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ABSTRACT 

 
 This paper suggests that the astronomical science data recorded with low F# telescopes for 
applications requiring a known point spread function shape and those applications requiring instrument 
polarization calibration may be compromised unless the effects of vector wave propagation are properly 
modeled and compensated. Exoplanet coronagraphy requires “matched filter” masks and explicit designs 
for the real and imaginary parts for the mask transmittance. Three aberration sources dominate image 
quality in astronomical optical systems: amplitude, phase and polarization.  Classical ray-trace aberration 
analysis used today by optical engineers is inadequate to model image formation in modern low F# high-
performance astronomical telescopes. We show here that a complex (real and imaginary) vector wave 
model is required for high performance, large aperture, very wide-field, low F# systems.  
 Self-induced polarization anisoplanatism (SIPA) reduces system image quality, decreases contrast 
and limits the ability of image processing techniques to restore images. This paper provides a unique 
analysis of the image formation process to identify measurements sensitive to SIPA. Both the real part and 
the imaginary part of the vector complex wave needs to be traced through the entire optical system, 
including each mirror surface, optical filter, and all masks. Only at the focal plane is the modulus squared 
taken to obtain an estimate of the measured intensity. 
 This paper also discusses the concept of the polarization conjugate filter, suggested by the author 
to correct telescope/instrument corrupted phase and amplitude and thus mitigate6, in part the effects of 
phase and amplitude errors introduced by reflections of incoherent white-light from metal coatings.  
 
Keywords: Telescope optics, polarization, exoplanets, Lyot coronagraph, weak lensing, isoplanatism, internal 
polarization, image quality, polarization aberrations, geometric aberration, point spread function 
 
1.0 INTRODUCTION 
 
 This paper introduces the concept of self-induced polarization anisoplanatism  (SIPA) in 
telescopes, describes its origin and discusses its affects on science data.  We describe how an optical system 
manipulates the complex (real and imaginary) vector wave through the telescope and instrument. The 
relationship between this wave and the system point spread function is discussed. We introduce the concept 
of the complex point function (CPF) defined as 

PSF = CPF 2 = a x, y( ) + ib x, y( ) 2  Eq. 1 

where PSF is the well-known point spread function, and a x, y( )  is the coefficient on the real part of the 

electromagnetic field at the focus and b x, y( )  is the coefficient on the imaginary part of the complex field 
at the image plane. 
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The physics of image formation is described and the role of optical interference in the image formation 
process is described. Sources of polarization-induced anisoplanatism are identified, examples derived and 
the role of the complex (real and imaginary) vector waves is presented.  

This paper is a continuation of our previous work1,2,3,4,5,6 on the subject of physical optics vector 
wave propagation through a typical astronomical telescope optical system and the affects of this 
propagation on scientific astronomical data quality.  In 2004, Breckinridge and Oppenheimer3 showed that 
polarization introduced by image forming optics internal to a telescope & coronagraph optical system adds 
noise to the system and masks signatures important for the characterization of exoplanets. Optical coatings 
to control polarization in coronagraphs were discussed by Balasubramanian, et. al.7 who suggested that 
coronagraphs may require a set polarization filters. Balasubramanian, et. al8 addressed concerns about 
polarization throughout the visible and UV.  In 2011, Clark and Breckinridge6 proposed a birefringent 
polarization compensation window composed of birefringent optical nanostructures to correct for the 
Fresnel polarization aberrations and suggested a process for its manufacture, test and evaluation.  

Isoplanatism is the optical scientists term to describe the behavior of the point spread function 
across the field of view, and through slight de-focus.  The isoplanatic patch is defined as that small region 
(volume) in the focal plane where the image formation process is accurately represented as a process linear 
in intensity. This paper discusses analysis tools to calculate the magnitude of these effects.  

2.0 REAL & IMAGINARY REFLECTIVITY 

In this section we describe reflectivity for the real part of the field and reflectivity for the imaginary part of 
the field for a multi-element telescope. The notation is set for expressions in the remainder of the paper.  

Figure 1 (below) shows two rays, one solid and one dashed originating at the same point on the 
object.  These rays reflect from highly reflecting metal thin films coated onto mirror substrate surfaces 1 
through 4. The optical power on these four optical elements is such that an image of the point on the object 
(plane 0) is imaged onto a region on the output plane 5. In this section, those terms related to the diffraction 
propagation of the wave fronts between surfaces will be ignored and we concentrate only on surface 
complex (real and imaginary) reflectivities.   

Figure 1 schematic of a 4-element optical system showing 2 rays: one dashed and the other solid propagating 
from plane 0 to plane 5. The rays originate from the same point on the object plane 0 and pass through the 4-
element reflector system to the image or output at plane 5.  

