Fiber Lasers and Glass Photonics: Materials through Applications

Stefano Taccheo
Jacob I. Mackenzie
Maurizio Ferrari
Editors

22–26 April 2018
Strasbourg, France

Sponsored by
SPIE

Cosponsored by
Strasbourgh the Eurooptimist (France)
CNRS (France)
Investissements d’Avenir (France)
iCube (France)
Université de Strasbourg (France)

Cooperating Organisations
Photonics 21 (Germany)
EOS—European Optical Society (Germany)
Photonics Public Private Partnership (Belgium)
Comité National d’Optique et de Photonique (France)

Published by
SPIE

Volume 10683
Contents

ix Authors
xiii Conference Committee
xv Introduction

FROM GLASS TO APPLICATIONS I

10683 02 A unified materials approach to mitigating optical nonlinearities in fiber lasers (Keynote Paper) [10683-1]
10683 03 Monitoring and controlling fiber laser based machining processes [10683-2]

FROM GLASS TO APPLICATIONS II

10683 07 The bright white emission from μ-diamonds (Invited Paper) [10683-6]
10683 08 Narrowband gain in chalcogenide waveguides for low-power RF delay lines [10683-7]
10683 09 Silica glass-based fiberoptic distributed meandering waveguides for integrated photonics [10683-8]
10683 0A Large (GeTe):(Sb2Te3) ratio phase change memory thin films [10683-9]
10683 0B Temperature dependence of spectral characteristics of distributed feedback resonators [10683-10]
10683 0C Vacuum-assisted precision molding of 3D thin microstructure glass optics [10683-11]
10683 0D Impact of the reverse cross-relaxation process on pumping efficiency in Tm-doped glass lasers materials [10683-88]
10683 0E Analysis of disordered nonlinear domain statistics via second harmonic diffraction [10683-134]

MATERIALS AND COMPONENTS I

10683 0F Glass based microresonators (Invited Paper) [10683-12]
10683 0G Lasing properties of Er3+ activated SiO2-HfO2 coated microspheres [10683-13]
LiNbO₃ integrated microdisk resonator fabricated by optical grade dicing and precise robotic positioning [10683-15]

FIBERS AND WAVEGUIDE SOURCES

Global optimization via evolutionary approach of a Dy³⁺:ZBLAN fiber amplifier for MID-IR applications [10683-18]

Luminescent sol-gel-derived micro and nanoparticles [10683-19]

Study of spectral variations in generation of random fiber laser based on set of fiber Bragg gratings [10683-20]

MATERIALS AND COMPONENTS II

Structural color tuning in 1D photonic crystals with electric field and magnetic field (Invited Paper) [10683-21]

Fabrication by rf-sputtering and assessment of dielectric Er³⁺ doped monolithic 1D microcavity for coherent emission at 1.5 μm [10683-23]

Fabrication of ring-core waveguide structure in aluminosilicate glass by metal particle manipulation due to cw-laser irradiation [10683-24]

Bi-functional Bi₂ZnOB₂O₇ single crystals doped with Nd³⁺ or Pr³⁺: luminescence and μ-Raman investigations [10683-25]

Role of Ag multimers as broadband sensitizers in Tb³⁺/Yb³⁺ doped glass ceramics [10683-26]

APPLICATIONS AND METROLOGY

Towards high-power on-chip GHz frequency combs [10683-29]

APPLICATIONS AND SOURCES

Fiber-based front ends for extreme light applications (Invited Paper) [10683-35]

High-energy subpicosecond 2-μm fiber laser [10683-38]

Spectroscopic properties of rare earth doped germanate glasses (Invited Paper) [10683-133]
SPECIAL SESSION: PHOTIND EMPIR EUROPEAN PROJECT

10683 18 Online measurement of optical fibre geometry during manufacturing [10683-40]

10683 19 Spectral retrieval techniques for high-resolution Fourier-transform micro-spectrometers [10683-41]

10683 1B Traceable instruments for encircled angular flux measurements [10683-43]

MATERIALS AND COMPONENTS III

10683 1F Thalium-doped nanoparticles and their properties in silica-based optical fibers (Invited Paper) [10683-47]

