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Abstract.Originally a pure mathematical concept, topology has been vigorously developed in various physical
systems in recent years, and underlies many interesting phenomena such as the quantum Hall effect and
quantum spin Hall effect. Its widespread influence in physics led the award of the 2016 Nobel Prize in
Physics to this field. Topological photonics further expands the research field of topology to classical wave
systems and holds promise for novel devices and applications, e.g., topological quantum computation and
topological lasers. Here, we review recent developments in topological photonics but focus mainly on their
realizations based on metamaterials. Through artificially designed resonant units, metamaterials provide
vast degrees of freedom for realizing various topological states, e.g., the Weyl point, nodal line, Dirac
point, topological insulator, and even the Yang monopole and Weyl surface in higher-dimensional
synthetic spaces, wherein each specific topological nontrivial state endows novel metamaterial responses
that originate from the feature of some high-energy physics.
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1 Introduction
In geometry, topology[1] concerns the global features of a shape,
independent of the detail—a famous example being that a coffee
mug and a torus are topologically equivalent because they can
be smoothly transformed into each other without experiencing
dramatic changes, e.g., opening holes, tearing, gluing. The Euler
characteristic χ is introduced to describe such a global invariant,
which is defined by the integral of the Gaussian curvature ~K
over a closed surface, χ � 1

2π

R
S
~K · d~A ∈ Z, which is always

an integer. Hence, it cannot vary continuously and is topologi-
cally stable. The surfaces of a sphere (χ � 2) and torus (χ � 0)
are distinguished topologically by their Euler characteristics χ.

The earliest discovered topology-governed physical phe-
nomenon was the celebrated quantum Hall effect[2–6]. In a
two-dimensional electron system subject to low temperature
and a strong magnetic field, the Hall resistance Rxy exhibits pla-
teaus that take on quantized values Rxy � h∕ve2, with v being
an integer number, e the elementary charge, and h the Planck’s
constant. The measured values of Hall conductance are integer

or fractional (in the fractional quantum Hall effect[7,8]) multiples
of e2∕h to nearly one part in a billion. Just like the Euler char-
acteristic χ in mathematics, such a flat quantized resistance is
related to the integer-valued integral of Berry curvature ~F over
the filled portion of the bands in a crystal, the so-called Chern
number, or TKNN number[4], C � 1

2π

R
BZ

~F · d~S ∈ Z. A most re-
markable feature for such a topological nontrivial system is the
celebrated bulk boundary correspondence, which indicates that
the multiplicities of edge modes on the boundary are character-
ized by differences in the topological invariants of the bulk en-
ergy bands. A topologically protected surface state is guaranteed
at the interface between two topologically distinct systems with
ΔC � 1, which possesses features of gaplessness, unidirec-
tional propagation, and immunity to structural defects. Most
early topological systems are found in the Hall effect family,
e.g., quantum spin Hall effect[9–12], quantum anomalous Hall ef-
fect[13–15]. More detailed information can be found in previous
reviews[16–18].

For a long time, research on topological physics had focused
mainly on condensed-matter systems. In 2008, Haldane and
Raghu[19,20] made the crucial generalization of topological
physics into photonics by proposing that the presence of*Address all correspondence to Shuang Zhang, shuzhang@hku.hk
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“nonreciprocal” (Faraday-effect) media in photonic crystals can
introduce a direct analog of the chiral edge states of electrons in
the quantum Hall effect. The photonic bands would have non-
trivial topological invariants in such an electromagnetic system.
Shortly afterward, the idea was experimentally implemented by
Wang et al. from MIT[21,22]. These works ushered in topological
photonics research[23–34], which extended topological physics
from quantum to classical systems. Similar ideas were later ex-
tended to other classical wave systems, e.g., acoustic waves,
elastic waves[35–37]. Thus far, most studies on topological photon-
ics have been implemented based on photonic crystals due to the
similar principles between photonic crystals and electronic crys-
tals. A number of recently published reviews have covered the
development of the entire field[38–40].

This review will focus on another booming implementation
in topological photonics based on metamaterials, especially the
topological system at microwave frequencies based on three-
dimensional metallic resonant structures. We will first briefly
introduce some commonly used metamaterials in topological
photonics and apply an RLC-based model (a circuit model con-
sisting of a resistor, an inductor, and a capacitor) to describe its
effective medium properties. Subsequently, an example is high-
lighted to show how particular constitutive relations could be
connected to the topological property of the metamaterial.
Following that, discussions on the metamaterial implementation
of various photonic topological semimetals, i.e., Weyl point
(WP), nodal line (NL), Dirac point (DP), and Yang monopole
(YM) or Weyl surfaces, by introducing synthetic dimensions,
will be presented. We will also briefly introduce some gapped
topological systems, i.e., three-dimensional topological insula-
tors (TIs) and the toroidal moment in k-space. Furthermore, a
map is illustrated to show the connection between different
topological phases. In addition, a comparison between the im-
plementations of photonic crystals and metamaterials will also
be discussed. Finally, we will discuss some perspectives and
prospects of this research field.

2 Introduction to Metamaterials
Metamaterials are artificial structures composed of subwave-
length resonators arranged in a certain spatial order. Since
the interaction of resonators with light can be custom defined,
the response of metamaterial is flexible and manipulable, result-
ing in a variety of novel physical phenomena, e.g., negative
refraction, phase modulation, polarization control, and holo-
grams. More detailed reviews of metamaterial can be found
in Refs. [41–43].

Generally, metamaterials can be described by the effective
medium model due to deep subwavelength unit cells, and
the constitutive relation can be expressed in the most general
formula

�
~D
~B

�
�

�
ε0ε iγ∕c

−iζ∕c μ0μ

��
~E
~H

�
: (1)

Here, ε; μ; γ; ζ are all 3 × 3 tensors, where ε and μ are the rel-
ative permittivity and permeability tensors, respectively, and γ
and ζ are magneto-electric tensors. For a Hermitian system, they
satisfy ε† � ε; μ† � μ; γ � ζ†. These tensors can be engineered
via the judicious design of resonator configurations.

Here, we briefly summarize some general properties of
metamaterials.

A. In general, tensors ε and μ are anisotropic. For example, a
hyperbolic metamaterial[44,45] made of metallic wires behaves as
a metal for E-field along the direction of metallic wires and as a
dielectric along the other two directions, e.g., with εxx; εyy > 0
and εzz < 0. The equal frequency surface (EFS) of such a
medium shows open hyperboloids, which allows a very large
k-component, and facilitates potential applications, such as
sensing or imaging[44–47].
B. Tensor γ describes the coupling between the electric field

and magnetic field. In general, the trace of tensor Tr�γ� associ-
ated with diagonal terms γii is called the chiral term or the
bi-isotropic term[48,49], and the remaining terms (off-diagonal and
zero-traced diagonal terms) indicate the bianisotropic terms[50,51].
For an isotropic chiral medium with γii � γ, where i � x; y; z, the
strong chirality lifts the degeneracy of the two circularly polarized
states with the refractive indices n� � �����

εμ
p � γ, which allows to

achieve the negative refractive index without requiring simultane-
ous negative permittivity and negative permeability[49]. For exam-
ple, magneto-electric coupling in the famous split-ring resonator
(SRR) leads to the presence of a bianisotropic term, which was
employed to realize transverse photon spin in a bulk medium[51].
C. Unlike photonic crystals, the constitutive relation is con-

trolled mainly by the individual resonant units, so their spatial
arrangement serves as an additional degree of freedom to control
the wave propagation in the system. Recently, it has been used to
control the local phase to realize wavefront modulation, holo-
grams, etc., mainly in the 2D counterpart of metamaterials,
the so-called metasurfaces[52,53]. Also, this degree of freedom
can introduce various gauge fields into topological photonics[54].

