index is just slightly
smaller than the C2

nðh0Þ ¼ 5 × 10−14 m−2∕3 power scintillation index and the Reed–Solomon RS
(255,231) code still gives the required or better BER for SNRs greater than 15 dB.

If C2
nðh0Þ ¼ 5 × 10−13 m−2∕3, the resulting BER plot is depicted in Fig. 18(d). This figure

clearly shows that its power scintillation index is smaller than the C2
nðh0Þ ¼ 10−13 m−2∕3 power

scintillation index and the Reed–Solomon RS (255,239) and RS (255,231) codes still give the
required or better BER for SNRs greater than 15 dB. As it turns out at this point, increasing the
refractive index structure parameter gives an even smaller power scintillation index. This is
because the scintillation and the power scintillation indices both decrease as the Rytov variance

Fig. 18 BER as a function of the system-noise-limited SNR for uncoded and selected Reed-
Solomon Coded data streams for (a) C2

nðh0Þ ¼ 10−14 m−2∕3, (b) C2
nðh0Þ ¼ 5 × 10−14 m−2∕3,

(c) C2
nðh0Þ ¼ 10−13 m−2∕3, and (d) C2

nðh0Þ ¼ 5 × 10−13 m−2∕3.
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moves out of the focusing regime. This was seen in earlier figures. The Rytov variances σ2R equal
0.419, 2.09, 4.182, and 20.9 for refractive index structure parameters 10−14 m−2∕3;
5 × 10−14 m−2∕3; 10−13 m−2∕3; and 5 × 10−13 m−2∕3, respectively. In our case, the power scin-
tillation peaks around Rytov variances between 2 and 4 and decreases for larger variances.
Referring to the previous figures, using an RS (255,231) code will allow the DPSK system
to meet or exceed the required BER for all expected turbulence conditions. The penalty is that
the information rate is now 90.6% of the system data rate.

9 Summary
This paper provides a tutorial describing the various scintillation index and power scintillation
index that follow the type of performance depicted in Fig. 1. Specifically, this paper developed
the scintillation indices for SATCOM downlink, SATCOM uplink, and atmospheric slant path
and horizontal communications link geometries, which also included tracking, untracked, and
aperture averaging receiver effects. These scintillation index equations are valid for turbulence
conditions covering weak to strong intensity fluctuations. Example figures showed that the
focusing and saturation effects were created by the inner and outer scales parts of the equations
tempering the rising Rytov variance in the scintillation indices. The inner scale dominated the
creation of the scintillation index profiles in the focusing regime, whereas the outer scale domi-
nated the creation of the scintillation index profiles in the saturation regime. An example analysis
was performed using this information. The conclusion was that no matter whether the detection
system is incoherent or coherent and/or which signaling format is used, the scintillation indices
will have peak values for some particular C2

nðh0Þ and L values as those entities increase. This
means that the deep turbulence system performance may be more easily achieved because of the
peaking of those entities in that regime.

Disclosures
The authors declare that there are no conflicts of interest related to this article.

Code and Data Availability
Experimental data presented in this paper may be obtained from the cited authors upon reason-
able request.

References
1. C. Chen et al., “Demonstration of a bidirectional coherent air-to-ground optical link,” Proc. SPIE 10524,

105240G (2018).
2. H. Kaushal and G. Kaddoum, “Optical communication in space: challenges and mitigation techniques,”

IEEE Commun. Surv. Tut. 19(1), 57–96 (2017).
3. L. B. Stotts, Free Space Optical Systems Engineering, John Wiley and Sons (2017).
4. A. Mansour, R. Mesleh, and M. Abaza, “New challenges in wireless and free space optical communications,”

Opt. Lasers Eng. 89, 95–108 (2017).
5. S. Seel et al., “Space to Ground bidirectional optical communication link at 5.6 Gbps and EDRS connectivity

outlook,” in Aerosp. Conf., Big Sky, MT, USA, pp. 1–7 (2011).
6. R. Lange et al., “142 km, 5.625 Gbps free—space optical link based on homodyne BPSK modulation,”

Proc. SPIE 6105, 61050A (2006).
7. Z. C. Bagley et al., “Hybrid optical radio frequency airborne communications,”Opt. Eng. 51, 055006 (2012).
8. J. C. Juarez et al., “Analysis of link performance for the FOENEX laser communications system (Proceedings

Paper),” Proc. SPIE 8380, 838007 (2012).
9. L. B. Stotts, M. Toyoshima, and L. C. Andrews, “Effect of satellite slew rate in bit error rate model under

atmospheric turbulence,” Proc. SPIE 13355, 13355-53 (2025).
10. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed., SPIE Press,

Bellingham, Washington (2005).
11. L. C. Andrews. Field Guide to Atmospheric Optics, 2nd ed., SPIE Press, Bellingham, Washington

(2019).
12. L. C. Andrews and M. K. Beason, Laser Beam Propagation through Random Media: New and Advanced

Topics, SPIE Press, Bellingham, Washington (2023).