10683 1J Femtosecond and dual-wavelength mode-locked operation in Nd,Lu:CaF$_2$ [10683-51]

INDUSTRIAL SESSION

10683 1O High power picosecond MOPA with anisotropic ytterbium-doped tapered double-clad fiber [10683-56]

10683 1P All-fiber pulse shaper for adaptive dispersion compensation in industrial lasers [10683-57]

10683 1Q Two-photon microscopy with a 1064-nm femtosecond fiber laser [10683-58]

MATERIALS AND COMPONENTS

10683 1X Stochastic model of energy transfer processes among rare-earth ions [10683-65]

10683 1Y Synthesis, structure and spectroscopic assessment of luminescent GdVO$_4$:Dy$^{3+}$ and DyVO$_4$ nanoparticles [10683-66]

10683 1Z Future solar energy devices [10683-68]

HIGH-POWER FIBER LASERS

10683 20 Monolithic fiber amplifiers for the next generation of gravitational wave detectors (Invited Paper) [10683-69]

10683 23 KW-class clad-pumped Raman all-fiber laser with brightness enhancement [10683-72]
SPECIAL SESSION: MINERVA PROJECT AND MID-INFRARED MATERIALS AND SOURCES

10683 27	Acousto-optic devices for operation in the infrared [10683-76]
10683 29	Dy3+ doped CaF\textsubscript{2} crystals spectroscopy for the development of Mid-infrared lasers around 3 \(\mu \)m [10683-78]
10683 2A	Comparative study of infrared fiber laser models [10683-79]

SPECIAL SESSION DEDICATED TO EARLY STAGE RESEARCHERS AND WOMAN SCIENTISTS

10683 2C	SiO\textsubscript{2}-SnO\textsubscript{2}:Er3+ transparent glass-ceramics: fabrication and photonic assessment (Invited Paper) [10683-81]
10683 2D	Studies on carbon dots embedded Tamm plasmon polariton structures [10683-82]
10683 2E	Optical data transmission with plastic scintillating fibers [10683-83]
10683 2F	Role of gap states in chalcogenide glass response to photo-excitation by the high-intensity femtosecond laser pulses [10683-85]
10683 2G	Dual-polarization DFB fiber lasers as optical phase-locked microwave sources in the 1-10 GHz range [10683-86]

POSTER SESSION

10683 2I	Influence of Kerr nonlinearity on PT-transition in coupled fibre lasers [10683-89]
10683 2J	Optical characterization of photopolymer SWW at 532nm and for future use at 850nm and 1300nm [10683-90]
10683 2K	Influence of interionic energy transfer mechanisms in Tm,Ho:YAG on the maximum extractable energy in regenerative amplifiers [10683-91]
10683 2L	Silica- and germanate-based rare-earth doped glasses for fiber lasers [10683-92]
10683 2M	One-dimensional disordered photonic structures with two or more materials [10683-93]
10683 2N	Near-infrared emission in barium gallo-germanate glasses doped with Pr3+ and co-doped with Ce3+ for broadband optical amplifiers [10683-94]
10683 2O	Dynamic mode analysis with arbitrary rate equations [10683-95]
Glass photonic structures fabricated by sol-gel route

Development of thulium-doped fibre amplifiers for the 2-μm waveband

Modeling with the progressive wave model passively Q-switched and gain-switched dual-cavity fiber laser doped Yb:Yb

Exploiting silicon oxycarbides for integrated photonic applications

Fabrication of microstructures by rear-side picosecond laser irradiation of two-layer PMMA

Molecular dynamics study of rare-earth doped Mg-silicate nanoparticles in vitreous silica: from the preform to the fiber

Energy transfer and multicolor emission in germanate glasses containing Ce³⁺ and Pr³⁺ for white light emitting diodes

Producing high-quality chalcogenide spherical microresonators and investigating their nonlinear properties

Transverse mode selection in diode-pumped multimode all-fiber Raman lasers

Revealing spectral cross-correlations in radiation of multiwavelength fiber laser with randomly distributed feedback

Modelling of standard and specialty fibre-based systems using finite element methods

Development of a comprehensive 3D model for transversal mode instability investigations