An RLC-based model[55,56] is introduced to describe the con-
stitutive relation induced by the resonant unit. For each metallic
resonant unit, e.g., an SRR or a helix resonator, by considering
the motion of electrons driven by external electromagnetic
fields, the electromotive force can be written as

�
U � −iωL · I � q

C � IR;

U � R
d~l · ~E − R

d~s · ∂~B∕∂t;
and

�
I � _q � −iωq;
∂~B∕∂t � −iωμ0 ~H;

(2)

where the effective RLC circuit model consists of a resistor R,
an inductor L, and a capacitor C. We have chosen the harmonic
time-dependent term exp�−iωt�. From the induced charge q and
current I, we have the following expression for the electric/
magnetic dipole responses:

~p � q · ~Sp � q ·
Z

d~l and ~m � −iωq · ~Sm � I ·
Z

d~s:

(3)

Here, we introduce two column vectors ~Sp and ~Sm to represent
the electric and magnetic dipole responses, respectively.
Therefore, the electromotive force can be U � �−ω2 L�
1∕C − iωR�q � ~Sp · ~E� iωμ0~Sm · ~H. With the effective RLC
resonant frequency ω0 � 1∕

�������
LC

p
and effective loss Γ � R∕L,

the induced charge can be solved:

q �
~Sp · ~E� iωμ0~Sm · ~H

L · �ω0 − ω2 − iωΓ� : (4)

Therefore, considering a unit volume V, the polarization field ~P
and magnetization field ~M are
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~P � ~p
V
�

~Sp�~Sp · ~E� � iωμ0 · ~Sp�~Sm · ~H�
LV · �ω0 − ω2 − iωΓ� ;

~M � ~m∕V � −iω~Sm�~Sp · ~E� � ω2μ0 · ~Sm�~Sm · ~H�
LV · �ω0 − ω2 − iωΓ� : (5)

Inserting this equation into the constitutive relation ~D �
ε0εbg ~E� ~P; ~B � μ0�μbg ~H � ~M�, one can derive the material
tensors as

ε � εbg · I �
~Sp~Sp

ε0LV · �ω0 − ω2 − iωΓ� ;

μ � μbg · I �
�ω∕c�2 · ~Sm~Sm

ε0LV · �ω0 − ω2 − iωΓ� ;

γ � ζ† � �ω∕c� · ~Sp~Sm
ε0LV · �ω0 − ω2 − iωΓ� : (6)

Here, the dyadic tensor ~a ~b � aibjêiêj denotes a 3 × 3 matrix.
Thus, in such a mediumwith effective properties derived from the
responses of individual resonant units, the effective ε; μ; γ; ζ ten-
sors are coupled and fully determined by the electric and mag-
netic dipole responses ~Sp and ~Sm, respectively. A parallel
configuration of the correlated electric and magnetic dipoles
can induce the chiral response, while an orthogonal configuration
enables the bianisotropic response. For example, ~Sp � êz
(~Sp � êy) and ~Sm � êz introduce a nonzero γzz (γyz) term.

In general, a topological state can be linked to a particular
constitutive relation. The degrees of freedom in metamateri-
als—27 in a Hermitian system and 54 in a non-Hermitian
system—offer the possibility to realize specific topologies.
For example, a chiral hyperbolic metamaterial corresponds to
a Weyl semimetal, a medium with a perfect electromagnetic
duality can function as a Dirac semimetal, and a medium with
antisymmetric bianisotropy may serve as a TI. The following
sections will describe each situation in detail.

It is worth mentioning that topological states are determined
by certain combinations of the effective parameter tensors of
the metamaterial, which in general cannot be realized by a
single resonator. Quite often, the design of topological metama-
terials requires a judicious combination of different resonant
structures, e.g., ~P � �Pi ~pi�∕V tot and ~M � �Pi ~mi�∕V tot.
Therefore, although the response derives mainly from the res-
onant unit, analysis based on point/space groups is helpful to
facilitate the design by canceling undesired electromagnetic
responses. It is worth saying that the combination above can
describe only a subwavelength state far from the Brillouin zone
boundary, and a complete effective medium model fully consis-
tent with the space group is still lacking.

The dispersion of such a dispersive medium is usually solved
using the effective Hamiltonian method[57] by introducing aux-
iliary parameters to linearize the standard Maxwell equations. In
this way, the Maxwell equations can be rewritten as an eigen
problem for ω: H�~k�Ψ � ωΨ. In addition, a more accurate
model can be developed by considering the nonlocal effect in-
duced by the interaction between adjacent units[58].

Indeed, once the corresponding constitutive relation is
known, the k · p method can always be applied to obtain the
approximate low-energy Hamiltonian near a topological degen-
eracy or a TI. For example, in a Weyl semimetal with a twofold

degeneracy point, a standard method to obtain its low-energy
Hamiltonian contains two steps. First, by solving the effective
linear Hamiltonian H�~k� directly, a twofold degeneracy can be
obtained, located at �~kWP;ωWP� with two eigenfunctions
ΨWP � �Ψ1;Ψ2�. Then using these eigenmodes as the basis
and projecting the medium’s full Hamiltonian matrix into this
subspace, one can obtain a 2 × 2 k · p approximation (KPA)
Hamiltonian to represent the low-energy Hamiltonian for a
standard WP semimetal: HKPA�~k� � ωWP · I � Ψ†

WP · �H�~k�−
H�~kWP�� · ΨWP � ωWP · I � P

ij vijδkjσi, with δ~k � ~k − ~kWP.

3 Intrinsic Topology of Photons
While the original research on topological physical systems fo-
cused mainly on spin 1/2 electron fermionic systems, it has been
shown that bosonic photons described by Maxwell equations
could also have intrinsic topology[59,60]. In this section, we show
how to separate the opposite topological charges subject to left/
right circular polarization (LCP/RCP) and realize the nontrivial
topological properties of photons.

In the Riemann–Silberstein (R-S) basis Ψ� �
1��
2

p � �����
ε0

p
· ~E� i ·

�����
μ0

p
· ~H�, Maxwell’s equation in vacuum

can be expressed as two first-order equations:

i~k × Ψ� � �k0Ψ�; (7)

with k0 � ω∕c. A cross product can be expanded using the
Gell-Mann matrix, and the above eigen equation can be ex-
pressed in a standard formula:

H � kx · λx � ky · λy � kz · λz and HΨ� � �EΨ�; (8)

with the relabeled Gell-Mann matrix defined as

λx �

2
664
0 0 0

0 0 −i
0 i 0

3
775; λy �

2
664

0 0 i

0 0 0

−i 0 0

3
775;

λz �

2
664
0 −i 0

i 0 0

0 0 0

3
775: (9)

These operators obey the Lie algebra �λi; λj� � iεijkλk. The
relation is similar to that among the three Pauli matrices.
This connection reveals the similarity between a fermionic spin
1/2 electron system and a bosonic spin-1 photon system. Indeed,
Eq. (8) represents the minimal Hamiltonian of a standard
threefold linear band degeneracy point that carries topological
charge 2[61,62], and such a doubled charge directly describes a
spin-1 quasiparticle.