In Fig 1, we use R to represent the intensity reflectivity. The terms rn(x,y) are the amplitude of 
(real and imaginary) reflectivites of the complex wave at each surface n and the terms φn x, y( )  are the
reflectivity of the imaginary part of the complex wave. Each of the four surfaces in this figure is shown 
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with an intensity reflectivity Rn,int where n is the surface number. The classical approach to the calculation 
of the intensity at output plane 5 is performed as shown in Eq. 2.  Let I0 (x, y) be the intensity in object 
space, then the intensity I5 (x, y) in image space (plane 5) as a function of the intensity reflectivity of each 
surface is 

I5 (x, y) = I0 (x, y)∏4
i=1 Ri,int = I0 (x, y) ⋅R1,int ⋅R2,int ⋅R3,int ⋅R4,int Eq. 2 

For most astronomical systems the calculation of the intensity at the focal plane using eq 1 is sufficient.   
However, astronomical measurements that need high quality images and in-depth understanding 

of those images require analysis of the optical system in terms of the real and imaginary parts of the 
complex electromagnetic field as it reflects off each surface and passes through filters, lenses, beam-
splitters and dispersing devices within the telescope and instrument system. Examples of such applications 
are coronagraphy for exoplanet characterization, precision focal plane metrology and precision polarization 
measurements. The SNR of these systems is particularly sensitive to the shape and stability of the point-
spread function across the FOV. 

There is a complex reflectivity Z  at each surface i. Let 
Zi = ri x, y( )exp iφi (x, y)[ ]

φi (x, y)
ri x, y( )
The transmittance for the entire system is then 

In Figure 1, let the field at the object plane 0 be represented asU0 (x, y) = A0 exp iφ0 (x, y)[ ]and the field

at the image plane 5 be represented by U5 (x, y) then we find: 

U5 (x, y) = A0 exp iφ0 (x, y)[ ]ZT =
= A0 exp iφ0 (x, y)[ ] ri x, y( )exp iφi (x, y)[ ]

i=1

4

∏









Eq 5  

In Fig 1 we show two rays passing through the system, one represented by a dashed line and the 
other represented by a solid line. If we use geometric ray trace to model and optimize the optical system, 
the computation adjusts element separation, tilt and surface curvatures to minimize the optical path 
difference (OPD) between the two rays, and indeed the entire family of rays that pass from the object to the 
image. In order to focus the energy onto the focal plane rays must strike at different points on mirror 
surfaces. Therefore, in general each ray reflects through a different angle at each surface. 

We note that in Fig 1 
1. Each ray strikes a different portion of each surface
2. Each ray that strikes a surface reflects through a different angle

We will use these facts in the development of the analysis for the self-induced polarization anisoplanatism 
(SIPA).  

Details of the interaction of the complex (real and imaginary) wavefront with highly reflecting 
metal surfaces are given in Ch 13 of Born and Wolf9. In summary the values of the coefficients of the real 
part of the wave at the output plane 5, that is a5 and the imaginary part of the wave at the output plane 5, 
that is b5  depend on the geometric properties of the wave when it reflects from metal surfaces.  Parameters 
include angle of incidence at a point on the surface of a reflecting element, as well as the real and 
imaginary parts of the index of refraction of the reflecting material.  Manufacturing factors such as 
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contamination, electronic structure near the surface and metal thin film inhomogenieties (density) 
contribute to spatial variations in reflectivity. 

A white-light incoherent unpolarized wave, common in astronomy will become partially polarized 
after reflecting from a metal surface (e.g. the primary mirror) and is further polarized after it strikes the 
next surface in the optical system and so on. The magnitude of this polarization depends on the angle the 
ray strikes each surface and, under some circumstances the point at which it reflects. For the curved optical 
surfaces needed to provide optical power for the telescope, the adjacent rays strike at different angles across 
the curved surface.  In general, the steeper the angle the greater is the polarization.   

The quality of the image is best if the polarization state is the same for all rays that strike the 
image plane to form a PSF. This is the same as saying that complex wave-fields are correlated. It is this 
correlation that enables the well-known unpolarized white-light fringe in interferometry. If the polarization 
state is not the same, a high quality image will not be formed. That radiation not contributing to the image 
will increase unwanted scattered light. Many astronomical sources of interest (exoplanets, reddened distant 
galaxies, nebulae) are intrinsically polarized. The polarized component of radiation from these sources 
interacts with the polarizing properties of the metal coatings on the mirrors to introduce radiometric and 
geometric errors that vary across the FOV. 

Below, we show that in modern high-performance low F # astronomical optical systems, a 
geometric PSF, derived from the geometric ray trace will be a poor approximation to the PSF measured in 
an actual system. An understanding of the image quality requires an analysis of the associated vector 
complex wave with its real & imaginary parts to model the accuracy needed for modern high performance 
astronomical science. 

3.0 THE POINT SPREAD FUNCTION (PSF) 

In this section we describe the point spread function (PSF) of an optical system and discuss its utility as a 
metric of optical system performance10,11. Object space can be decomposed into an ensemble of points of 
light each point with its own characteristic optical amplitude and location in the field.   This is shown 
schematically in Fig. 2.  

Figure 2 shows an object (left) decomposed into an ensemble of points (delta functions). The object field passes 
through the pupil to the image plane to the right. The pupil contains powered optical elements that convert the 
incoming diverging waves into converging waves that pass onto points in the image (right). The points at the right 
represent an intensity distribution across the focal plane and have all been broadened through convolution by the point-
spread function (PSF).  