Stotts and Andrews: Communication performance in the focusing and saturation. . .

Optical Engineering 120801-24 December 2024 • Vol. 63(12)

https://doi.org/10.1117/12.2292848
https://doi.org/10.1109/COMST.2016.2603518
https://doi.org/10.1016/j.optlaseng.2016.03.027
https://doi.org/10.1109/AERO.2011.5747331
https://doi.org/10.1117/12.673749
https://doi.org/10.1117/1.OE.51.5.055006
https://doi.org/10.1117/12.919928


13. R. R. Beland, “Propagation through atmospheric optical turbulence,” in The Infrared and Electro-Optical
Systems Handbook, Vol. 2, The Environmental Research Institute of Michigan and SPIE Press, Bellingham,
Washington (1996).

14. M. E. Gracheva, “Investigation of the statistical properties of strong fluctuations in the intensity of light
propagated through the atmosphere near the earth,” Radiophys. Quantum Electron. 10, 424–433 (1967).

15. R. A. Schmeltzer, “Means, variances and covariances for laser beam propagation through a randommedium,”
Q. Appl. Math. 24, 339–354 (1967).

16. D. L. Fried and J. B. Seidman, “Laser beam scintillations in the atmosphere,” J. Opt. Soc. Amer. 57, 181–185
(1967).

17. A. Ishimaru, “Fluctuations of a beam wave propagating through a locally homogeneous medium,” Radio Sci.
4, 295–305 (1969).

18. W. B. Miller, J. C. Ricklin, and L. C. Andrews, “Effects of the refractive index spectral model on the intensity
variance of a Gaussian beam,” J. Opt. Soc. Amer. A 11, 2719–2726 (1994).

19. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications, SPIE Press,
Bellingham, Washington (2001).

20. A. H. Mikesell, A. A. Hoag, and J. S. Hall, “The scintillation of starlight,” J. Opt. Soc. Amer. 41, 689–695
(1951).

21. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, “Aperture averaging of optical scintillations: power fluc-
tuations and the temporal spectrum,” Waves Random Media 10, 53–70 (2000).

22. L. F. Richardson, Weather Prediction by Numerical Process, Cambridge University Press (1922).
23. L. C. Andrews, “An analytical model for the refractive index power spectrum and its application to optical

scintillations in the atmosphere,” J. Mod. Opt. 39, 1849–1853 (1992).
24. F. H. Champagne et al., “Flux measurements, flux-estimation techniques, and fine-scale turbulence measure-

ments in the unstable surface layer over land,” J. Atmos. Sci. 34, 515–530 (1977).
25. R. M. Williams and C. A. Paulson, “Microscale temperature and velocity spectra in the atmospheric boun-

dary layer boundary layer,” J. Fluid Mech. 83, 547–567 (1977).
26. R. J. Hill, “Models of the scalar spectrum for turbulent advection,” J. Fluid Mech. 88, 541–562 (1978).
27. J. H. Churnside, “A spectrum of refractive-index turbulence in the turbulent atmosphere,” J. Mod. Opt.

37, 13–16 (1990).
28. R. Frehlich, “Laser scintillation measurements of the temperature spectrum in the atmospheric surface layer,”

J. Atmos. Sci. 49, 1494–1509 (1992).
29. L. C. Andrews et al., “Theory of optical scintillation,” J. Opt. Soc. Amer. A 16, 1417–1429 (1999).
30. L C. Andrews et al., “Theory of optical scintillation: Gaussian-beam wave model,” Waves Random Media

11, 271–291 (2001).
31. M. E. Gracheva and A. S. Gurvich, “Strong fluctuations in the intensity of light propagated through the

atmosphere close to the Earth,” Soviet Radiophys. 8, 511–515 (1965).
32. K. S. Gochelashvili and V. I. Shishov, “Saturated fluctuations in the laser radiation intensity in a turbulent

medium,” Sov. Phys. JETP 39(4), 605–609 (1974).
33. R. L. Fante, “Inner-scale size effect on the scintillations of light in the turbulent atmosphere,” J. Opt. Soc.