From Eq. (8), e.g., for the Ψ� basis, it is convenient to solve
the LCP/RCP eigenstates e� � 1��

2
p �~θ� i~ϕ� · exp�iϕG� with

eigenvalue E � �k0, in which ~θ and ~ϕ are azimuthal and polar
unit vectors, respectively, and ϕG is an arbitrary gauge phase.
The photon has a linear dispersion in vacuum ω � �ck0,
representing a massless particle located at the origin of momen-
tum space ~k � 0, as shown in Fig. 1(a). By parameterizing
θ as the azimuth angle from kz, the eigenstates e� �
1��
2

p �−cos ϕ cos θ � i sin ϕ;−sin ϕ cos θ 	 i cos ϕ; sin θ� ·
exp�iϕG� are ill defined at either the north θ � 0 or south θ � π
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pole for a fixed ϕG—they are multivalued if we consider an
adiabatic evolution process, despite the fact that ϕ cannot be
defined at these poles, as both x and y coordinates are zero.
Such discontinuous behavior is impossible to remove by choos-
ing a particular gauge field or a specific coordinate system,
which directly reveals the nontrivial intrinsic topology of such
a photon system. Indeed, if we are able to find a gauge in which

all wave functions are well defined, then the system cannot have
a nontrivial topology.

This topology can be investigated by defining the magnetic
flux in momentum space, i.e., Berry curvature: ~Fk � ∇k×
~Ak � �~k∕k3, with ~Ak � −ie†� · ∇ke�. This curvature directly
determines the accumulated geometric phase after the parallel
transport through a closed path, Δθ � R

dΩ
~F · d~S � �dΩ,

Fig. 1 (a) Linear dispersion (light cone) of the 3D “massless” photon ω = ±ck. At the origin of
momentum space, i.e., ~k � 0, there exists a magnetic monopole with the quantized Chern number
CL/R = ±2 for left/right circular polarization. (b) Schematic diagram of the geometric Berry phase; the
parallel transport on a curved surface will accumulate a geometric phase of Δθ related to the solid
angle dΩ. (c) Evolution of EFSs and their Chern numbers with additional chirality and hyperbolicity
and the topologically protected surface states on the interface between chiral hyperbolic meta-
material and vacuum. (d) Realizable chiral hyperbolic metamaterial and topologically protected
surface wave, whereas a backscattering-immune surface wave propagates across a three-
dimensional step. (a) Adapted from [59], (c) from [63], and (d) from [64].
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as shown in Fig. 1(b). A Chern number is mathematically
defined by an integral over an S2 sphere that encloses the degen-
eracy point to represent the topological charge at ~k � 0:

C� � 1

2π

Z
~Fk · d~S � �2: (10)

The magnetic monopole charge for the two circular polari-
zation states is naturally quantized, Q� � 1

2
C� � �1, which

shows the intrinsic topology for bosonic photons. For complete-
ness, there is one additional eigenstate e0 � ~k∕k for the eigen-
value E � 0, which possesses a vanishing Chern number
C0 � 0.

In a natural system, such a degeneracy point must be moved
to a physically meaningful positive frequency with electric/mag-
netic resonances and longitudinal modes. However, despite the
nontrivial topology of each circularly polarized state, degen-
eracy causes the topology of the overall system to remain trivial.
Nevertheless, if these circularly polarized states can be separated
in such a way that preserves their individual nontrivial topology,
a topological phase with protected surface states would be
expected[63–65].

This topological phase from the intrinsic topology of photons
can be realized by transforming an isotropic system to a chiral
hyperbolic system[63], as shown in Fig. 1(c). We start by intro-
ducing chirality γ, the diagonal γ matrix entries γii, by employ-
ing helical structures as unit cells. It lifts the degeneracy of
the two circularly polarized waves with different effective re-
fractive indices n� � �����

εμ
p � γ; therefore, the Chern number

of the outer/inner EFS is �2 · sgn�γ�. Such a process reveals
the intrinsic topology of the two circularly polarized states.
However, to fully separate these two states with a complete
gap in momentum space, an additional anisotropy item
εz ≠ εx � εy is introduced. As shown in Fig. 1(c), both EFSs
are elliptically distorted, with the outer one experiencing a more
significant deformation, i.e., the EFS is more flattened with very
large in-plane wave vectors. An extreme anisotropy with εz ap-
proaching infinity will break the outer EFS into two pieces, with
each one sharing half of the total Chern number. Considering
positive and negative infinities as the same point, further push-
ing εz through infinity to a finite negative value while keeping
εx � εy fixed, i.e., by incorporating some metallic wires into
the unit cell, these two sheets are deformed into two hyperbol-
oids, completely separated from the original inner EFS by a
gap. This chiral hyperbolic metamaterial thus displays three
well separated and topologically nontrivial EFSs, with Cup �
Clower � sgn�γ� and Ccenter � −2 sgn�γ�. The topologically
nontrivial EFSs are expected to be bridged by equifrequency
surface arcs, at surfaces of certain orientations. Notably, the spa-
tial separation of left- and right-moving surface waves at a given
kz prevents backscattering from any z-invariant disorder.

Experimental observation of such a photonic topological sys-
tem[64] was implemented using the unit cell shown in Fig. 1(d). It
was constructed by stacking up two functional layers: a layer
consisting of an array of metallic wires along the y direction
to introduce the desired hyperbolic properties, and a layer con-
sisting of metallic helices to introduce chirality and break the
inversion symmetry (IS) [left panel of Fig. 1(d)]. Additional
metallic crosses are superimposed on the wires to suppress
the nonlocal effects. Such a photonic metamaterial supports a
topologically protected surface state. In the experiment, a
near-field measurement directly maps out both the amplitude

and phase of the field on the surface of the metamaterial. A
Fourier transform of the measured complex field provides the
EFS in momentum space, which agrees well with the simulation
results [middle panel of Fig. 1(d)]. In addition, the surface wave
propagation across a step formed by the metamaterial is mea-
sured. There is no reflection across the step, serving as direct
visualization of the robustness of the topological surface states
[right panel of Fig. 1(d)]. It is worth mentioning that this chiral
hyperbolic metamaterial is indeed a type-II Weyl system[65,66],
and the observed nontrivial topological property originates from
WPs hosted by the system, which will be discussed in the next
section.

4 Weyl Semimetals in Metamaterials
WPs play a key role in topological physics. WPs[67] refer to the
isolated degeneracy points in 3D momentum space with a linear
band crossing, i.e., 3D extension of the 2D DPs in graphene. In
electronic systems, one of the most well-known material
systems that host WPs is the TaAs family (TaAs, TaP, NbAs,
NbP)[40,68–70]. Close to the WPs, the effective Hamiltonian
involves only two bands and takes the general form H �
ω0 · I �

P
iξi�~k� · σi, with σi being Pauli matrices that obey

both the Lie algebra �σi; σj� � iεijkσk and Clifford algebra
fσi; σjg � 2δij. Without any particular symmetry, the band
crossing submanifold determined by three ξi � 0 conditions
must be three dimensions lower than the crystal’s dimension,
which guarantees the existence of a 0D WP in 3D momentum
space. Around such a degeneracy point, ξi�~k� takes a simple
form of ξi�~k� �

P
jvijkj �O�k2� after a standard Taylor ex-

pansion process. Therefore, the low-energy Hamiltonian of stan-
dard Weyl degeneracy reads

H � ω0 · I �
X
i;j

vijkjσi: (11)

This Hamiltonian shows a strong resemblance to the triple
degeneracy points located at ~k � 0 discussed in the previous
section. Such a degeneracy point is topologically stable because
any perturbation ΔH � a · σi can shift only the location of WPs
in momentum space but cannot lift the degeneracy. The
topology of the WP is characterized by the Berry curvature
and Chern number. Each standard WP carries an integer
Chern number:

CWP � sgn�det�v�� � �1: (12)

This integer topological invariant called chirality implies a mag-
netic monopole charge QWP � 1

2
CWP � � 1

2
located at the

degeneracy point. Therefore, the only way to break the degen-
eracy is to merge and annihilate two WPs carrying opposite
topological charges. For a particular isotropic WP with
vij � �v0δij, the magnetic monopole serves as the source
(or drain) of Berry curvature:

~FWP � QWP ·
~k
k3
: (13)

Consider the constraints of Berry curvature under different
symmetries:
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~F�~k� � �~F�−~k� with IS;

~F�~k� � −~F�−~k� with time-reversal symmetry �TRS�: (14)

There will be no WP when both IS and TRS are present. AWeyl
semimetal must break either or both of them. Also, the famous
Nielsen–Ninomiya no-go theorem[71–74] dictates that WPs in a
crystal have to appear in pairs with

P
i Ci � 0. Therefore, the

minimal number of WPs with broken IS or TRS is four or two,
respectively.