The point-spread function (PSF) is the spatial frequency impulse response of a telescope-imaging 
system at a particular point in the field of view (FOV)12.  It measures how well an object space point or area 
(point or ensembles of points) is mapped into image space.  For an ideal optical system, each point in the 
object fills the telescope aperture (pupil) with a uniform complex electric field and each point in the image 
plane on the right “sees” a perfectly uniformly filled complex electric field when looking back from right to 
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left into the pupil. The PSF is in units of intensity. It is the modulus squared of the complex (real and 
imaginary) electromagnetic wave at the focal plane. Details of the shape and intensity of the PSF depends 
on how the “lens” at the pupil modifies the coefficient on the real term and the coefficient on the imaginary 
term in the electromagnetic field. In general the PSF is asymmetric, the shape changes across the FOV, and 
the shape will change with time depending on the mechanical stability of the system.  The physical 
properties of the optical system deliver an electromagnetic field to the image plane. For a point in object 
space a complex point in image space is formed.  This complex point function (CPF) is related to the point 
spread function as follows: 

PSF = CPF 2 = a x, y( ) + ib x, y( ) 2 =

= δ 0 (x0, y0 )exp iφ0 (x, y)[ ] ri x, y( )exp iφi (x, y)[ ]
i=1

4

∏
2

A measure of the PSF does not provide information on how the image plane scale changes across 
the FOV, rather it is a metric of the local performance in a small region around a point on the object.  That 
is, the PSF says very little about how the measured separation between two stars changes across the FOV. 
Aberration terms that model geometric projections are called distortion. These provide information on how 
the “plate” scale changes across the FOV.  

4.0 PHYSICS OF IMAGE FORMATION 

Optical systems of interest to astronomers, image in “quasi-monochromatic broadband white-light”.  Image 
formation is best understood as a phenomenon of the interference of converging electromagnetic waves 
described by two parameters one a real number and the other, an imaginary number13.  

Diffraction theory & the theory of interferometry provide tools to understand image formation.  
Figure 3 shows a schematic cross-section of an optical system reduced to its essentials. In Fig 3, plane 1, is 
the astronomical object; centered at plane 2 is the optical system shown here reduced to a simple bi-convex 
lens and to the right in the figure at plane 3 is the system focal plane where the detector is located. The 
horizontal line is the system axis. 

The detector responds to the modulus squared of the complex real and imaginary electric field. We 
will give an expression to define the complex field at each plane within this simplified optical system then 
show the physical relationships between each plane and write an expression for the intensity or power at the 
focal plane. It is this intensity that is converted to electrons and recorded as a digital image of the scene.  

Figure 3 typical astronomical optical system reduced to its essentials. Plane 1 contains the object, plane 2 contains a 
powered optical element & defines the location of the pupil and plane 3 is the image plane.  Radiation travels from the 

left to the right. 

We will use orthogonal coordinates x, y  to identify points on the object and image planes and 

orthogonal coordinates ξ,η to identify points on the pupil plane.  The plus z direction is the direction of
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propagation from left to right in Fig 3. The plane (y, z) of the drawing in Fig 3 is called the meridional 
plane by optical scientists and engineers. 

We write the real, a and imaginary, b parts of the complex field U1 x1, y1( )  radiating from the
object plane 1 as 

U1 x1, y1( ) = a1 x1, y1( ) + ib1 x1, y1( ) Eq. 7 
This complex field propagates from plane 1 to plane 2. Just to the left of the lens (the entrance pupil) 
located at the pupil plane 2 as shown in figure 3, we write the complex field as  

U2
− ξ2,η2( ) = a2 ξ2,η2( ) + ib2 ξ2,η2( ) Eq. 8 

The complex field just to the left of the lens at pupil 2 is multiplied by the complex transmittance 

T2 ξ2,η2( )  of the lens. We then find the complex field just to the right of the lens at pupil plane 2 to be

U2
+ ξ2,η2( ) = T2 ξ2,η2( )[a2 ξ2,η2( ) + ib2 ξ2,η2( )] Eq. 9 

The complex transmittance of the pupil is written as, 

T2 ξ2,η2( ) = Z2 = Zi
i=1

N

∏ = ri ξ2,η2( )exp iφi (ξ2,η2 )[ ]
i=1

N

∏ Eq. 10 

where ri ξ2,η2( )  represents the coefficient on the amplitude of the complex transmittance of the pupil and

the coefficient φi (ξ2,η2 )  represents the coefficient on the imaginary part (phase) of the complex
transmittance of the pupil.  

In general the real part of the complex transmittance and the imaginary part of the complex 
transmittance of the pupil will be different for each point across the image plane. In an actual optical 
system there are many reflecting surfaces and windows few of which are at an actual pupil or image plane. 
To model the diffraction performance of these requires that we follow the real part of the complex wave 
separate from the imaginary part throughout the whole system and then take the modulus of the electric 
field at the focal plane to determine the intensity distribution at the focal plane.  

