Open Access
1 September 2015 Accounting for filter bandwidth improves the quantitative accuracy of bioluminescence tomography
Shelley L. Taylor, Suzannah K. G. Mason, Sophie L. Glinton, Mark Cobbold, Hamid Dehghani
Author Affiliations +
Abstract
Bioluminescence imaging is a noninvasive technique whereby surface weighted images of luminescent probes within animals are used to characterize cell count and function. Traditionally, data are collected over the entire emission spectrum of the source using no filters and are used to evaluate cell count/function over the entire spectrum. Alternatively, multispectral data over several wavelengths can be incorporated to perform tomographic reconstruction of source location and intensity. However, bandpass filters used for multispectral data acquisition have a specific bandwidth, which is ignored in the reconstruction. In this work, ignoring the bandwidth is shown to introduce a dependence of the recovered source intensity on the bandwidth of the filters. A method of accounting for the bandwidth of filters used during multispectral data acquisition is presented and its efficacy in increasing the quantitative accuracy of bioluminescence tomography is demonstrated through simulation and experiment. It is demonstrated that while using filters with a large bandwidth can dramatically decrease the data acquisition time, if not accounted for, errors of up to 200% in quantitative accuracy are introduced in two-dimensional planar imaging, even after normalization. For tomographic imaging, the use of this method to account for filter bandwidth dramatically improves the quantitative accuracy.
CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Shelley L. Taylor, Suzannah K. G. Mason, Sophie L. Glinton, Mark Cobbold, and Hamid Dehghani "Accounting for filter bandwidth improves the quantitative accuracy of bioluminescence tomography," Journal of Biomedical Optics 20(9), 096001 (1 September 2015). https://doi.org/10.1117/1.JBO.20.9.096001
Published: 1 September 2015
Lens.org Logo
CITATIONS
Cited by 7 scholarly publications.
Advertisement
Advertisement
KEYWORDS
Data modeling

Tomography

Image filtering

Bioluminescence

Optical filters

Data acquisition

Reconstruction algorithms

Back to Top