The bulk boundary correspondence of the topologically non-
trivial chiral characteristic predicts the existence of topologi-
cally protected Fermi arcs[75], which connect two WPs with
opposite chiralities, as shown in Figs. 2(a) and 2(b).
Consider a cylinder in the Brillouin zone whose axis is
perpendicular to the surface; if the cylinder surrounds one
WP with Hamiltonian H � P

i vikiσi, then the Hamiltonian
H � H�θ; kz� � vxkr cos θ · σx � vykr sin θ · σy � vzkz · σz
can be interpreted as the 2D Chern insulator for a nonzero fixed
kr parameter. The two parameters �θ; kz� define the surface of the
cylinder, which further can be regarded as a torus due to the
periodic boundary condition along kz in momentum space.
Berry curvature integration gives the Chern number of such a
2D Chern insulator, which is determined by summation of
the chiralities of the WPs enclosed within the cylinder. With
a boundary at z � 0, there must exist a chiral edge state for this
subsystem, which crosses zero energy at a certain critical θ. This
state can be obtained for every cylinder enclosing only a single
WP. Thus, a topologically protected arc terminates at two WPs
with opposite chiralities, the so-called Fermi arc, which serves
as one of the key fingerprints of Weyl systems.

The aforementioned chiral hyperbolic media[63,64] are pho-
tonic Weyl semimetals, as shown previously[65]. One can gener-
ate either a type-I or type-II WP[80–82] by controlling the nonlocal
effect of the longitudinal mode. A chiral hyperbolic medium has
TRS but lacks IS. Indeed, there are two negative WPs wrapped
by the center EFS, and the upper/lower EFS each encloses a
single positive WP, as shown in Fig. 1(c). These WPs are
responsible for the nontrivial EFSs with C ≠ 0, and the topo-
logically protected surface state arcs connect the projections
of these bulk EFSs.

Apart from this, WPs of various forms have been proposed
and realized in bosonic or fermionic systems[23,26,30,83–85]. A re-
cently published review about Weyl semimetals in condensed
matter systems can be found in Ref. [40]. However, a compli-
cated configuration of energy bands at the Weyl energy is
unsuitable for research or applications. In particular, some
highly intriguing effects, such as helicoidal surface states[76,86]

and chiral anomaly[87–89], may not be favored in these Weyl
systems.

In 2018, Yang et al. proposed an ideal Weyl system based on
a photonic metamaterial setup[76,77], as shown in Figs. 2(c) and
2(d). All Weyl nodes are symmetry related, residing at the same
energy with a significant momentum separation and devoid of
nontopological bands in a sufficiently large energy interval.
Such a meta-crystal exhibits four WPs, the minimum number
allowed in the presence of TRS, and a symmorphic space group
P4̄m2 (No. 115) is used to guarantee the existence and location
of the four ideal WPs.

The designed photonic ideal Weyl semimetal consists of peri-
odically buried saddle-shaped metallic coils in a dielectric sub-
strate, as shown in the inset of Fig. 2(d). Further analysis of the

electromagnetic response reveals that the unit can be viewed as
two orthogonal SRRs that behave like two resonant inclusions
in each unit cell. The electromagnetic dipolar responses of these
two resonators can be approximately expressed as

� ~Sp;red � �0; l; 0�T;
~Sm;red � �A; 0; 0�T;

and

� ~Sp;blue � �l; 0; 0�T;
~Sm;blue � �0; A; 0�T:

(15)

A and l are the effective area and length of the resonators, re-
spectively. Therefore, the effective medium model in Eq. (9)
exhibits the symmetric bianisotropic effect γxy � γyx ≠ 0, lead-
ing to a direction-dependent chirality response, which breaks IS.
The unavoidable crossings between the longitudinal mode with
negative dispersion (due to the nonlocal effect) and the trans-
verse mode with positive dispersion along Γ −M form a
type-I WP. The other three WPs are related to it by theD2d sym-
metry operations of the structure. The space group symmetry
guarantees that these four Weyl nodes are all located on Γ −M
at the same frequency, and any two adjacent WPs carry opposite
chiralities.

Yang’s paper studies the helicoidal structure[76,86] of the sur-
face state arcs by applying near-field scanning measurement.
The measured EFSs, as shown in Fig. 2(e), exhibit four symmet-
rically displaced elliptical bulk projections, and two surface
state arcs run across the Brillouin zone boundaries and bridge
the neighboring bulk projections with opposite chiralities. With
the increase in frequency, the top surface arc rotates anticlock-
wise/clockwise, depending on the chirality of the WP where it
emerges. Around 13.5 GHz, a transition occurs with the surface
arc connection changing into a new configuration: a direct sur-
face arc connected between the bulk states within the Brillouin
zone and a surface ellipse centered at its edge. The surface el-
lipse and surface arcs together form the unified helicoid surface
in the dispersion of the surface states.

Such an ideal Weyl semimetal system can also serve as a
perfect photonic platform for exploring other intriguing effects
of WPs, such as chiral anomaly[54], and developing possible
topological devices, such as vortical reflection[90], spiraling
Fermi arcs[90], and Veselago lenses[91].

Here, we only briefly introduce the realization of chiral
anomaly based on this ideal Weyl semimetal system[54,92], as
shown in Figs. 2(f) and 2(g). Chiral anomaly[87–89] is an impor-
tant signature associated with the chirality of WPs. Weyl sys-
tems can support one-way chiral zero modes under a strong
magnetic field with non-conservative chiral currents. This can
be realized by introducing a pseudo magnetic field via engineer-
ing the space-dependent shift of degeneracy points in momen-
tum space[93,94]. Rotating the metallic coil with a tiny angle θ
causes the angular shift of WPs around the Γ point, which
can be considered as the artificial gauge field: ~kWP �
~kWP;0 � ~AWP. Taking the WP Q1 as an example and setting ro-
tation angle θ as a linear function of the spatial coordinate
θ � ax, one can approximately define the gauge field:

~AWP�x� � Δ~kWP�x� ≈ �1;−1; 0� · ax · j~kWP;0j∕
���
2

p
: (16)

This gauge field implies an artificial magnetic field:
~B � Bzêz � −a · j~kWP;0j∕

���
2

p
· êz. In the experiment, such an

artificial magnetic field can reach 477m−2. For clockwise rota-
tion, the direction of the generated artificial magnetic field for
each WP can be along either z or −z direction. Determined by
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Fig. 2 (a) Schematic diagram of WPs and the Fermi arcs. (b) Intrinsic topologically protected
Fermi arcs connect two WPs with opposite chiralities. (c), (d) Structure and band topology of
the ideal photonic Weyl metamaterial. (e) Experimental EFSs of the topological helicoidal sur-
face states. (f), (g) A pseudo-gauge field generated by the space-dependent rotation angle sup-
ports a zeroth-order chiral Landau level with one-way propagation in ideal Weyl semimetals.
(h) Dispersion spectrum of plasmonic WPs in magnetized plasma with time-reversal symmetry
(TRS) broken. (i) Unit structure and EFS of an ideal unconventional Weyl semimetal in a chiral
photonic metamaterial withC = ±2. (c)–(e) Adapted from [76,77], (f), (g) from [54], (h) from [78], and
(i) from [79].
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both the directions of the artificial magnetic fields and the chir-
alities of WPs, the zeroth Landau levels for WPs Q3 and Q4
have positive group velocities along the z direction. In contrast,
WPs Q1 and Q2 have chiral zero modes with negative group
velocity. This k-dependent one-way propagation was experi-
mentally verified.