The complex field just to the right of lens U2
+ ξ2,η2( ) at plane 2 is the exit pupil. The field is

then propagated to plane 3, the image plane where the amplitude and phase of the complex field 
U3 x3, y3( ) is represented by

U3 x3, y3( ) = a3 x3, y3( ) + ib3 x3, y3( ) Eq. 11 
The focal plane responds to intensity, or power (eg. Watts per cm2) and the intensity across the focal plane 
is given by 

I3 x3, y3( ) = U3 x3, y3( ) 2 = U3 x3, y3( )U3
* x3, y3( )  =

a3 x3, y3( ) + ib3 x3, y3( )  a3 x3, y3( )− ib3 x3, y3( )  =

a3 x3, y3( ) 
2
+ b3 x3, y3( ) 

2

. Eq. 12 

Equation 12 shows us that the measured intensity at a point in the image plane is a function of both the 
amplitude (real part) and the phase (imaginary part) transmission properties of the optics. Figure 4 below 
contains a graphic that summarizes the notation we are using. 
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U3(x3,y3)=

a3rx3,y3) + ib3(x3,y3)

a2142,1i2)+ib2(42,n2) T2(2>772)[a2(2,172)+ib2(2,112)]

Where T2( 42,"12) = c2(42,î12) +id2(42,q,)

Figure 4 Summary of notation used in Eqs 7 through 12 and throughout this paper.

The Huygens-Fresnel principal and the Fresnel and Fraunhofer approximations show14,15 that the intensity 

across the focal plane I x3, y3( )  as a function of the amplitude and phase at the exit pupil U2
+ ξ2,η2( ) is

given by integrating the complex field over the exit pupil and taking the modulus squared of the field 
(amplitude and phase) at the image plane after integration: 

I3(x3, y3) = A2 U2
+ ξ2,η2( )exp −i 2π

λ f x3ξ2 + y3η2( )



−∞

∞

∫
−∞

∞

∫
2

dξ2dη2 Eq. 13 

The term  

exp −i 2π
λ f x3ξ2 + y3η2( )





 represents the powered optical element which modifies the

phase curvature of the incoming complex (real and imaginary) wavefronts so they converge to points (e.g. 
x3, y3( ) across the image plane.

In Eq. 14 λ is the mean weighted wavelength under the conditions that  λ / ∆λ 1
(quasimonochromatic assumption) and f  is focal length. A is a scaling factor.   

The complex amplitude and phase term U2
+ ξ2,η2( )  in Eq. 13 contains information about both

the science object and the telescope pupil.   If the object-space distribution is a point source in the field at 
plane 1 in Fig 4 at the off axis at position x0, y0 , then,  U1 x1, y1( ) = δ x1 − x0, y1 − y0[ ] . The field just

in front of the pupil is a tilted plane wave. In this situation, the complex amplitude and phase term 
U2

+ ξ2,η2( )  in Eq. 13 contains only information about the telescope pupil and the angle position x0, y0( )
in object space.  It is this telescope pupil amplitude and phase that tells us the point spread function at plane 
3 in Fig 4, for different points across the field of view.  
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If we examine figure 4 within the framework of equations 9 and 13, we see there are 2 cases to consider:  

1. If  U2
+ ξ2,η2( ) = 1 inside the aperture

0 otherwise






then the imaging system has no phase b ξ,η( )  or amplitude a ξ,η( )  aberrations and
the performance of the system is diffraction limited. This characterizes the perfect, ideal 
optical system and is not realizable in the practice. 

2. If U2
+ ξ2,η2( ) ≠ 1 inside the aperture

0 otherwise






then the imaging system has phase errors and amplitude errors or both and the 
performance of the system is less than ideal, perhaps undesirable and does not meet 
requirements. 

In this case the complex transmittance of the pupil, as given in Eq. 9 by 

T2 ξ2,η2( ) = c2 ξ2,η2( ) + id2 ξ2,η2( )  is not T2 ξ2,η2( ) = 1.0 + i0.0 , as we would

find in a perfect optical system (case 1 above).  The term c2 ξ2,η2( ) represents the

changes in real part of the of the complex transmittance across the pupil ξ2,η2( ) and the

term d2 ξ2,η2( ) represents changes in the imaginary part of the transmittance at point

ξ2,η2( ) .

The point-spread function (PSF) is the modulus squared of the complex (real and imaginary) electric field 
at the focal plane for a point source in object space. The function is not limited to an on axis point, but also 
is used to describe the system performance across the field of view. The PSF for an on axis point is found 
by placing a point source modeled as:  δ x1, y1( ) . This point source propagates to the entrance pupil at

plane 2.  A point source is unresolved, therefore the field U2
− ξ2,η2( ) is uniform.  Therefore from Eq. 10,

we see that  

U2
+ ξ2,η2( ) = T2 ξ2,η2( ) Eq 14  

From equation 13, we see that the complex field at the image plane is given by the integral expression inside the mod-
squared term. This expression is known to be the Fourier transform with real and imaginary parts of the field 

U2
+ ξ2,η2( ) and therefore, by Eq 15, the real and imaginary part of the Fourier Transform of T2 ξ2,η2( ) , the

function that characterizes the pupil. Under these conditions then, 

Therefore the PSF is a metric of the optical system intensity performance and not the complex amplitude and phase 
performance. It is the latter that both provides an important diagnostic tool as well as information tneeded to design an 
optimum Lyot mask. It is one of many metrics needed to constrain the system requirements. 