Amer. 73, 277–281 (1983).
34. R. G. Frehlich, “Intensity covariance of a point source in a random medium with a Kolmogorov spectrum and

an inner scale of turbulence,” J. Opt. Soc. Amer. A 4, 360–366 (1987); Errata “Intensity covariance of a point
source in a random medium with a Kolmogorov spectrum and an inner scale of turbulence: Errata,”
J. Opt. Soc. Amer. A 4, 1324 (1987).

35. S. M. Flatté and J. S. Gerber, “Intensity-variance behavior by numerical simulation for plane-wave and
spherical-wave optical propagation through strong turbulence,” J. Opt. Soc. Amer. A 17, 1092–1097 (2000).

36. D. L. Fried, “Aperture averaging of scintillation,” J. Opt. Soc. Amer. 57, 169–175 (1967).
37. E. L. Bass, B. D. Lackovic, and L. C. Andrews, “Aperture averaging of optical scintillations based on

a spectrum with high wave number bump,” Opt. Eng. 34, 26–31 (1995).
38. J. H. Churnside, “Aperture averaging of optical scintillations in the turbulent atmosphere,” Appl. Opt.

30, 1982–1994 (1991).
39. A. Consortini et al., “Inner-scale effect on intensity variance measured for weak-to-strong atmospheric

scintillation,” J. Opt. Soc. Amer. A 10, 2354–2362 (1993).
40. L. B. Stotts and L. C. Andrews, “Probability density function models for adaptive optical systems operating

in turbulence,” Opt. Eng. 63(8), 088101 (2024).
41. L. C. Andrews, “Aperture-averaging factor for optical scintillations of plane and spherical waves in the

atmosphere,” J. Opt. Soc. Amer. A 9, 597–600 (1992).
42. J. G Proakis, Digital Communications, 5th ed., McGraw-Hill, pp. 274–278 (2008).

Larry B. Stotts is a consultant. His interests are RF and optical communications, RF, infrared
and visible surveillance, and reconnaissance. He received his BA degree in applied physics and

Stotts and Andrews: Communication performance in the focusing and saturation. . .

Optical Engineering 120801-25 December 2024 • Vol. 63(12)

https://doi.org/10.1007/BF01089849
https://doi.org/10.1090/qam/99911
https://doi.org/10.1364/JOSA.57.000181
https://doi.org/10.1029/RS004i004p00295
https://doi.org/10.1364/JOSAA.11.002719
https://doi.org/10.1364/JOSA.41.000689
https://doi.org/10.1088/0959-7174/10/1/305
https://doi.org/10.1080/09500349214551931
https://doi.org/10.1175/1520-0469(1977)034%3C0515:FMFETA%3E2.0.CO;2
https://doi.org/10.1017/S0022112077001335
https://doi.org/10.1017/S002211207800227X
https://doi.org/10.1080/09500349014550031
https://doi.org/10.1175/1520-0469(1992)049%3C1494:LSMOTT%3E2.0.CO;2
https://doi.org/10.1364/JOSAA.16.001417
https://doi.org/10.1088/0959-7174/11/3/306
https://doi.org/10.1007/BF01038327
https://doi.org/10.1364/JOSA.73.000277
https://doi.org/10.1364/JOSA.73.000277
https://doi.org/10.1364/JOSAA.4.000360
https://doi.org/10.1364/JOSAA.17.001092
https://doi.org/10.1364/JOSA.57.000169
https://doi.org/10.1117/12.184051
https://doi.org/10.1364/AO.30.001982
https://doi.org/10.1364/JOSAA.10.002354
https://doi.org/10.1117/1.OE.63.8.088101
https://doi.org/10.1364/JOSAA.9.000597


information sciences and his PhD in electrical engineering (communications systems), both
from the University of California at San Diego. He has published over 117 journal articles and
authored/co-authored four books. He is a fellow of the IEEE, the SPIE, and Optica.

Larry C. Andrews is a Professor Emeritus of Mathematics at the University of Central Florida
(UCF) and an associate member of the Towns Laser Institute in the College of Optics/Center for
Research in Electro-Optics and Lasers (CREOL) at UCF. He received his PhD in theoretical
mechanics from Michigan State University. He has authored/coauthored 12 textbooks and has
published numerous papers and reports. He is a fellow of the SPIE and authored three SPIE field
guides.

Stotts and Andrews: Communication performance in the focusing and saturation. . .

Optical Engineering 120801-26 December 2024 • Vol. 63(12)