In addition to the aforementioned Weyl semimetal with bro-
ken IS by chiral or bianisotropic terms, photonic Weyl semimet-
als can also be realized with broken TRS in a naturally existing
medium—magnetized plasma: free electron gas under a static
bias magnetic field[78,95]. This magnetized plasma can also be
described as an effective medium. The cyclotron frequency
can exceed the plasma frequency when the applied magnetic
field is strong enough, which results in crossings between
the longitudinal plasmon mode and helical propagating modes
at the plasma frequency, as shown in Fig. 2(h). These crossing
points are WPs responsible for all non-vanishing Berry curva-
ture and nontrivial topological features[78]. The experimental ob-
servation of such photonic Weyl degeneracy is implemented in a
magnetized semiconductor InSb at the terahertz band[95]. Ideal
Weyl semimetals with broken TRS were also experimentally
realized in 3D magnetic photonics crystals[96], or in an ultracold
atom system by engineering 3D spin–orbit coupling[97], which
includes only two WPs, the minimum number of WPs in a
crystal.

There are also some unconventional Weyl semimetals
that may carry topological Chern numbers of two or
higher[61,62,98–101], e.g., a Hamiltonian reads

H �
�

v⊥ · kz v∥ · �kx − iky�N
v∥ · �kx � iky�N −v⊥ · kz

�
; N ∈ Z: (17)

This Hamiltonian implies a Chern number C � �N. It pos-
sesses different properties from the standard charge-1 WPs, in-
cluding multiple Fermi arcs that stretch over a large portion of
the Brillouin zone, as shown in Fig. 2(i) in a photonic metama-
terial implementation[79].

5 Nodal Line Semimetals in Metamaterials
NL semimetals[102] contain band crossings in the form of one-
dimensional rings in the Brillouin zone of a 3D crystal. CaP3
and SrIrO3 are examples of such NL semimetals[103,104]. Such
a double degeneracy must satisfy the three conditions ξi�~k� � 0,
i � 1; 2; 3 discussed in the above sections. Therefore, the pres-
ence of an NL semimetal must be protected by extra spatial sym-
metries, such as mirror, inversion, glide, or screw symmetries,
which reduces the number of practical constraints[102]. The NL
may transform into other topological states by introducing spin–
orbit coupling or a lowered crystal symmetry. A significant fea-
ture of the NL is that an eigenstate adiabatically transported
along with a closed π1 loop threading the NL accumulates
�π Berry phase, leading to a Zak phase difference between
the inside and outside of the NL[105]. Like Weyl semimetals,
NL semimetals are also accompanied by surface states, the
so-called drumhead surface states, characterized by surface
bands embedded inside the surface projections of bulk NLs.
However, these surface states are not robust, which means a
small perturbation can destroy the surface bands[106,107].

A photonics NL semimetal was first predicted by Lu et al.[23]

based on a double-gyroid photonic crystal. Apart from this, one
of the first realized NL semimetals in the metamaterial context is

an I-shaped metamaterial[108] satisfying the space group P4/mbm
(No. 127), as shown in Figs. 3(a)–3(c). The structure consists of
two mutually orthogonal I-shaped metallic cut-wire resonators
lying in the x–y plane. The electromagnetic responses of these
two I-shaped metallic cut-wires with effective length l can be
approximately expressed as

~Sp;� � 1���
2

p · �l;�l; 0�T and ~Sm;� � �0; 0; 0�T: (18)

Along the in-plane ~k directions, the lowest three bands are
formed by two transverse modes and a longitudinal bulk plas-
mon (LP) mode. The orthogonality between LP and transverse
electric (TE) modes is guaranteed by the mirror symmetry (Mz)
of the system. The 2D band structure confirms the ring degen-
eracy between LP and TE modes when kz � 0. Through spatial
Fourier transformations of the scanned near-field distributions,
both the bulk and surface states of the NL semimetal were
observed.

In such a metamaterial, the nonlocal effect[112], which induces
the negative slope of the LP mode, plays a key role in the for-
mation of NL semimetals. This nonlocal effect can be involved
in the effective medium model by considering a modified k-

dependent effective length: l�~k� � l0 ·
����������������������������������
1 − α · �k2x � k2y�

q
,

where α is a constant indicating the modulation strength. It is
worth saying that if the dielectric layer is replaced by a
gyro-electric material that breaks TRS, the NL semimetal would
be gapped everywhere except for at two isolated points along the
applied magnetic field, which are identified as WPs. Such a
transformation from WPs to an NL or vice visa can always
be realized through a tuned space group with lowered symmetry.

A similar NL semimetal in metamaterial[109] is shown in
Figs. 3(d)–3(f), in which the structure satisfies space group
P4/nbm (No. 125). The unit resonator is similar to the aforemen-
tioned design in the ideal WP system but in a different space
group with IS. The degeneracy forms an NL protected by
glide symmetry. Interestingly, this NL semimetal possesses
an hourglass-shaped band structure, where the line degeneracies
cannot be annihilated while preserving all underlying spatial
symmetries, in contrast to the previous one arising from acci-
dental degeneracy between two bands with opposite mirror
eigenvalues.

To describe such an NL semimetal located at the Brillouin
zone boundary with kz � π∕pz, a direct constitutive relation
obtained from Section 2 is insufficient due to the lack of
periodic structures and a Brillouin zone. A space-group-based
analysis would be more appropriate. The lattice contains three
glide mirror operations involving a half-lattice translation: Mx∶
�x;y;z�↦�−x;y�1∕2;z�, My∶�x; y; z�↦�x� 1∕2;−y; z�, and
Mz∶�x; y; z�↦�x� 1∕2; y� 1∕2;−z�. The bands located on
the Brillouin zone boundaries of the kz � π∕pz plane,
e.g., an arbitrary P point in Fig. 3(e), are all doubly degenerate
due to the anticommutation relations fMz;Myg � 0
(fMz;Mxg � 0) when ky � π∕py (kx � π∕px). Such a condi-
tion ensures that states jψi and Myjψi (Mxjψi) can be two
degenerate eigenstates of the Mz operator, but with opposite
eigenvalues. However, at the Z point with ~k � �0; 0; π∕pz�,
the little group D4h ensures that two degenerate pairs belong to
two higher irreducible representations Eu and Eg, which possess
Mz eigenvalues 1 and−1, respectively. On the whole kz � π∕pz
plane, Mz symmetry is preserved, and thus any states on this
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plane can be labeled by the eigenvalue of Mz. Therefore, the
states with the same eigenvalue of Mz must be connected, as
shown in Fig. 3(e), which constructs hourglass-shaped band
dispersion with an inevitable intersection. As P can freely move
along the Brillouin zone boundaries, a photonic hourglass NL is
located on the kz � π∕pz plane. A similar hourglass NL was
recently proposed in the phonon spectra of natural materials[113].