The next section shows that the image formation process is an interference phenomenon and that the best image quality 
requires that the complex electromagnetic wave from all regions on the pupil be coherent at the focal plane.  Later, we 

Proc. of SPIE Vol. 8860  886012-8



examine a typical astronomical telescope and identify physical sources of errors on the real part of the complex wave 
and physical sources of errors in the imaginary part of the complex wave. In a later section, we identify methods to 
mitigate these effects. In the next section we show how image formation is an interference phenomenon, review the 
role of partial coherence in image formation and examine the role of instrument-induced polarization in image quality.  

5.0 IMAGE FORMATION IS AN INTERFERENCE PHENOMENON 

Image formation is a phenomenon of interference. Consider the image quality at a point on the image plane. 
Stand at that point on the focal plane and look back out through the telescope to object space with an eye 
that is sensitive to both phase and amplitude. If all regions of the pupil interfere with all of the other 
regions, then the integral shown in Eq. 13 above is uniformly weighted across the pupil. A metric of the 
degree to which there is good interference from waves across the pupil is fringe contrast or the visibility of 
fringes. If radiation from a region on the pupil interferes with radiation from all the other regions on the 
pupil, then we have good quality imaging at that point. An additional way of thinking about this is that for 
each field point at the image plane, all regions across the pupil are coherent with all of the other regions to 
give good high-contrast image quality. Interference fringes reveal the degree of coherence16,17 between 
electromagnetic fields.  If the fields are orthogonally polarized, for example then no interference or image 
formation takes place and the unused radiation contributes to scattered light corresponding to a decrease in 
contrast and poor SNR for exoplanet detection and characterization.  

Consider a perfect optical system with a uniformly illuminated in phase and amplitude circular 
exit pupil and no amplitude or phase aberrations. That is, in Eq. 11 the term   

T2 ξ2,η2( ) ≡ 1.0 that is c2 ξ2,η2( ) = 1.0 and d2 ξ2,η2( ) = 0.0  .
Radiation from all portions of the pupil will interfere equally. In this case, for a uniformly illuminated 
pupil, the PSF is given by the well-known Bessel function: 

I θ( ) = I0
2J1 r( )
r







2
Eq. 15. 

To demonstrate that image formation is an interference phenomenon,we now take this circular 
aperture, divide it in half and cover each half with two sheets of linear Polaroid as shown in Figure 5.  On 
the left in this figure we see that the left half of the exit pupil is covered with a linear polarizer that 
transmits in the vertical direction and that the right half is covered with a linear polarizer that transmits in 
the horizontal direction.  Radiation from the left half of the pupil will not interfere with the radiation from 
the right half. The wavefronts between the two regions in the pupil are not correlated. The apertures 
resemble two letter D, one facing to the right and the other facing to the left. The left hand side pupil is said 
to be incoherent with respect to the right hand side pupil.  This will also be the case for orthogonally 
circular polarized pair of sheets shown on the right of the figure below. 
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Figure 5. Left shows the exit pupil of a telescope with orthogonal linear polarizers placed over the pupil. Right shows 
the exit pupil of a telescope with orthogonal circular polarizers placed over the pupil. 

The resulting PSF at the image plane is then the simple linear (not vector) sum of two PSF’s rotated back to 
back.  Each is a PSF characteristic of a filled D-shaped aperture, rather than the PSF for filled circular 
aperture that is representative of the perfect telescope pupil and shown in Eq. 15.  Instrumentally induced 
polarization in actual telescope/instrument systems is not usually 100% but partially polarized often with 
different degrees of polarization across the wavefront. This partially polarized light, which does not 
interfere changes the weighting of the terms in the integral shown in Eq. 13, changes the symmetry of the 
PSF, increases scattered light and reduces the scene contrast so very important for exoplanet coronagraphy. 

Radiation that does not interfere does not contribute to the image formation process but does 
contribute to the increase in the background and the uniformity of that background. This reduction in 
contrast is extremely important in stellar coronagraphy where scene contrast levels as high as 10+11 are 
desired.

Of course, in an actual telescope/instrument system an astronomer would not insert a polarizer to 
intentionally degrade the performance of his system. However, any surface in the entire optical path that 
introduces partial polarization, either circular or linear will distort the PSF and will increase scattered light. 
Optical filters, diffraction gratings18, fold mirrors19,20 needed for packaging, and the necessary powered 
optical elements21 to control geometric aberrations introduce internal polarization to modify the PSF.  Such 
polarization induced aberration needs to be understood in detail to optimize the detection and 
characterization of exoplanets using coronagraphy and astrometry. The author is actively persuing research 
in this area. 

An example of how highly reflecting metal thin film polarization alters the on-axis PSF is 
understood by examining figure 6 below.  Here we show 4 rays labeled A, B, C and D passing through a 
lens and coming to a focus at point P to the right.  A flat mirror is used to reflect the converging beam so 
that it comes to a focus at point P’.  Most modern space optical systems require a flat mirror located in a 
converging beam in order to fit or package the optical system into a spacecraft.  

Breckinridge and Oppenheimer3 show that for an F# 1.5 primary mirror, 13% of the radiation from 
the annulus near the rim will be linearly polarized with radial preference.  This jumps to over 22% for a 
system like WFIRST-2.4 which has an F#=1.2.  
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Figure 6. The ray bundle ABCD is shown passing from the left to the right. The rays originate in an optical system off 
the drawing to the left.  The ray bundle strikes a fold mirror and converges to an on-axis focal point P’.   

