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Structural coloration, a phenomenon where color is created by
micro- or nano-structures rather than chemical pigment, has
gained traction due to its eco-friendliness, robustness to fading
over time, high-resolution capabilities, and tunability[1]. As inter-
est grows in next-generation displays like mini-light-emitting
diodes (LEDs), micro-LEDs, and high-resolution near-eye dis-
plays, structural coloration emerges as a promising solution to
meet their demanding specifications. Structural coloration has
been developed to achieve improved resolution and larger cover-
age of the standard RGB (sRGB) gamut[2], which are paramount
in display. Various design principles have been demonstrated to
meet these demands including photonic crystals made of multi-
layer-thin films, localized surface plasmon resonance (LSPR)
frommetallic structures, andMie resonance fromdielectric struc-
tures. For example, over 10,000 pixels per inch have been dem-
onstrated for next-generation near-eye displays[3,4].

Furthermore, tunability in structural coloration is also pivotal
for various applications such as sensors and optical security[5].
For example, ultrafast humidity-sensitive colorimetric sensors
have been demonstrated using metal nanoparticles and chitosan
hydrogels, which can vary their resonant frequency according to
humidity[6]. Furthermore, optical encryption platforms have also
been implemented by combining structural-coloration-based
QR patterns and polarization-multiplexed holographic images[7].

Despite potential applications, the commercialization of
structural coloration faces challenges due to the fabrication cost
associated with sub-wavelength structures and the time-inten-
sive process of electron beam lithography. Recently, nanoim-
print lithography (NIL), capable of replicating nanopatterns
from reusable master molds with high resolution, has emerged
as an alternative for low-cost and mass-production fabrication[8].
For example, Ko et al. have demonstrated humidity-responsive
structural coloration using one-step printable polyvinyl alcohol
structures[9]. High aspect ratios with various structures such as
nanogratings, nanopillars, and nanoholes have been achieved
with high throughput. This group has also demonstrated full
coverage of the sRGB gamut with high-throughput 3D NIL

techniques[10]. Nevertheless, the production rate is still insuffi-
cient for commercialization due to the limitations in the produc-
ible area of master molds and the manual NIL process.

In Photonics Insights, Li et al. have organized recent
progress on structural coloration, encompassing all the issues
and topics discussed earlier, thereby providing a comprehensive
overview of advancements in structural coloration[11]. They
begin with design strategies and working principles such as
LSPR, gap plasmon, Mie resonance, and bound states in the
continuum. Additionally, they summarize advanced design
methods such as machine learning and optimization algorithms
as alternatives to address the rising demand for large-area meta-
surfaces. This surge in demand has led to an increase in the
number of constituent nano-building blocks, pushing tradi-
tional design approaches to their limits in terms of time and re-
sources.

Furthermore, this group introduces tunable structural coloration
categorized by phase change materials, liquid crystal, and flexible
substrate deformations. Tunable structural coloration holds the
potential for lower power consumption, compact volume, and high
resolution[12], especially given the increasing demands of the wear-
able device. Additionally, they highlight both challenges and
opportunities for commercialization, with the most significant ob-
stacle being the swift and economical fabrication of complex nano-
structures. Recently, high-resolution 3D nanofabrication methods
such as two-photon lithography[13] and high-throughput NIL, in-
cluding roll-to-plate and roll-to-roll NIL[14], hold promise for over-
coming these challenges. We believe that this perspective review
article on structural coloration will boost multidisciplinary research
and, when combined with advanced fabrication methods[15], pave
the way for the commercialization of structural coloration, thus
enabling the development of next-generation novel devices.
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