High-power picosecond fiber-based laser operating at 515 nm

Pump modulated suppression of self-pulsing in a pulsed fibre amplifier

Benefits of visible light communication in car-to-car communication

Femtosecond laser-induced CNT heterojunction as visible light photodetector

Raman-based cw supercontinuum generation in a fiber ring laser with low output coupling

Multicolor emission in silica sol-gel materials co-doped with Tb³⁺ and Eu³⁺ for near-UV photonic devices

3.3 μm to 660 nm wavelength conversion using Er³⁺ doped materials in rare earth-doped materials
10683 3I	Integrated photonic devices with silicon oxycarbide [10683-125]
10683 3K	Structure and optical properties of PECVD-prepared As-Se-Te chalcogenide films designed for the IR optical applications [10683-127]
10683 3N	Effect of ZnO-HfO$_2$ hybrid nanocrystals on amplified spontaneous emission in Eu-doped ternary glass-ceramic waveguides [10683-130]
10683 3O	Design and research of bidirectional surface acoustic wave delay line fabricated using laser ablation method [10683-131]
10683 3P	Solid-state laser medium temperature distribution control under lasing condition [10683-132]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Afanasiev, Andrei V., 2F
Albalawi, A., 0D
Albalawi, W., 0D
Alouini, M., 2G
Antas, Joe, 1P
Antipenkov, Roman, 12
Arar, Ouiza, 2S
Armellini, C., 0M, 2C
Arshad, Muhammad Assad, 3F
Aubrecht, Jan, 15, 2L
Aviel, Matitya, 23
Babin, Sergey A., 34
Baghdasary, H., 2A
Bakule, Pavel, 12
Balda, R., 0D
Baldini, F., 0F
Ballato, John, 02, 1F
Balu Gaumer, N., 2W
Bańczyk, Maria, 3G
Barsalou, Justin, 1P
Bartelt, Hartmut, 3F
Batysta, František, 12
Behague, F., 01
Bekhrad, P., 3A
Belleguier, Michele, 2M
Belogolovskii, Dmitrii, 3P
Benayad, Abdelmjid, 29
Benson, T.M., 2A
Benedik, M.-P., 0I
Bennesi, S., 0F
Bernhardt, E.H., 08
Bernini, R., 0F
Bhaktha, Shivakiran B. N., 2D, 3N
Bidault, X., 2W
Blanc, W., 0D, 1F, 2P, 2W
Bobinetskiy, Ivan I., 3B
Boge, Robert, 12
Bondu, F., 2G
Boozer, Phillip, 20
Borak, B., 0M, 2P
Borschneck, D., 1F
Bouajjaj, A., 2P
Boucher, Yann, 0Q, 2C
Bouska, M., 0A
Brasse, Gurvan, 29
Braud, Alain, 1J, 29, 3H
Brown, C.T.A., 0W
Brunel, M., 2G
Burger, Sven, 1B, 36
Byman, Ville, 18
Cabié, M., 1F
Cadier, B., 2G
Calero, V., 0I
Callegari, Simone, 0O
Calvo, Maria L., 19
Camy, Patrice, 1J, 29, 3H
Carré, A., 2G
Caspar, A., 01
Cass, Davide, 2M
Cassidy, Derek J., 2J
Castagna, Natascia, 1B, 36
Cattaruzza, E., 0T
Cavillon, Maxime, 02
Čermahorská, Jitka, 15
Chaikina, E.I., 0N
Chamorovskii, Yuri, 1O
Chausse dent, S., 1F, 2W
Cheben, Pavel, 19
Chiappini, Andrea, 0G, 0M, 1Y, 2P
Chiasera, Alessandro, 0D, 0M, 0Q, 1Y, 2C, 2M
Choudhary, A., 08, 0W
Chrunik, M., 05
Churkin, Dmitriy V., 0N, 2l, 35
Cichy, Bartłomiej, 07
Clemente, Caterina, 0L
Clevy, C., 0I
Cojocaru, C., 0E
Cosi, F., 0F
Courjal, N., 0I
Cristante, Luigino, 2M
Dağ, Ceren B., 09
Dambon, Olaf, 0C
Das, Pratyusha, 2D
Della Valle, Giuseppe, 2M
Derkowska-Zielinska, B., 2C
Desii, Andrea, 0O
de Varona, Omar, 20
Dijkstra, M., 0B
Djellout, Djillali, 2S
Djellout, Hocine, 2S
Doroz, Dominik, 16, 2C, 2N, 3K
Dostovalov, Alexandr V., 34
Doualan, Jean-Louis, 1J, 29, 3H
Dragic, Peter, 02
Draničanin, Miroslav D., 1Y
Drozhzhin, Anton, 1P
Conference Committee