Another design of NL metamaterial[110] is shown in Figs. 3(g)
and 3(h), which can also be transformed from the WP metama-
terial[64] shown in Fig. 1(d) by removing the chiral part. This
metamaterial can be described by a biaxial hyperbolic effective
medium with ε � diag��εx; εy; εz��, where all three εi are
different from each other. Due to the TRS and IS, multiple
NLs occur, located on the high-symmetry mirror planes, that
is ki � 0, with i � x; y; z. The most significant feature is the
mutually linked structures. As a consequence, closed loops that
encircle a blue (red) NL formed between the upper (lower) two

bands both accumulate �π Zak phases, accompanied by
evolutions for different eigenstates. Globally, they are described
by the non-Abelian quaternion group Q[114], where Q �
��i;�j;�k;�1�, with anticommuting imaginary units satisfy-
ing ij � −ji � k and i2 � j2 � k2 � −1, as shown in
Fig. 3(i). The sign of the charge assigns an orientation to the
nodal links, and topological charge −1 indicates a loop encir-
cling two NLs with the same orientations and color. It is topo-
logically distinct to the trivial class 1, which can be smoothly
shrunk to a single point without touching any NLs. These non-
Abelian quaternion charges possess non-commutative and rich
braiding structures with multiple bandgaps tangled together,
which impose additional constraints on the admissible NL tran-
sitions. Recently, there has been growing attention paid to NLs
with special non-Abelian braiding features and topological
charges. In a transmission line network, these non-Abelian topo-
logical charges are observed through the eigenstate-frame

Fig. 3 (a) Unit of an I-shaped metamaterial satisfying the space group P4/mbm (No. 127).
(b) Simulated band structure along high symmetry lines. (c) The measured bulk and surface dis-
persions identify a single nodal ring in the metamaterial. (d)–(f) Similar to (a)–(c), but for another
metamaterial configuration satisfying space group P4/nbm (No. 125). (g) Biaxial hyperbolic meta-
material belonging to space group Pmmm (No. 47). (h) Nodal link structure in the metamaterial.
(i) Graphical representation of the quaternion group Q and associated non-Abelian group multi-
plications. (a)–(c) Adapted from [108], (d)–(f) from [109], (g), (h) from [110], and (i) from [111].
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sphere, and the non-Abelian bulk boundary correspondence has
been observed[111,115].

6 Dirac Point and High-Dimensional
Degeneracy in Metamaterials

Similar to WPs, DPs[116] in a 3D crystal are also the
linear crossing points of energy bands but with fourfold degen-
eracy. Dirac semimetals Na3Bi and Cd3As2 were the first exper-
imentally confirmed 3D topological semimetals[117,118]. Dirac
semimetals bridge conventional insulators, TIs, and Weyl semi-
metals. It is equivalent to overlapping two WPs with opposite
topological charges in momentum space. It may be split into two
individual WPs with opposite chiralities through breaking
either TRS or IS. Thus, the standard Hamiltonian of a massless
DP can be block diagonalized: HD � diag�HW;H


W�, with
HW�~k� �

P
i kiσi representing a standard WP. Consequently,

the Chern number for a DP is always zero, but at the interface
between air and DP, there are still spin-dependent (or mode-
dependent) topological surface states, and the Fermi arcs from
the two individual WPs are formed in different eigenstate
subspaces.

A uniaxial metamaterial can be designed to realize a 3D
photonic DP by introducing resonance in both the permittivity
and permeability along the axis[119,120]. The simplest effective
medium takes the formulas ε � diag�1; 1; εzz� and μ �
diag�1; 1; μzz�, with the perfect electromagnetic duality εzz �
μzz � 1 − ω2

p∕ω2 (similar for the identical Lorenz-type disper-
sions). In this system, the two degenerate transverse modes
(LCP/RCP) and the two degenerate LP modes (Ez � i ·Hz)
cross each other at a pair of symmetric points �� ~KD;ωD� �
�0; 0;�kD;ωp�, with kD � ωp∕c. Near these fourfold degen-
eracy points, the effective Hamiltonian has the form

HD � ωk0 · I �
X3
i�1

viki · Γi; (19)

with Γi indicating the Dirac matrices ~Γ � �−σ0τ1; σ3τ2; σ0τ3�
satisfying the Clifford algebra fΓi;Γjg � 2δij. This Hamiltonian
covers the standard DP form except for the additional tilt and
shift terms.

The metamaterial design[119,120] for realizing such a uniaxial
constitutive relation is shown in Figs. 4(a) and 4(b). The unit
cell consists of a set of metallic helices satisfying D4 h group
symmetry. The metallic helices with Sp;z ≠ 0 and Sm;z ≠ 0 in-
troduce both electric and magnetic resonances along the z direc-
tion. Also, the mirror and C4 rotation symmetries eliminate all
the chiral and bianisotropic responses. Therefore, theD4 h group
symmetry ensures that both ε and μ take the form of the uniaxial
tensor. The duality of εzz and μzz is realized by the precisely
adjusted structural parameters effectively with jSp;zj �
kD · jSm;zj. The duality symmetry[122] protects the DPs in such
a metamaterial. Spin-dependent Fermi arcs are experimentally
observed in such a Dirac semimetal metamaterial, as shown
in Fig. 4(c).

As a gapless topological phase, a Dirac semimetal serves as a
parent topological phase that can lead to various interesting
topological phases, e.g., TIs, Weyl semimetals, and NLs,
through symmetry reduction. Such a DP can also be extended
to a higher-dimensional topological structure by introducing ad-
ditional synthetic dimensions[121].

Mathematically, for the Hermitian matrix of rank four, there
are exhaustively five gamma matrices satisfying the Clifford
algebra fΓi;Γjg � 2δij, with Γ1;2;3 given in Eq. (19), and addi-
tional Γ4 � σ2τ2, Γ5 � σ1τ2

[123]. Therefore, in 5D space, there
exists a gapless Hamiltonian:

HY � ωk0 · I �
X5
i�1

viki · Γi; (20)

which represents the fourfold degeneracy point, the so-called
YM[124,125]. Three of the gamma matrices can couple with the
3D wave vectors, and the remaining two matrices can couple
with two material parameters, which can be further treated as
two additional synthetic dimensions. They altogether form a
5D space. Here we choose the bianisotropic terms γxz and
γyz as the two material parameters. For a judiciously designed
medium with the above uniaxial metamaterial and a purely
antisymmetric chiral matrix, γzx � −γxz, γzy � −γyz, the
medium below behaves like a 5D YM with k4 � ωpγxz
and k5 � ωpγyz

[121]:

ε̂ �

2
664
1

1

1 − ωp

ω2

3
775; μ̂ �

2
664
1

1

1 − ωp

ω2

3
775;

γ̂ �

2
664

γxz

γyz

−γxz −γyz

3
775: (21)

The Hamiltonian HY satisfies TP symmetry (T is time-reversal
symmetry and P is space-inversion symmetry) with T �
iσ2τ0K (K is the complex conjugation) and �TP�2 � −1, and
possesses a globally doubly degenerate linear band structure
near the YM. By defining a U�2� Berry connection, one can
calculate its non-Abelian second Chern number CNA

2 � �1.
The nonzero synthetic momentum components can be

introduced to the original Dirac metamaterial by adjusting
the geometry and orientation of each column of helices via
breaking the C4 symmetry. First, each helix should be precisely
adjusted, where an additional constraint Sp;ySm;z � Sp;zSm;y �
0 should be satisfied for the approximate helix responses ~Sp �
�0; Sp;y; Sp;z� and ~Sm � �0; Sm;y; Sm;z�. Second, each pair of
helices satisfying mirror symmetry should be precisely rotated
to the angles Φ1↦4 � ψ45 � 45°� �δ45;δ45 � 90°;−δ45 � 180°;
−δ45 � 270°�. Finally, the synthetic momentum components can
be introduced to realize a 5D YM metamaterial:

γ̂ ∝
Sm;y

Sm;z
·

"
0 0 cos ψ45

0 0 sin ψ45− cos ψ45 − sin ψ45 0

#
· sin δ45: (22)

A realistic metamaterial design based on the above discussion is
shown in Fig. 4(d).

