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ABSTRACT 
Optical lithography resolution scaling has stalled, giving innovative alternatives a window of 
opportunity. One important factor that impacts these lithographic approaches is the transition in 
design style from 2D to 1D for advanced CMOS logic. Just as the transition from 3D circuits to 2D 
fabrication 50 years ago created an opportunity for a new breed of electronics companies, the 
transition today presents exciting and challenging time for lithographers. 
 
Today, we are looking at a range of non-optical lithography processes. Those considered here can be 
broadly categorized: 
 

• Self-aligned lithography 
• Self-assembled lithography 
• Deposition lithography 
• Nano-imprint lithography 
• Pixelated e-beam lithography 
• Shot-based e-beam lithography 

 
Do any of these alternatives benefit from or take advantage of 1D layout? Yes, for example SAPD + 
CL (Self Aligned Pitch Division combined with Complementary Lithography). This is a widely 
adopted process for CMOS nodes at 22nm and below. 
 
Can there be additional design / process co-optimization? In spite of the simple-looking nature of 1D 
layout, the placement of “cut” in the lines and “holes” for interlayer connections can be tuned for a 
given process capability. Examples of such optimization have been presented at this conference, 
typically showing a reduction of at least one in the number of cut or hole patterns needed.[1,2] 
 
Can any of the alternatives complement each other or optical lithography? Yes.[3] For example, 
DSA (Directed Self Assembly) combines optical lithography with self-assembly. CEBL 
(Complementary e-Beam Lithography) combines optical lithography with SAPD for lines with shot-
based e-beam lithography for cuts and holes. 
 
Does one (shrinking) size fit all? No, that’s why we have many alternatives. For example NIL 
(Nano-imprint Lithography) has been introduced for NAND Flash patterning where the (trending 
lower) defectivity is acceptable for the product. Deposition lithography has been introduced in 3D 
NAND Flash to set the channel length of select and memory transistors. 
 
Keywords: Low k1, 1D design style, gridded design rules, pitch division, lines and cuts, design 
source mask optimization (DSMO), self-aligned pitch division, DSA, CEBL 
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1. DESIGN HISTORY 
Modern electronics began in the early twentieth century with the invention of the vacuum tube. An 
active component which exhibited gain opened the door for countless circuits performing 
amplification, oscillation, Boolean logic functions, memory functions, sensory functions, and more. 
All of these circuits shared one characteristic: they were built from discrete three-dimensional (3D) 
objects. Circuits were constructed one component at a time, with interconnecting wires soldered to 
terminals and positioned either in air or later printed wiring boards (PWB). 

Eventually, as circuit complexity increased, the 3D approach ran into familiar limits: the component 
density was limited by scaling of vacuum tubes and discrete transistors, and the interconnect density 
was limited by yield and reliability (e.g. cold solder joints). Transistors and PWB’s helped, but 
power density became a new limiter. 

The invention of the integrated circuit and the planar process for fabrication changed electronic 
design completely. The circuit designer had to not only create a circuit topology as a schematic 
diagram, but in addition had to translate the circuit into a physical layout composed of layers of 
planar elements. The two-dimensional (2D) planar elements were just polygons which had to be 
drawn in the right shape and with the right relationship to other polygons. 

The transition from 3D design to 2D design was painful, and some designers could not relate to the 
new style. Fortunately, they could still design systems using IC’s so 3D component-based design 
didn’t go away. 

Planar processing relies on the significant advantage of uniformity in thin film deposition and 
etching. This “subtractive” approach permitted much tighter tolerances in the component and 
interconnect parameters as well as giving better matching between critical components. 

An implicit assumption in planar processing is that the design layout, transmitted through an optical 
mask, is faithfully replicated in each layer as they are built up during the process flow. This was an 
excellent assumption for many years as the resolution of optical exposure tools kept pace with the 
requirements of each design. 

However, as cost-driven scaling resulted in smaller and smaller features, optical patterning became 
more and more challenging. The familiar Rayleigh equation (half-pitch = k1 λ/NA) suggested 
scaling through reduced wavelength, increased numerical aperture, or reduced manufacturing 
margin. Twenty years ago, illumination sources transitioned from mercury lamps at 435nm and 
365nm to deep ultraviolet excimer lasers at 248nm and 193nm. Larger and more complex lenses 
featured larger numerical apertures until 0.93 was reached. 

The fitting factor k1 in the Rayleigh equation has been decreasing for recent technology nodes. For 
k1 values below ~0.6, resolution enhancement techniques (RET) such as optical proximity correction 
(OPC), off-axis illumination (OAI), and phase shift masks (PSM) have been introduced to maintain 
reasonable pattern fidelity. 
 
The use of RET was accompanied by a rapid increase in the number of design rules. More and more 
rules were restricting how shapes were drawn, and placing more constraints on the allowed 
relationships between shapes. These rules were hard to follow, difficult to check against, and often 
still allowed “hot spots” or regions with necking or bridging. 
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3. 1D DESIGN STYLE IMPACT ON LITHOGRAPHY 
Of the alternative lithography technologies previously listed, several are well suited to take 
advantage of the 1D layout style. Others, such as nano-imprint and pixel-writing e-beam, may be 
better suited for other applications. 

SAPD is widely used for the line pattern in 1D layouts. Pitch division by two is suitable for the 14-
16nm nodes, and is in high volume production. Pitch division by four has been demonstrated on 
production equipment and is expected to be used for the 10nm node. Pitch division by six or eight 
has been successfully done with today’s production equipment for capability demonstration.  Line 
edge roughness of less than one nanometer has been shown. CDU of ~1% has also been reported. 

DSA is being developed for both line patterns as well as hole patterns. Extensive work has been 
done to evaluate defectivity caused by materials and structures. For example, material “pitch” versus 
template spacing has some combinations with good pattern fidelity and some with high 
defectivity.[17,18]  

Hole shrink is important to get sub-20nm holes using any patterned lithography approach. Optical 
lithography can get to ~60nm holes and needs a shrink process. E-beam and EUV have a limit of 
about 20nm because of stochastic effects due to the small number of photons/electrons needed. DSA 
and low temperature deposition processes (i.e. “edamame” by TEL) can shrink hole dimensions with 
good uniformity.[19] 

The shot-based multiple-column CEBL technology is well suited for patterning the cuts and hole in 
a 1D layout.[20,21] The concept takes advantage of the low pattern density in these layers to 
overcome the traditional low throughput of pixel-based e-beam direct write tools. Additional 
capabilities not available in mask-based lithography are expected to be useful in the IOT era. 

Additional process extensions for 1D layouts are anticipated.[22] For example, the local interconnect 
line layer could be self-aligned to the gate layer; cuts would be done in a conventional manner. A 
“layer-to-layer” self-aligning process could be applied to hole layers based on DSA or self-aligned 
deposition; in either case, unlike today, the self-aligning material may need to remain on the wafer.  

 

4. CONCLUSIONS 

The 1D layout style has allowed IC scaling using production-proven manufacturing tools to 
dimensions far beyond what was thought possible with optical lithography. Alternative technologies 
have proven cost effective and will continue to be used to complement optical lithography. On-going 
process and tool development is expected to further leverage the advantages of 1D layouts. Other 
trends such as 3D structures in NAND Flash will continue to benefit from alternative lithography 
technologies. 

I would like to acknowledge the inputs and suggestions from colleagues at Applied Materials, 
ASML, Canon, CEA Leti, e-Beam Initiative, Multibeam Corp, Sequoia Design Systems, and Tokyo 
Electron. I appreciate the continued support of the Tela Innovations executive management.  
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