Figure 6 shows a portion of an optical system in the vicinity of a fold mirror typically required to package 
the optical system for spaceflight. To maintain a high reflectivity telescope, mirrors are typically a highly 
reflecting metal coating placed on a dielectric substrate. Radiation from the left has been collected by a low 
F# large primary mirror and thus is partially polarized across the complex wavefront (real and imaginary 
part) ABCD. The degree of partial polarization is, in general different for each ray in the cluster ABCD.  
The complex wavefront that enters the system from the left has a varying polarization content across its 
surface.  

The flat mirror is shown intercepting a converging complex (real and imaginary part) wavefront 
whose normals are represented by the rays shown. Let ray AP’ have an angle of incidence on the mirror 
represented by θA  and let ray DP’ have an angle of incidence on the mirror represented by θD .  From
figure 6, we see that θA >θD . We find a taper or an apodization caused by polarization (polarization
apodization) across the pupil as viewed from point P’ and the on-axis point spread function will be 
distorted.  Portions of the wavefront are not mutually coherent, do not contribute to the image formation 
process and increase unwanted radiation. 

In this section we have shown that the elements of complex (real and imaginary part) wavefront at 
the focal plane are partially polarized.  Orthogonal polarization states do not interfere. Consequently the on 
axis PSF is asymmetric.  In a Lyot coronagraph, an optimum Lyot mask placed at this focus needs to be a 
matched amplitude and phase (real and imaginary) filter mask to maximize the probability for the detection 
and characterization of exoplanets.  

In the next section we analyze the propagation of a complex wave through a typical optical system 
and identify hardware that contributes to sources of errors in the real and imaginary parts of the wavefront.  

6.0 PROPAGATION THROUGH A TYPICAL TELESCOPE 

In this section, we review the Fresnel equations and examine in detail those aspects of a typical 
astronomical telescope that are responsible for errors in the ideal shape of the PSF.  The coefficients on the 
real and imaginary parts of the complex wave are examined in detail. Specific terms in the expression: 

T2 ξ2,η2( ) = c2 ξ2,η2( ) + id2 ξ2,η2( )   are examined in detail in the following sections where we
consider several physical sources of error that cause the ideal PSF to be asymmetric and to have unwanted 
structure. 

6.1 Polarization content changes on reflection: Fresnel equations 

A highly reflecting metal mirror in an optical system is a partial polarizer.  The absorption coefficient for 
light polarized parallel is different that that for the radiation polarized perpendicular to the plane of 
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incidence. In addition there will be a phase change between the wavefronts created by the two different 
polarizations. Starlight with no preferential polarization will become partially polarized upon reflection at 
the F#=1.2 primary mirror. This partially polarized complex wave will reflect from additional metal mirrors 
as it passes through the optical system, to further polarize the wavefront.  The degree of polarization at 
points across the wavefront is determined by the real and imaginary parts of the index of refraction of the 
metal mirror and any dielectric stack overcoat as well as the angle the rays strike the surface.  

Figure 7 a ray representing a normal to the complex (real and imaginary) optical wavefront strikes a metal mirror and 
reflects.  The amplitudes characteristic of the ray are changed as is the phase to introduce a small circular polarization 
component.  

The complex reflectivities  r⊥  and r  change across the surface of a curved mirror, are dependent on the 
field point and depend on the real and imaginary parts of the index of refraction. We can represent them by: 

 

r⊥ = f ξ2,η2;x1, y1;n,k( )
r  = f ξ2,η2;x1, y1;n,k( )






Eq. 16

Since the index of complex refraction in the metal depends on the polarization and the absorption is 
wavelength dependent, there is a wavelength dependent phase shift upon reflection. This phase shift can be 
represented by 

 
φ −⊥ = f ξ2,η2;x1, y1;n,k( ). Eq. 17 

Details on how this calculation is made is found in several references22,23. The equations are lengthy and 
will not be repeated here to save space.  

T⊥ ,F ξ2,η2;x1, y1;n,k( ) = c⊥ ,F ξ2,η2;x1, y1;n,k( ) + id⊥,F ξ2,η2;x1, y1;n,k( ) 
T ,F  ξ2,η2;x1, y1;n,k( ) = c,F  ξ2,η2;x1, y1;n,k( ) + id ,F ξ2,η2;x1, y1;n,k( ) 







Where we have used a script F to indicate those terms calculated using the real and imaginary parts of the 
index of refraction based on the Fresnel equations for metals.  
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6.2 Sources of amplitude (real part) errors 

This section examines three sources of pupil errors that contribute to the amplitude, ri ξ2,η2( )

6.2.1 Secondary and its support mask the primary 

With the exception of Schmidt telescope type configurations and the Schwartzchild configuration, the stop 
(and thus the entrance pupil) of an astronomical telescope is always located at the largest (and thus most 
expensive) optical element. Most astronomical telescopes today have obscured apertures. Figure 8 below 
shows amplitude transmittance for a Cassegrain as viewed from the image plane looking back toward 
object space. The drawing on the left is for an on-axis point and the drawing on the right is for a point in 
the field, in the 4th quadrant of the image plane.  For Cassegrain telescopes the secondary support system 
cannot be located at the primary mirror. For off axis field points the shadow of the secondary its support 
systems on the primary are displaced from the hole in the primary mirror as shown on the right.  

