29 February 2012 No-reference peak signal to noise ratio estimation based on generalized Gaussian modeling of transform coefficient distributions
Ji-Woo Ryu, Seon-Oh Lee, Dong-Gyu Sim, Jong-Ki Han
Author Affiliations +
Funded by: MKE/KEIT, IT R&D program of MKE/KEIT, National IT Industry Promotion Agency
Abstract
We present a no-reference peak signal to noise ratio (PSNR) estimation algorithm based on discrete cosine transform (DCT) coefficient distributions from H.264/MPEG-4 part 10 advanced video codec (H.264/AVC) bitstreams. To estimate the PSNR of a compressed picture without the original picture on the decoder side, it is important to model the distribution of transform coefficients obtained from quantized coefficients accurately. Whereas several conventional algorithms use the Laplacian or Cauchy distribution to model the DCT coefficient distribution, the proposed algorithm uses a generalized Gaussian distribution. Pearson's χ2 (chi-square) test was applied to show that the generalized Gaussian distribution is more appropriate than the other models for modeling the transform coefficients. The χ2 test was also used to find optimum parameters for the generalized Gaussian model. It was found that the generalized Gaussian model improves the accuracy of the DCT coefficient distribution, thus reducing the mean squared error between the real and the estimated PSNR.
© 2012 Society of Photo-Optical Instrumentation Engineers (SPIE) 0091-3286/2012/$25.00 © 2012 SPIE
Ji-Woo Ryu, Seon-Oh Lee, Dong-Gyu Sim, and Jong-Ki Han "No-reference peak signal to noise ratio estimation based on generalized Gaussian modeling of transform coefficient distributions," Optical Engineering 51(2), 027401 (29 February 2012). https://doi.org/10.1117/1.OE.51.2.027401
Published: 29 February 2012
Lens.org Logo
CITATIONS
Cited by 7 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Quantization

Video

Error analysis

Statistical modeling

Signal to noise ratio

Statistical analysis

Video compression

RELATED CONTENT


Back to Top