AYM in 5D space is not topologically stable because Γ ma-
trices do not satisfy the Lie algebra �Γi;Γj� ≠ iεijkΓk. AYM can
transform into linked Weyl surfaces[126–128] by a general pertur-
bation item ΔH � a · Γmn, with Γmn � i∕2 · �Γm;Γn� �m ≠ n�.
Such a perturbation can be added to the YM Hamiltonian by
other material parameters, such as magneto-optic effects,
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chiralities, and anisotropic items[121]. The degenerate manifold is
called the Weyl surface because any point on the degenerate two
manifolds serves as a WP in the corresponding three-
codimension subspace orthogonal to the nodal surface. The
Abelian second Chern number CA

2 of these two manifolds is
the same as the non-Abelian one in the original YM system:
CA
2 jWS � CNA

2 jYM � �1. This global topological invariant de-
scribes the linking number of these Weyl surfaces. The mani-
festation of this linking property in a particular 3D subspace
is the wrapping of WPs by a degeneracy ellipsoid or linked
NLs, as shown in Fig. 4(d), which was experimentally veri-
fied[121]. Importantly, such a higher-dimensional structure pro-
vides a unified view of different topological phases in lower
dimensions, such as WPs, NLs, and DPs.

The topological bulk boundary correspondence in a 5D YM
or Weyl surface system is manifested by 3D Fermi hypersurfaces

and 1D Weyl arcs at the 4D boundaries of these 5D nontrivial
systems[126]. The “Weyl” property protects the 3D Fermi hypersur-
face by a nontrivial first Chern number defined in 3D subspace.
Similar to the discussion for the Fermi arc shown in Fig. 2(b), any
cross section with fixed kz located between (outside) the two YMs
corresponds to a 4D gapped system with jC2j � 1 �0�. Such a
system with nontrivial C2 is known to exhibit the 4D quantum
Hall effect and host surface states with surface WPs[129]. By gradu-
ally shifting kz between two YMs of opposite C2, the WPs form a
1D arc, i.e., Weyl arc, extending from one YM/Weyl surface to the
other, as shown in Fig. 4(e). This high-dimensional topologically
protected Weyl arc is experimentally observed in a YM system, as
shown in Fig. 4(f).

It is worth mentioning that an antisymmetric bianisotropic
matrix can provide synthetic dimensions not only in the YM
and linked Weyl surface systems but more universally in general

Fig. 4 (a) Schematic of the 3D photonic Dirac metamaterial, with each unit cell consisting of eight
helical elements satisfying D4h point symmetry. (b) Dispersions along ky (kz). (c) Spin-dependent
Fermi arcs identify the DP in such a metamaterial. (d) Modified 5D YM metamaterial with intro-
ducing additional synthetic k4 and k5 dimensions and 5D k-space (3D k-subspace) distributions of
the linked WSs perturbed from the YM metamaterial. (e) 1D Weyl arcs for both a system with YM
and that with Weyl surfaces. (f) Simulated and measured dispersions of surface states along kz

direction for YM metamaterial. (a)–(c) Adapted from [119,120] and (d)–(f) from [121].
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electromagnetic media. With the help of the Pauli and
Gell-Mann matrices, for a medium with antisymmetric bianiso-
tropic matrices, i.e., γ � −γT . Maxwell equations can be formu-
lated in an elegant form:

��ωγxyσx − kzσy� · λ2 − �ωγzxσx − kyσy� · λ5
� �ωγyzσx − kxσy� · λ7� · ΨEH

� ω ·
1

2
��σ0 � σz� · ε0ε̂� �σ0 − σz� · μ0μ̂� · ΨEH: (23)

Here, λ2, λ5, and λ7 are the three antisymmetric Gell-Mann ma-
trices, and ΨEH � �E;H�T . Therefore, εmnpkp and ωγmn are on
equal footing for a general medium with arbitrary ε and μ.

In the 3D subspace of natural wave vectors, these synthetic
dimensions provided by material parameters function as effec-
tive mass, which also corresponds to spin–orbit coupling terms
in some papers[122]. These terms induce a bandgap at the degen-
eracy point in 3D space; thus, the system behaves like a TI, dis-
cussed in the next section. Indeed, a TI can always be
considered a cross section of a higher-dimensional topological
semimetal. Thus, a TI is connected to a higher-dimensional

semimetal through the dimension reduction process, e.g., the
connection between a 2D Chern insulator and a 3D WP[75].

7 Topological Gapped Systems in
Metamaterials

In the previous sections, we discussed a number of photonic
metamaterial semimetals, including WP, NL, and DP semimet-
als, in three dimensions, and YM and Weyl surfaces in five di-
mensions. This section will briefly introduce the 3D gapped
system based on metamaterials, including photonic TIs[130]

and momentum space toroidal moments (MTMs)[131], which
can be derived from the introduction of effective mass terms into
3D DP and NL semimetals, respectively.

A 3D photonic TI[130] is shown in the right panel of Fig. 5(a),
which arises from the aforementioned 3D DP metamaterial
shown in the left panel. The designed DP metamaterial in a tri-
angular lattice consists of six connected SRRs distributed with
mirror symmetries Mz and at an angle of 120° apart in the x–y
plane. The back-to-back arrangement of the SRRs cancels the
bianisotropy. Thus, for the fine-tuned lattice parameters, 3D
frequency-isolated DP occurs at K and K0 points. A 3D TI is

Fig. 5 (a) Band structures along high symmetry lines for (left panel) 3D gapless DP and (right
panel) gapped TI, where the complete bandgap is shadowed. Inset: corresponding photonic meta-
material unit with/without breaking Mz mirror symmetry. (b) Experimental demonstration of the ro-
bustness of photonic surface states between TIs with the opposite mass terms. (c) Similar to (a),
but for a 3D NL and fully gapped NL exhibiting Berry curvature vortex. (d) Experimentally mapped
interface states between back-to-back MTMs. (a), (b) Adapted from [130] and (c), (d) from [131].
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proposed by removing the upper/lower three SRRs. This adjust-
ment breaks the mirror symmetryMz and induces a net antisym-
metric bianisotropic term γxy � −γyx, which behaves as a mass
term m · Γ4 to the original DP Hamiltonian H �
ωk0I �

P
3
i�1 vi · �ki − Ki;0� · Γi and opens the bandgap. The

sign of the mass term depends on the orientation of the three
saved SRRs[132]. This resonance-enhanced bianisotropy allows
for a topological bandgap with a width greater than 25%, which
exceeds previously demonstrated topological bandgap widths
in 2D (less than 10%) and 3D (a few percent or incomplete)
proposals.

Topological internal domain wall states flowing robustly
along with the interface between two TIs with opposite mass
terms were demonstrated in microwave experiments. Such a ro-
bust photonic transport was detected even around sharp corners
(sharply twisted, with two 60° corners), as shown in Fig. 5(b). It
is worth saying that the aforementioned 5D YM metamaterial
can be considered as such a 3D TI with nonzero synthetic
momenta.