Figure 8 shows the ξ2,η2 plane for a pupil as viewed from a point on axis (left) and for the same pupil as viewed

from a point off axis. Note that the term ri ξ2,η2( )  changes as we move across the field of view because the

secondary mirror housing and the secondary support structure vignettes different portions of the exit pupil as a function 
of FOV.  Note that this error is binary, that is, regions on the pupil are either on (open) or off (closed).  

The fact that the pupil on the left is not identical to that on the right means that the term U2
+ ξ2,η2( )  in Eq. 13

changes as a function of the point in the FOV, and the shape of the PSF therefore changes across the FOV. The mask 
function amplitude transmittance depends on location in the field of view x,y.  The mask function can be represented by 
the expression: 

Tmask = mask(x1, y1;ξ2,η2 ) Eq. 19 
6.2.2 Area projection at the pupil 

The amplitude (real) transmittance across the pupil depends on the F# of the primary mirror. The theoretically perfect 
PSF for a circular aperture assumes a uniformly illuminated aperture.  However the amplitude transmittance changes 
because the primary mirror and other optical elements in the system are curved to provide optical power. 

Figure 9 A cross-section view a typical telescope in the meridional plane showing the center of curvature (CC), the 
focus and the marginal beam for a concave primary mirror. The marginal beam is shown striking the edge of the pupil 

and deviating through angle θ to the focus.

Large aperture space telescopes are typically of low F# because of the mechanical-structural 
constraints required by packaging a telescope for launch.  F#’s as low as 1.2 are not unusual for designs of 

p y p
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modern space telescopes. The angle, θ , that the marginal beam (shown in Fig 9) deviates when it reflects
from the curved telescope entrance aperture (pupil) is given by 

θ = arctan 1
2F #







Eq. 20 

where θ is the angle of deviation of the marginal ray at the edge of the pupil. To find the ideal PSF (Eq.
15), which gives intensity at the image plane, we assume a uniformly illuminated pupil, not one that tapers 
to the edge. That is, we assume that the power per unit area (Watts/M2) was constant across the pupil to 
obtain Eq. 15.  From the geometry in Fig 9 we see that the power per unit area on the pupil as viewed from 
the image plane drops off as we move from the center to the edge. The power per unit area reflected 
decreases across the radius of the pupil. At the edge of the pupil the radiation per unit area is decreased by a 

factor of cos θ
2







 compared to the center. The larger the surface area, the more power to the focal plane.

The outer annulus of the mirror contributes the most power and therefore this projection angle is important. 
This small effect is ignored in typical telescope applications, which do not need high quality 

imaging with low F#’s telescope primaries.  For those astronomical applications studied here this is 
important. In polar coordinates the transmittance is then 

T2 θ2,φ2( ) =∝ cos θ
2







Eq. 21 

where the angle used in this equation is defined in Fig 9.  

For a wide field of view system, the angle θ depends on field of view in addition to the location of the
intercept point on the pupil, and the effective reflectivity becomes  

r x1, y1;ξ2,η2( ) = ρ cosθ(x1, y1;ξ2,η2 )2 Eq. 22 

where ρ is the pupil reflectivity at normal incidence. 

Note that in off-axis systems there are no obscurations like those shown in Fig. 6. But the angle θ , shown
in Fig 9 remains and the PSF is distorted differently across the FOV depending on FOV position. 

6.2.3 Reflectivity variations across the surface of large area optical thin films 

The highly reflecting coating deposited on large area telescope mirrors has small changes in reflectivity 
across the surface with a characteristic spatial correlation, not unlike the term r0 used to describe 
atmospheric turbulence in ground-based adaptive optics.  Local variations in reflectivity between 90 and 
97% are not uncommon24.  The effects of these variations on image quality is generally not taken into 
consideration in current models. The real part of the amplitude transmittance is then represented by 

T2 ξ2,η2( ) = ρ ξi ,ηi;x0, y0( )
i=1

N

∑
where  ρ represents samples from a random variable that is characteristic of the variations in normal 
incidence reflectivity across a large primary mirror, generally ranging between 0.97 and 0.92. 

6.3 Sources of phase (imaginary part) errors are carried in the term: φi (ξ2,η2 )

6.3.1 Optical surface errors 
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No telescope mirror can be fabricated perfectly. The optical figuring process polishes the correct 
macroscopic figure onto the mirror, but leaves small figure errors that affect image quality. Wavefront 
errors are unintentionally polished into the front surface of the primary mirror. Control of these errors 
becomes more difficult as the F# decreases.  Indeed the current state of the art is about F#=1.2 and the best 
surface is about 50 nm RMS25.

Figure 10 shows the ξ2,η2 plane for a pupil as viewed from a point on axis (left) and for the same pupil as viewed
from a point off axis (right). The gray portions represent optical surface figure errors and we can see a print-through of 
the hex pattern typical of large telescope mirrors.  