Symposium Chairs
Francis Berghmans, Vrije Universiteit Brussel (Belgium)
Thierry Georges, Oxxius SA (France)
Harald Giessen, Universität Stuttgart (Germany)
Paul C. Montgomery, Université de Strasbourg (France)

Conference Chairs
Stefano Taccheo, Swansea University (United Kingdom)
Jacob I. Mackenzie, University of Southampton (United Kingdom)
Maurizio Ferrari, CNR-Istituto di Fotonica e Nanotecnologia (Italy)

Conference Programme Committee
Rolindes Balda, Universidad del País Vasco (Spain)
Patrice Camy, Centre de Recherche sur les Ions, les Matériaux et la Photonique (France)
Yanne K. K. Chembo, FEMTO-ST (France)
Amol Choudhary, The University of Sydney (Australia)
Cosimo D’Andrea, Politecnico di Milano (Italy)
Miroslav Dramicanin, University of Belgrade (Serbia)
Ulrich Heftler, ROFIN-SINAR Laser GmbH (Germany)
Shibin Jiang, AdValue Photonics, Inc. (United States)
Udo Klotzbach, Fraunhofer IWS Dresden (Germany)
Antti Lassila, MIKES Mittatekniikan keskus (Finland)
Antonio Lucianetti, HiLASE Center (Czech Republic)
Anna Luiza Lukowiak, Institute of Low Temperature and Structure Research (Poland)
Virginie Nazabal, Université de Rennes 1 (France)
Nasser N. Peyghymbarian, College of Optical Sciences, The University of Arizona (United States)
Francesco Prudenzano, Politecnico di Bari (Italy)
Alexander Quandt, University of the Witwatersrand (South Africa)
Gediminas Račiukaitis, Center for Physical Sciences and Technology (Lithuania)
Angela B. Seddon, The University of Nottingham (United Kingdom)
Akira Shirakawa, The University of Electro-Communications (Japan)
Irina T. Sorokina, Norwegian University of Science and Technology (Norway)
Session Chairs

1. From Glass to Applications I
 Stefano Taccheo, Swansea University (United Kingdom)

2. From Glass to Applications II
 Jacob I. Mackenzie, University of Southampton (United Kingdom)

3. Materials and Components I
 Francesco Scotognella, Politecnico di Milano (Italy)

4. Fibers and Waveguide Sources
 Angela B. Seddon, The University of Nottingham (United Kingdom)

5. Materials and Components II
 Akira Shirakawa, The University of Electro-Communications (Japan)

6. Applications and Metrology
 Amol Choudhary, The University of Sydney (Australia)

7. Applications and Sources
 Cosimo D’Andrea, Politecnico di Milano (Italy)

8. Special Session: PHOTIND EMPIR European Project
 Antti Lassila, MIKES Mittatekniikan keskus (Finland)

9. Materials and Components III
 Dragana Jovanovic, Vinca Institute of Nuclear Sciences (Serbia)

10. Industrial Session
 Stefano Taccheo, Swansea University (United Kingdom)

11. Mode-locked Fibre Lasers: Joint Session between Conferences 10683 and 10684
 Neil G. R. Broderick, The University of Auckland (New Zealand)

12. Materials and Components
 Maurizio Ferrari, CNR-Istituto di Fotonica e Nanotecnologia (Italy)

13. High-Power Fiber Lasers
 Patrice Camy, Centre de Recherche sur les Ions, les Matériaux et la Photonique (France)

14. Special Session: Minerva Project and Mid-infrared Materials and Sources
 Elena Romanov, Saratov State University (Russian Federation)
Special Session Dedicated to Early Stage Researchers and Woman Scientists

Anna Lukowiak, Institute of Low Temperature and Structure Research (Poland)
Introduction

It is an honor and a great pleasure for us to introduce the inaugural proceedings of this new conference, “Fiber Lasers and Glass Photonics: Materials through Applications”. Our concept for starting this conference in the framework of the SPIE Photonics Europe Symposium was driven by the need to have a multidisciplinary place where scientists researching fiber and waveguide lasers, photonics, and glasses, could discuss and cooperate to develop new physics, new devices, and new applications. The bottom up approach, through the whole scientific chain, from materials to lasers to applications and industrial end users has been targeted and we all hope the reader will find it a stimulating overview, with new inputs for new ideas. The main areas are glass materials and functionalized photonic structures, fiber and waveguide lasers, and device applications.