A toroidal moment has the configuration of a ring formed by
magnetic fields[133,134]. The concept can also be extended to mo-
mentum space, i.e., an MTM formed by a ring of a Berry cur-
vature field. A photonic metamaterial’s MTM[131] is shown in
Fig. 5(c) (inset of right panel), where Berry curvature shows
a 3D vortex distribution. This MTM can be derived from the
aforementioned NL metamaterial[108], as shown in Fig. 3(a),
by introducing a small metallic bar in the vertical direction
to slightly break the mirror symmetry Mz. The effective resona-
tor response can be transformed from Eq. (18) to

~Sp;� � 1���
2

p · �l;�l; 0�T and ~Sm;� � 1���
2

p · �−A;	A; 0�T:

(24)

This configuration is equivalent to two mutually perpendicular
SRRs. The nonzero magnetic response introduces an additional
antisymmetric bianisotropic term γxy � −γyx to the original NL
metamaterial, as in the case of TI. This term behaves as a rota-
tionally invariant mass term mσy added to the original NL
Hamiltonian H � �k2x � k2y − a� · σz � kz · σx. The direction
of the metallic bar determines the sign of this mass term. As
we know, a quantized π Berry phase is accumulated along the
π1 loop threading the gapless NL. Thus, for a sufficiently small
bandgap, this Berry curvature, i.e., the effective magnetic field in
momentum space, is tightly concentrated around the original NL
ring to form the MTM. It is a polar toroidal dipole moment
T ∝

R ~k × Ω�~k�d~k[135] with Berry flux approaching positive or
negative π, depending on the sign of the mass term.

Helical domain-wall states are experimentally observed at
the interfaces between two MTM metamaterials with opposite
mass terms, which show either positive or negative dispersion,
depending on the orientations of the metamaterials. The bulk
and surface states are experimentally investigated with “back-
to-back” configurations, as shown in Fig. 5(b). This phenome-
non can be interpreted as a 3D valley Hall system[136]. On any
arbitrary cutting plane containing the rotation axis, such as the
ky−kz plane, the integration of Berry curvature over half of
the 2D Brillouin zone (e.g., ky > 0) approaches π for a small
enough bandgap. Therefore, interface states run through the
gap and show gapless features, serving as evidence of the toroi-
dal configuration of Berry curvature distribution.

8 Connections between Different
Topological States

In the previous sections, we discussed case-by-case 3D/5D
topological semimetals and insulators based on 3D metallic res-
onant structures at microwave frequencies. The different topo-
logical states addressed above can transit from one to another by
introducing/breaking specific symmetries, e.g., TRS or IS, and
by considering a dimension reduction process. A map is shown
in Fig. 6 to illustrate the topological phase transition on the
metamaterial platform.

In a 5D system, a YM semimetal and a Weyl surface semi-
metal can transform into each other by introducing/breaking
the TP-symmetry operator �TP�2 � −1, where both topological
states have the same nontrivial second Chern number C2 � �1.
By considering a dimension reduction process from 5D to 3D, a
DP semimetal can derive from the YM semimetal, while WP
semimetals and NL semimetals can result from the Weyl surface
semimetal by locally considering only two bands and preserving
different symmetries[121]. An NL semimetal can be converted to a
WP semimetal by breaking TRS through a magnetic field[108], or
by breaking IS through a chiral structure or a modified space
group, as shown in Refs. [64,76,109,110]. Furthermore, a DP
semimetal is formed by overlapping two WPs at different bands
by simultaneously preserving TRS and IS[119,120]. In addition, TIs
can be converted from the corresponding semimetals by adding
a mass term—an antisymmetric bianisotropic term, e.g., transi-
tion from a DP semimetal to a four-band TI[130], and from an NL
semimetal[108] to an MTM[131]. It is worth noting that the transi-
tion from a WP semimetal to a two-band TI is an exception. The
only way to break the degeneracy is to merge and annihilate two
WPs carrying opposite topological charges[96].

9 Topological Photonic States in
Non-metamaterial Systems

It should be noted that almost all the mentioned topological
semimetals/insulators can also be realized with judiciously
engineered photonic crystal systems. Indeed, a photonic WP
semimetal was first realized in a double-gyroid photonic crystal
at microwave frequencies by Lu et al.[23,26] with broken IS.
WP semimetals were also realized in optical lattices[137,138],
superlattices[139], synthetic parameter spaces[140], Floquet net-
works[141,142], and circuits[143–145]. NL semimetals[23,146–149], Dirac
semimetals[27,150–152], and TIs[153–156] were also demonstrated using
photonic crystals made from dielectric materials. Similar topo-
logical states can also be realized in dielectric metamaterials at
higher frequencies[151] or in 2D metamaterials[157].

However, there is a key difference between photonic crystals
and metamaterials, in that the former controls mainly the
dispersion via the near-field coupling between unit cells or the
interference between the scattered fields from unit cells, and uses
spatial modes as the basis, while the latter realizes the desired
dispersion primarily by the resonance effect of individual unit
cells, with the effective polarization states as the basis.

In a photonic crystal, dispersion is determined mainly by the
space group, and the degeneracy points are usually located at
high symmetry points/lines. An advantage for a photonic crystal
implementation is a reduced Ohmic loss at optical frequencies
by using all-dielectric components. However, complex space
group structures for the design of photonic crystals often imply
complex unit cell structures, e.g., the double-gyroid photonic
crystal[23,26]. These units are generally challenging to be
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compatible with the planar manufacturing process and need to
be prepared by solutions such as 3D printing[158].

With metamaterials, the deep subwavelength unit cell
allows the use of the effective medium model to describe their
electromagnetic responses. As such, the constitutive relation de-
termines the underlying topological property. On the other hand,
the effective medium description of the metamaterial electro-
magnetic properties is also dependent on the space group.
The ability to adjust dispersion can be allocated to both the res-
onance of individual unit cells and the interaction between them.
Compared to photonic crystals, the deep-subwavelength unit
cells of metamaterials provide the following advantages:
(1) due to the large size of the Brillouin zone, the surface states
can be designed to be sufficiently away from the bulk states,
leading to more tightly confined surface states; (2) the reso-
nance-based functionality (instead of interference based, as in
the case of photonic crystals) provides better tolerance to dis-
orders, as shown in Refs. [159,160]. The degrees of freedom
in the spatial arrangement can be employed to introduce various
gauge fields.

10 Conclusion and Perspectives
In this review, we focus mainly on the metamaterial implemen-
tations of several gapless and gapped topological phases in

photonics. Each topological state can be linked to a particular
constitutive relation that can be transformed into realistic meta-
material designs. These topological states can also transit into
each other by imposing or breaking specific symmetries. The
metamaterial that achieves a particular constitutive relationship
can be designed by considering both the electromagnetic reso-
nance responses of metallic resonators and extra point/space
groups. Hence, topological analysis of the electromagnetic
properties of metamaterials provides a new powerful platform
to achieve some complex electromagnetic wave control. It is
worth saying that while the RLC-based model works well in
studying dispersion and the topological properties of metama-
terials, a more refined model that incorporates point/space group
analysis provides a more powerful means for designing meta-
materials.

Looking forward, there are many possible exciting directions
in this field.

A. The extension of topological metamaterial to other
classical wave systems, such as elastic systems[161,162].
Although this has been done with the crystal concept, a meta-
material (effective) approach may lead to a more straightforward
analysis of topological properties.
B. The search for possible applications of topological meta-

materials. Topological metamaterial provides new possibilities

Fig. 6 Illustration of the topological phase transition on the metamaterial platform.
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for light manipulation, which holds promise for novel devices
and applications, e.g., one-way topological fiber[163] and
Veselago lensing[91,164].
C. Photonic metamaterial opens doors to the study of topologi-

cal phases in various synthetic dimensions, e.g., by introducing
various artificial gauge fields and pseudo electric/magnetic fields.
They can be used to explore some elusive phenomena, including
high-dimensional chiral anomaly[87,88,165], quantum oscillation[166,167],
wormhole effect[168], and other effects arising from non-Abelian
gauge fields[169,170] in photonic metamaterial systems.
D. Investigation of non-Hermitian systems[171,172], hyperbolic

lattices[173], time crystals[174], Anderson insulators[175], and high-
order topological systems[176–178] with photonic metamaterial
platforms.
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