Here we consider only phase terms, we write ri ξ2,η2( ) = 1.0  and we have:

φt ξ,η( ) = φi
i=1

N

∑ ξ,η( )        Eq 24 

The relationship that models the transfer of the complex wave-front from the pupil to the image plane is 
given by Eq. 13, which is repeated below. 

In Fig 10, we note that the phase coefficient φ = ξ,η( )  changes as we move across the field of view
because the secondary mirror housing and the secondary support structure vignettes different portions of 
the wavefront aberrated exit pupil depending on the observers location in the FOV. This causes an 
anisoplanatism. 

The term U2
+ ξ2,η2( )  changes across the FOV. Since the shape of the PSF is determined by

integrating the complex function (real and imaginary) across the pupil as shown in Fig 10, a measure of the 
PSF at one point in the field will not accurately represent the PSF at another part of the FOV.  

6.3.2  Parallel and perpendicular phase reflectivities 

Unpolarized light is often thought of as an ensemble of randomly oriented polarized beams. The reflection 
process filters this ensemble of beams to produce a partially polarized reflected beam.  For light polarized 
in the vertical that strikes a metal mirror at a non-zero incidence angle has its amplitude decreased by a 

factor of Ar / Ai( )  and phase changed upon reflection by a factor ϕr /ϕi( ) . For light polarized in the
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horizontal that strikes a metal mirror at a non-zero incidence angle has its amplitude decreased by a factor 
of Ar / Ai( )⊥  and phase changed upon reflection by a factor ϕr /ϕi( )⊥ . We find then

Ar / Ai( ) ≠ Ar / Ai( )⊥
and

 ϕr /ϕi( ) ≠ ϕr /ϕi( )⊥










Eq. 25 

7. Polarization anisoplanatism

Image restoration for astronomers is discussed in Ch 9.13 in the book: Basic Optics for the Astronomical 
Sciences26.   The isoplanatic region is that area over the focal plane where the PSF remains the same. The 
system diffraction PSF derived from the star image is used to restore the aberrated image to near the 
diffraction limit.  The mathematical process is similar to that used in speckle interferometry27,28 An example 
of isoplanatism is shown in Fig 5 of the paper by Breckinridge, McAlister and Robinson29 

An astronomical telescope with low F#, and thus a polarized complex (real and imaginary) 
wavefront with additional mirrors in the system will suffer from polarization anisoplanatism.  

Figure 11 The ray bundles A & B are shown passing from a large aperture telescope to the left to strike a fold mirror 
and then come to a focus.  Note there are two field points. One is indicated by F1 and the other is indicated by F2.  

Figure 11 shows a portion of an optical system in the vicinity of a fold mirror typically required to package 
the optical system for spaceflight. To maintain a high reflectivity telescope, mirrors are typically a highly 
reflecting metal coating placed on a dielectric substrate. Radiation from the left has been collected by a low 
F# large primary mirror and thus is partially polarized, with the degree of polarization changing across the 
complex wavefront (real and imaginary part) AB . The complex wavefront that enters the system from the 
left has a varying polarization content across its surface.  

In Figure 11 we represent the wavefront by 4 rays, which are normal to the surface of the 
wavefront. Each ray has a different polarization content. The flat mirror is shown intercepting a converging 
complex (real and imaginary part) wavefront. Consider two field points. One is on axis and shown as F1. 
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The other is off axis and in the field and is shown as F2. Let the ray BF1 have an angle of incidence on the 
mirror represented by θB,F1  and let ray BF2 to the other field point F2 have an angle of incidence on the

mirror represented by θB,F2 . Let ray AF1 have an angle of incidence on the mirror represented by θA,F1
and let ray AF2 to another field point have an angle of incidence on the mirror represented by θA,F2 .

From this Figure 9, we can see that θB,F1 ≠θB,F2  and that θA,F1 ≠θA,F2  and the polarization
content of the complex (real and imaginary part) of the field at point F1 is not the same as that at plane F2. 
Therefore the PSF at point F1 is not equal to that at point F2 and F2 is said to be outside the isoplanatic 
region of F1. 

The geometric ray trace assures that the optical path difference (OPD) is optimized to minimize 
geometric spot sizes at points F1 and at F2 in the field.  This implies that the wavefront phase errors are 
minimized.  However, because there are metal thin films in the powered optical system and in fold mirrors 
the reflectivity for that part of the incident white light that is polarized horizontal to the plane of incidence 
is not equal to that for the component polarized vertical to the plane of incidence. Some regions of the wave 
front that combine to form the image are incoherent with other regions. Interference does not take place to 
contribute to an image and that radiation contributes to background to reduce contrast. 

8. Corrector plate to compensate for the Fresnel Reflections in on-axis systems

Breckinridge30 suggested that a Fresnel polarization aberration corrector be designed and built to mitigate 
the effects of the Fresnel polarization aberrations. A test plan is written, materials to fabricate the device 
have been identified and the fabrication process defined. We are waiting for funding. 

9. Summary, recommendations and conclusions
Polarization anisotropy in low F# telescopes needs further analysis. The polarization complex field 

transfer function is under development to accurately assess the performance of those NASA science 
missions that require very high fidelity image quality.  
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