Glass materials, both active and passive, and photonic structures are the cornerstones of scientific and technological developments across a broad spectrum of applications. Glasses, optical and functionalized waveguides, planar photonic integrated circuits, waveguide gratings and arrays, photonic-crystal heterostructures, hybrid micro-resonators, optical fibers, solid state lasers, and nonlinear optical devices, are just some examples of glass-based photonic systems that play a major role in light generation and manipulation for applications in: healthcare, global communications networks, remote sensing systems, biophotonics, smart materials-processing for advanced manufacturing, and next generation computing.

Optical waveguide technologies are becoming increasingly important for novel sources and photonics functionalization on and off chip. These novel devices are opening the door for short-distance data communications and new areas such as dual-comb sources for metrological and sensing applications. Fiber lasers, thanks to their compactness and reliability, have demonstrated high impact in several applications ranging from process, biomedicine, sensing, metrology, and industrial oriented contribution shows that are a suitable solution also for outdoor applications.

This conference embraces a cross-disciplinary approach aim to show the whole potential of photonics, for which its pervasiveness has already been identified as an enabling technology. Through advanced research in laser devices and glass-based optical systems, photonics can contribute to finding new technical solutions
to still unsolved problems and pave the way to applications not yet imagined. In these proceedings you will find perspectives for fiber devices looking at improving cancer detection, and state-of-the-art and future trends on new lasers systems and on the fabrication, characterization, and application of modern glass-based materials and integrated optic structures.

Due to the open multidisciplinary approach a further aim is to underline all the possible convergences, synergies, and interaction among topics and scientific fields, and to provide a common framework for research on optical inorganic materials as well as crystal based waveguiding systems. Among all possible applications of laser sources, a significant focus was on biomedicine with a review of fiber lasers in biophotonics and new frontier based on mid-infrared sources.

The full set of papers submitted for publication in this conference were truly excellent, demanding an important peer review procedure by the committee. The conference consisted of 16 sessions with 145 submitted communications involving scientists from 38 countries across five continents. The results of this conference are represented by the proceedings, which include 80 papers providing a broad overview of state-of-the-art across these multi-disciplinary fields. The presented articles provide insight into fundamental principles and modeling, fabrication, processing, characterization and exploitation of optical glasses, fiber and waveguide lasers and photonic structures for the intelligent management of light. Several doped and undoped materials such as oxides, fluorides, chalcogenide glasses, films, are discussed as well as systems and devices ranging from fiber lasers to waveguides and sensors, with attention to crystals, nanocrystals and transparent glass-ceramics. We are also proud of the organization of the following special sessions focused on EU projects:

- Minerva (Mid- to Near infrared spectroscopy for improved medical diagnostics)
- PhotIND (Metrology for the photonics industry: optical fibres, waveguides, and applications)

and for the special session for early stage researchers and women scientists, a moment of great importance to encourage new open mind young scientists. Another significant event was the joint session with the conference, “Nonlinear Optics and its Applications,” where laser devices as well and applications such as oil field leaking monitoring were discussed.

We are indebted to the very pro-active and motivated colleagues of the Program Committee for their crucial help in the organization of the session as well as for their efficient work promoting the conference.
Last but absolutely not least, we wish to express our sincere appreciation to all the staff of Photonics Europe, who kindly and very effectively supported us in building this new conference and the related valuable technical program. A special thanks to Bob Hainsey, who believed in this initiative, to the fantastic SPIE staff who led the construction of this new conference, managed the event flawlessly, and coordinated the proceedings publication.

Stefano Taccheo
Jacob I. Mackenzie
Maurizio Ferrari